

Openlab Technical Review 07 June @ CERN

Eva Dafonte Pérez

Agenda

- STREAMS overview
- STREAMS on the TESTBED
- Configuration PROBLEMS
- STREAMS log mining configuration survey
 - Downstream capture
 - Split & Merge solution
- STREAMS monitoring
- Throughput TESTS

STREAMS Overview

- Flexible feature for information sharing
- Basic elements:
 - o Capture
 - Staging
 - Consumption
- Replicate data from one database to one or more databases
- Databases can be non identical copies

STREAMS Architecture

STREAMS log mining survey

Objectives

- Source database (CERN) isolation against network or database problems at the replicas
 - Downstream Capture
- Replica sites isolation against each other
 - split & merge solution

DOWNSTREAM Capture

- Capture process runs on a <u>different database</u>
- Redo log files are copied from source to downstream
- Use of fewer resources and data loss protection
- Definite latency in the replication process

https://twiki.cern.ch/twiki/bin/view/PSSGroup/DownstreamDatabaseConfiguration

DOWNSTREAM Capture

Real-Time Downstream capture

- Redo transport services use the LGWR
 - records data in the online redo log at the source db
- The redo data is stored in the standby redo log at the destination db
- Capture process captures changes from
 - standby redo log -> whenever possible
 - archived redo log files -> whenever necessary
- Reduces the amount of time required to capture changes made at the source database

Split & Merge solution

Split the capture process

- (original) Real-Time capture for sites "in good shape"
- (new) normal capture for site/s unstable/s
 - new capture queue and propagation job
 - original propagation job is dropped
 - spilled LCRs are dropped from the original capture queue
- Merge the capture processes
 - Real-Time capture is used for all the sites
 - Resynchronization

suggested by Patricia McElroy (Principal Product Manager Distributed Systems/Replication)

STREAMS monitoring

- "Home-made" scripts
 - o capture, propagation and apply status
 - o queues status
 - o processes statistics
- STRMMON: Oracle Streams monitor tool
 - overview of the Streams activity
- Health Check report
 - o information on the setup and operation of Streams

STREAMS monitoring

Display general information about each capture process					
Capture Name	Serial Number	ID	Number State	Redo Entries Scanned	Total LCRs Enqueued
STRMADMIN_CAPTURE	C001	136	7 CAPTURING CHANGES	13394731	705854

STREAMS Monitor, v 2.2 Copyright Oracle Corp. 2002, 2005. Interval = 3, Count=1000 Logon= @ ORACLE 10.2.0.2.0 Streams Pool Size = 752M

LOG : <redo generated per sec> NET: <client bytes per sec> <dblink bytes per sec> Cxxx: <lcrs captured per sec> <lcrs enqueued per sec> <capture latency> MEM : <percent of memory used> % <streams pool size> PRxx: <messages received per sec> Qx : <msgs enqueued per sec> <msgs spilled per sec> PSxx: <lcrs propagated per sec> <bytes propaged per sec> Axxx: <lcrs applied per sec> <txns applied per sec> <dequeue latency> <F>: flow control in effect : potential bottleneck <x% | x%F x%xx>: <ldle wait events percentage> <flow control wait events percentage> <other wait event percentage and name> xx->: database instance name

2006-06-6 16:25:26 || d3r1-> | | | MEM 6 % 752M 2006-06-6 16:25:26 || d3r1-> | LOG 512 | NET 6K 0 | C001 0 0 3sec <0%I 0%F -> | Q46190 0 0 | PS01 0 0 0 <89%I 0%F -> | PS02 0 0 0 <0%I 0%F -> MEM 6 % 752M 2006-06-6 16:25:29 || d3r1-> | LOG 0 | NET 6K 0 | <F> C001 0 0 3sec <0%I 0%F -> | Q46190 0 0 | PS01 0 0 0 <100%I 0%F -> | PS02 0 0 0 <0%I 0%F -> MEM 6 % 752M

Throughput TESTS

- Script written in python
- Based on condition data
- Insert only workload

CER

IN2P

LCR

LCR

C

CERN

LCR

Throughput TESTS

CERN to CERN replication

CERN to CNAF replication

similar results CERN to IN2P3 replication

Throughput TESTS

- Preliminary numbers (~10MB/min)
- Observed
 - Apply process is the bottleneck
 - Apply parallelism does not help
 - Propagation job stops due to FLOW CONTROL
 - Queues @destinations are not sized appropriately
- Improvements together with ORACLE
 - Queue size
 - Processes optimization

in contact with Patricia McElroy (Principal Product Manager Distributed Systems/Replication)

Questions & Answers

