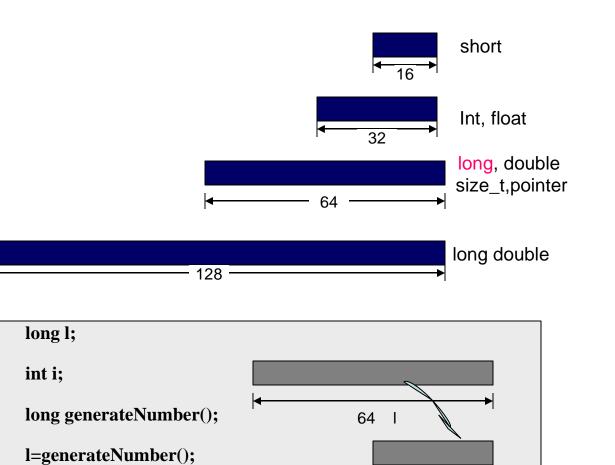


Status of LHCb applications on 64-bit platforms


Rosa M. Garcia Rioja Openlab

Contents

- 64-bit platforms
 - Source Code issues
- LHCb applications
 - Global status
 - Issues found
 - Future problems, actions and solutions
- Conclusions

Data size

Status of LHCb applications on 64-bit architectures 3

i = **l** + +;

CERN openiab

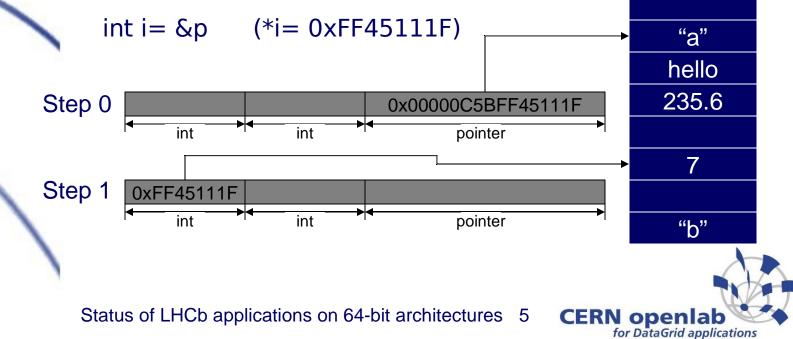
32 i

Data size

- Do not assign long or pointers to int
- size_t, time_t, and ptrdiff_t are 64-bit
 Do not assume they are interchangeable with integer
- Use ANSI const instead of #def hexadecimal variables

	32 OS	64 OS	
#define OFFSET1 0xFFFFFFFFF	-1	4,294,967,295	
#define OFFSET2 0x10000000	0	4,294,967,296	
const signed int OFFSFT1 = $0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$			

const signed int OFFSET1 = 0xFFFFFFF;



Pointers

- Pointer sizes
 - Pointer size is 64 bit.
 - Wrong cast IN Value of the pointer will be truncated
 - Problems with int (linux) and long and int (windows)

char p="a"; (&p= 0x00000C5BFF45111F)

Pointers

- Do not code with native C types that change in 64-bit OS.
- Use Macros or type definitions
- Use polymorphic types

type-cast pointer	intptr_t, uintptr_t
counting numbers	long, size_t, ssize_t

swopu	
\mathbb{N}	

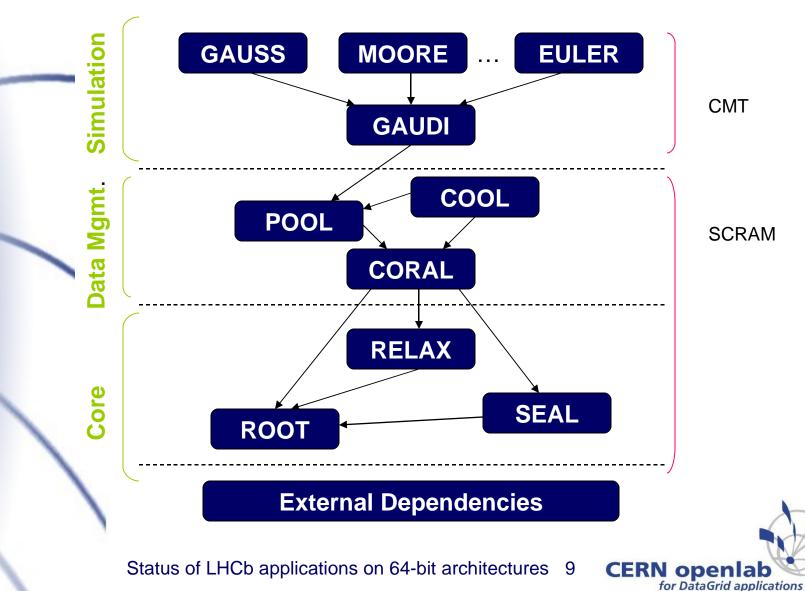
Linux

	ANSI	intptr_t, uintptr_t
type-cast pointer	Windows 2000 (64-bit)	LPARAM, WPARAM, LRESULT, INT_PTR, UINT_PTR, DWORD_PTR, LONG_PTR, ULONG_PTR
counting	ANSI	size_t, ssize_t
numbers	Windows\ 2000 (64-bit)	int3264, SIZE_T, SSIZE_T

Some tips

- Do not mix different data models
- Use define types or macros to isolate the code from the architecture
- Use pre-processor flags for different architectures implementations: __LP64__, __M_IA64 , __WIN64 , __WIN32
- Use specific functions to access data sizes and system parameters

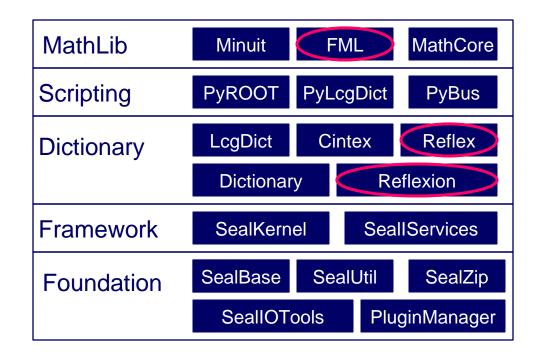
CERN openlab


for DataGrid applications

LHCb applications

LHCb applications

SEAL


 SEAL Software infrastructure, basic framework libraries and tools for LHC experiments

• Merge to ROOT 5.0.8

- Packages: Dictionary & Reflection
- Maintain those packages for previous versions
 - Neither update, nor change or port

CERN openiab for DataGrid applications

SEAL packages

Status of LHCb applications on 64-bit architectures 11

CERN openiab for DataGrid applications

SEAL

- External libraries:
 - afs (careful with the right architecture)
 - Local (rebuild them & keep directory structure)
- Properly initialize environment variables
- scram
 - eval `scram runtime –sh`
 - scram b release-reset-arch
 - Scram build
 - qmtest run testsuitName

POOL & CORAL

- Provides a general persistency store for the LHC experiment to store events and associated metadata.
- Partially ported
 - 64 bit clean at end of March
- New application CORAL
 - Allow access to different Data structures in a transparent way.

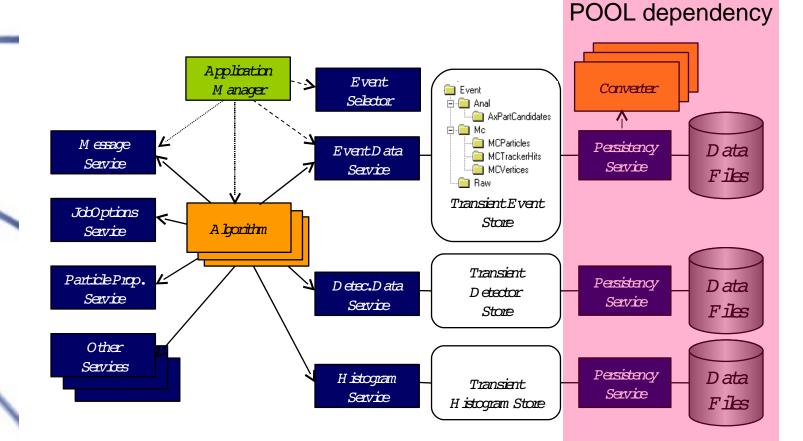
CERN openlab

for DataGrid applications

– 64 bit clean

GAUDI

Framework of simulation


- Event Modeling
- Persistency is crucial
- Only one package depends on POOL in the critical one

CERN openlab

for DataGrid applications

– Not clean

GAUDI object diagram

CERN openlab

for DataGrid applications

Image from:http://lhcb-comp.web.cern.ch/lhcb-comp/Frameworks/Gaudi/GaudiTutorial.htm

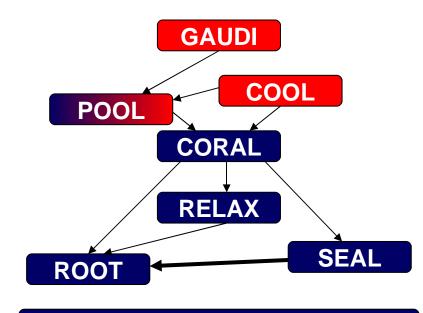
GAUDI

- Pool is not yet clean Main external dependency
- Build with cmt
- Set environment
- Cmt broadcast gmake
- Packages not using POOL can run on 64-bit architectures

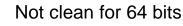
CERN openlab

for DataGrid applications

Some external dependencies


- Some tests failing or patches needed:
 - GSI, Python, gccxml, Swig, Anaphe

CERN openlab


for DataGrid applications

- CLHEP includes –fPIC in makefile
- Boost
- ROOT

Global Status

External Dependencies

CERN openiab for DataGrid applications

Issues found

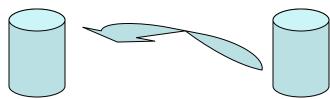
- External dependencies:
 - Some adapted by CERN and available only for 32-bit archs.
 - No tests to verify they really work on 64 bit archs.
- No homogeneous build tools
 - Autoconfig, make, scram and CMT
- Debuggers /memory tracers tools for 64-bit or complex applications using different languages together.

CERN openiab

for DataGrid applications

Issues found

- Typical problems porting code from 32 to 64 bit architectures
 - _ Pointers, int, long ...
 - Assembler code inside the C++ code
 - Specific architectural parameters defined as constants


CERN openlab

for DataGrid applications

Patches unapplied

To be solved

Check client and server architectures

Buffer 4*long (32 bits)

Buffer 4*long (64 bits)

- Typedefs
- A class mapping the types and architectures → discuss in Architects Forum

CERN openlab

for DataGrid applications

Conclusions

- Now 64 bit architectures are being considered inside the developer community
- Most of the LHCb stack is ready
- There is some expertise on porting
- Some problems still need to be solved.

