

Technical activity overview

S.Jarp CERN openlab CTO

PARTNERS

CONTRIBUTORS

CERN openlab

- CERN-IT department's main R&D focus
- Framework for collaboration with industry
- Evaluation, integration, validation
 - of cutting-edge technologies that can serve the LHC Computing Grid (LCG)

2

- Sequence of 3-year agreements
 - 2003 2005: the "opencluster" project
 - 2006 2008: openlab Phase II with new projects

A few highlights from openIab-I

High performance testbed: the opencluster CERN **10GE WAN** connection openlab * GE connections to the backbone Network: 4 **ENTERASYS N7* * Enterasys X Series **36 Disk Server** 10 GE per node (dual P4, IDE disks, ~ 1TB disk space each) 10 GE per node 200 IA32 CPU Server **10GE** (dual 2.4 GHz P4, 1 GB mem. 1 GE per node **100 Itanium Server** (dual 1.3/1.5 GHz Itanium2, **2+ GB mem**) **IBM 12 Tape Server StorageTank STK 9940B** (28 TB)

28 July 2006 High Througput Prototype (opencluster + LCG testbed)

64-bit applications

- Phase 1 completed (base packages) in collaboration with the physics programmers:
 - ROOT (Data analysis framework)
 - Geant4 (Physics simulation framework)
 - CLHEP (C++ Class Library)
 - CASTOR (CERN Hierarchical Storage Manager)

• Phase 2 underway for the entire sw stacks:

- Set of external packages (Boost, etc.): OK
- Base set of CERN frameworks (as mentioned above): OK
- Generic HEP packages: OK
- Specific packages from each experiment: Expected to be ready by Q4

64-bit grid middleware

- Starting point: The software chosen for LCG had been developed only with IA32 (and specific Red Hat versions) in mind
 - Two openlab members (working hard for a long time) managed to complete the porting of LCG-2 software to Itanium
 - Result: All major components made to work on 64-bit Linux:
 - Worker Nodes, Compute Elements, Storage Elements, User Interface, etc.
 - Code, available via Web-site, transferred to HP sites (initially Puerto Rico and Bristol), as well as other interested sites (Poland, Singapore, etc.)
 - Changes fed back to software maintenance teams
 - Porting experience summarized in white paper

A successful demo of a heterogeneous Grid !

Computational Fluid Dynamics

- Based on Itanium cluster with Infiniband switches from Voltaire
- CFD calculations:
 - A numerical analysis of fluid flow, heat transfer and associated phenomena in LHC caverns
 - Reduces design and engineering costs by avoiding prototype studies
 - Calculation improved by almost an order of magnitude
 - From, for instance, one month to less than four days
 - Model dimensions increased from 0.5 to 3 M cells
- Very important contribution to all the LHC experiments
 - and others

Moving to openlab-ll

HP-related activities

- Procurve (Ethernet switches)
- SmartFrog
- Tycoon

• Intel-related activities

- Multicore benchmarking
- Virtualization
- Compiler project

During the summer: Strong addition of talented students; accelerating the work in almost all areas

• Oracle-related activities

- Streams for databased replication
- Software regression testing

HP Procurve

 Build on 5-year commercial agreement for edge switches in CERN's network topology

• Project aim:

- Understand the behaviour of large computing networks (10K+ nodes), such as CERN's:
 - Detect traffic anomalies in the system
 - Enable trend analysis
 - Automate counter measures
 - Provide post-mortem analysis facility

• Manpower:

- Two postdocs (to be hired)

• Three phases

- Identify and exploit relevant data sources
- Perform data analysis
- Understand scaling and build prototypes

SmartFrog

 Understand how such a configuration framework can be used inside Grids

- Starting-point:
 - Smartfrog framework is "empty" and needs to be populated
- Already in openlab-I we did a fair amount of work to enhance the framework for our environment
 - See SmartFrog Web pages (inside CERN's openlab pages)
- Current plan:
 - Prototype new components in order to understand the suitability of SmartFrog orchestration inside EGEE testing (ETICS project) and LCG software deployment (new releases of EGEE middleware in 200 sites)

• Manpower

- Xavier Gréhant (PhD student) since 01/06
 - Decide PhD contents
 - In Sept. together with HP Labs and ENST, Paris
- One summer student (July August)

Tycoon

Understand Tycoon in the context of e-science grids:

- How to deal with swings in demands for computing
 - Provide complementary services?
 - Based on efficient gateways
 - Provide technology that can be integrated into science grids (such as EGEE)?
 - Analyze Tycoon's features in the context of large-scale centres

• Manpower

- One summer student (now)
- One postdoc "CERN fellow" (end-October)

• Tests

- Just started with CERN, HP, NGO (Singapore)
- Soon also others:
 - GRNET (Greek Research and Technology Network)
 - Research communities in INDIA

Collaboration

- Regular contacts with Kevin Lai (HPL, PA)
- Summary of experience being written up
 - Tycoon's Wiki pages

Virtualization

Rationale:

- Grids will be much more flexible and secure when using virtualization
- All future processors/platforms will have hardware support for virtualization
 - VT-x, VT-I (Hardware processor support)
 - VT-d (Hardware I/O support)

Our initial involvement

- Xen benchmarked with CERN simulation workload on IA-32
 - Work started by Summer Student 2004
- Porting of Xen to Itanium
 - Completed last year (Master thesis): Collaboration with HP Labs and Intel

• Working with CERN's Grid Deployment team

- Focused on several requirements:
 - Create an automated server test environment under Xen
 - Allow multiple Linux distributions to be used (in a flexible manner)

 Image factories
 - Increase security when running "foreign daemons"

LHC Computing

BACKUP

Benchmarking

• CERN (and our community) will want:

- SPECint/USD
 - SPEC2000 with gcc used in acquisitions
- SPECint/Watt
 - 2.5 MW is our Computing Centre capacity
 - Power meter acquired for accurate testing

- Also, effort on optimization of jobs from the LHC collaborations
 - So far, profiling has been done on:
 - Simulation frameworks (ATLAS and LHCb)
 - Reconstruction framework (ATLAS)

Multicore/Manycore

Our "high throughput" computing model is maybe ideally suited:

- Independent processes can run on each core, provided
 - Main memory is added
 - Bandwidth to main memory remains reasonable
- Testing, so far, has been very convincing
 - Dempsey, Sossaman
 - Montecito
 - Woodcrest

Active collaboration with Intel

Compiler project

Since most High Energy Physics programs are written inhouse, compiler optimization translates directly into reduced cycle consumption per job

- Openlab has worked on several fronts
 - Get the compiler writers to take large C++ jobs more seriously
 - The world was (still is?) too dominated by the C and FORTRAN languages
 - More emphasis will come with SPEC2006
 - Add programs, such as ROOT, to the regression testing of compilers
 - Work with compiler developers (Intel, HP, GNU) to improve generated code for key sequences inside HEP programs
 - Example: Random number generators, Geometric navigation routines, etc.
- In openlab I the focus was mainly on the Itanium processor
- In openlab II the focus is on both Itanium and Xeon 64-bit