
Porting and Optimizing LHC Software on Itanium 2 Platform

Michał Kapałka
 (michal.kapalka@cern.ch, kapalka@plusnet.pl)

openlab internal report
Status: PUBLIC

Supervisor: Sverre Jarp

CERN, openlab, July–September 2004

Table of Contents
 Part I 4

Optimizing the ROOT Framework for Itanium Architectures..4
 1 Introduction..4
 2 Possible Optimizations...6

 2.1 GNU Compiler (gcc)...6
 2.2 Intel Compiler (icc)..7

 3 Experimental Results..8
 3.1 Testbed..8
 3.2 Compilation Problems..8
 3.3 The Results...10

 4 Profiles of the Benchmarks..13
 5 Summary...14

 Part II 16
Porting LHCb Software to Itanium..16

 1 Introduction..16
 2 External Packages..16
 3 Internal Dependencies..17

 3.1 Things already Ported to IA64..17
 3.2 SEAL (1.3.4)..18
 3.3 POOL (1.6.3)...18
 3.4 PI..20

 4 Gaudi Framework...20
 5 Porting Software to IA64 – Comments...21
 6 Summary...23

 Part III 24
Improving GNU Compilers..24

 1 Motivation...24
 2 Possibilities...24
 3 Problems...25

 Part IV 27
Appendices..27

 1 Scripts..27
 1.1 Setting Up ROOT Environment (rootenv)...27
 1.2 Compiling ROOT (rcomp)...27
 1.3 Running ROOT Benchmarks (testroot)..31
 1.4 Copying ROOT Binaries between Nodes (rootscp)...33
 1.5 Setting up SEAL/POOL Environment..34

 2 Short Profiles of ROOT Benchmarks..34
 2.1 GNU gcc..34

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 2 of 68

 2.2 Intel icc..39
 3 Compiling LHCb Software on IA64 – Step by Step...43

 3.1 External Packages..43
 3.2 Internal Dependencies..51
 3.3 Anaphe (5.0.6)..52
 3.4 SEAL..53
 3.5 POOL... 58
 3.6 PI..64
 3.7 Gaudi...66

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 3 of 68

 Part I
Optimizing the ROOT Framework for Itanium Architectures

 1 Introduction
ROOT is an object-oriented data analysis framework. It is well described on its home
page1, so I will mention here only a few things about this framework, which are
important from the point of view of my work. Firstly, ROOT is going to be used in the
LHC experiment for data analysis. Therefore, its efficiency is essential, as the
experiment is going to produce an enormous amount of data that has to be processed.
Secondly, ROOT contains the Cint – a C++ interpreter, which speeds up the application
development process. However, all the ROOT programs can be compiled to executable
code, which obviously can make them run much faster. Of course, all the production
applications for LHC will be in their compiled form, as their efficiency is really a crucial
issue. Thirdly, ROOT has already been well ported to IA64 (Itanium) platform, so my
task was not to make it run on these processors, but to make it run as fast as possible
and to identify all the current bottlenecks and possibilities of future improvements.

Compilation of the ROOT framework is pretty straightforward. One just has to run
the standard configure script with appropriate parameters and next – invoke the
make program. So the steps would be, for ROOT v4.00.08a, the following:

tar -xzf root_v4.00.08a.source.tar.gz
cd root-v4-00-08a
./configure linuxia64gcc # for GNU gcc compiler
or
./configure linuxia64ecc # for Intel icc compiler
make
make install # optional

Next, all the test programs can be built. They are in the test directory. Before
compiling them, one has to set up the ROOT environment, e.g. using the rootenv shell
script:

cd root-v4-00-08a
source rootenv
cd test
make name_of_the_test_program

The following four benchmarks, shipped with ROOT, have been used for the tests:
stress, bench, stressgeom and stressLinear. They are all compiled
executables, so their code is not interpreted by the Cint at runtime. To compile and

1 http://root.cern.ch

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 4 of 68

invoke them one has to type:

cd ROOT directory
source rootenv
cd test
make stress bench stressgeom stressLinear
./stress -b -q
./bench -b -q
./stressgeom
./stressLinear

All the benchmarks print their execution speed in ROOT Marks (RM). This unit is a
relative speed as compared to the reference computer (Pentium IV 2.4 Ghz, 512 MB
RAM) for which the number is equal to 600 RM.

The problem with the procedure described above is that if one wants to change
compilation options, one has to edit the appropriate configuration files manually. These
would be:

– config/Makefile.linuxia64gcc (for GNU compilers),
– config/Makefile.linuxia64ecc (for Intel compilers) and
– test/Makefile.arch.

The other thing is that with manual compilation doing a profile-guided optimization
(see the next sections) requires much more effort. People's laziness make them create
tools. I prepared a script which does a full single- or double-pass (profile-guided)
compilation, runs the benchmarks and saves all the output in appropriate files. This
makes it much easier to prepare a few different versions of ROOT and not to get lost in
it. The syntax is the following:

rcomp gcc|icc|icpc s|pgo [compiler options]
where:

gcc – use GNU C/C++ compiler (gcc)
icc – use Intel compiler (icc)
icpc – as above, but link with icpc, not with ld
s – perform a single-pass (standard) compilation
pgo – perform a two-pass (profile-guided) compilation
compiler options – all the compilation options

By default, the script tries to compile ROOT version 4.00.08a. If you want to change it,
set the ROOT_VERSION environmental variable before running it. The appropriate
ROOT tar file – root_v${ROOT_VERSION}.source.tar.gz – has to be present in
the directory from which the script is invoked. The ROOT build will be placed in the
directory named after the ROOT version, compiler, compiler version and options, for
example: root-v4.00.08a-icc-8.0-PGO-O2-ftz-ipo-ansi_alias (the “PGO”
means “profile-guided optimization”, so two-pass compilation). Please refer to Section 1
in Part IV to see what the script really does.

The tests were run on 1.5 GHz and 1.6 GHz Itanium 2 dual-cpu machines. To
ensure that only single processor is used, what makes the results more objective, all the

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 5 of 68

benchmarks were run by the taskset program.
The following sections will describe briefly the possibilities of code optimization of

two modern Itanium compilers: GNU gcc and Intel icc.

 2 Possible Optimizations

 2.1 GNU Compiler (gcc)

GNU gcc is a very popular compiler, as it's free, mature, stable and well-maintained. It
can optimize programs on many different levels – starting from machine-independent
tree of code blocks, ending with platform-specific RTL instructions. However, although
there are so many possibilities of tuning code generated by gcc, most people use only
one of the two options: “-O2” or “-O3”, sometimes having little idea about the
differences between them. Fortunately, almost every kind of optimization used by gcc is
turned on by either of them. “O2” optimizations are usually sufficient for most
purposes. Most of them doesn't make resulting executables bigger, so it's always a safe
bet. “O3” adds a few things to “O2”, like function inlining. This may make the
generated code bigger and much more difficult to debug. However, in cases when the
speed really does matter, it may be worth a try, although it is not guaranteed that in all
circumstances “O3” will produce faster code than “O2” does. For programs making
complicated mathematical calculations, a few other optimization flags can be taken into
account:

– -ffast-math – this should generate code for faster mathematical operations,
but in some circumstances may be dangerous (i.e. when a compiled program
“depends on an exact implementation of IEEE or ISO rules/specifications for
math functions” (from gcc manual)),

– -minline-int/float-divide-min-latency – generates inlined code for
integer or floating point divisions, using a latency-optimized algorithm (IA64-
specific),

– -minline-sqrt-min-throughput – generates inlined code for square root
operations, using a throughput-optimized algorithm (IA-64 and gcc 3.5 specific).
Unfortunately, a corresponding latency-optimized version hasn't been
implemented yet.

The other way of optimizing the code, which can be very fruitful on Itanium, is
profile-guided optimization (PGO). It is a bit more complicated than a usual
compilation, as it requires three steps:

– Firstly, a program has to be compiled with a special option (for gcc it is
“-fprofile-generate”), so that its code is instrumented. This will allow for
tracing the flow of execution of the program and save the information to local
files.

– Secondly, the program has to be run, possibly doing all its usual tasks. As many

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 6 of 68

use cases as it's possible should be satisfied in the process, and thus it's usually
desirable to make this procedure fully automated (e.g. by preparing appropriate
benchmarks). The program will be running slower than usually, as it will write a
lot of information about its execution flow.

– Last but not least, the program has to be recompiled with another option (for gcc
it is “-fprofile-use”) so that the compiler can use all the information
generated in the second step and thus make its predictions more accurate.

Obviously, profile-guided optimization requires a significant amount of work.
However, when the speed really does matter, this might be worth the effort.

 2.2 Intel Compiler (icc)

The Intel icc compiler is a commercial product aimed towards Intel processors (IA32
and IA64). It is less frequently used than gcc, and there are at least two reasons for that:
it costs some money (although it's free for non-commercial purposes) and still there are
a lot of programs, especially for Linux, which use some gcc-specific constructs and just
don't won't to compile with icc (see, for example, the discussions on Gentoo forums2).
The Intel compiler is more and more compatible with gcc, but there are still programs
which won't be able to compile with it. Fortunately, ROOT can use icc without any
problems.

The Intel compiler supports all the major optimizations that are used by gcc. It also
has the two basic compilation options: “-O2” and “-O3”, which are well-suitable for
most purposes. The former is usually a safe bet. The latter does things like loop
unrolling and memory prefetching, which not only can result in larger executables, but
also can be sometimes not desirable. The icc compiler supports also profile-guided
optimization (PGO, see the previous subsection).

What is really unique about icc and what, at the same time, seems to be a very
powerful technique, is multi-file inter-procedural optimization (IPO). Briefly speaking,
this allows for inlining of code at binary (object) level. The idea is the following: to
make a function or method inlined one usually has to put it in the same compilation
unit as all references to it (i.e. in the same source file or in an included header file).
When large programs, consisting of a number of shared libraries (e.g. ROOT), are
considered, this is usually not achievable in a simple way. The IPO mechanisms create
extended object files that contain some additional information and also extended shared
libraries. When a program is to be linked, all its constituent object files and used shared
libraries are examined and when the compiler finds out that some functions will be
probably called very frequently and they are sufficiently small, it can make them
inlined in the resulting executable. Obviously, this can result in larger files, but can pay
off in many circumstances. It is also clear that IPO makes much more sense when
combined with PGO that can provide better information on the usage of functions.

2 See, for example: http://forums.gentoo.org/viewtopic.php?t=113784

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 7 of 68

What is also worth noting is that Intel compilers make better use of the extra
features of Itanium processors than gcc. They do much more advanced optimization,
what can be easily seen in the generated intermediate assembly files. If it really makes
difference will be shown in the next sections.

To sum it up, I would like to list the icc optimization options which I used for
compiling the benchmarks:

– -O2/-O3 – these are the standard optimizations described above,
– -ftz – flushes denormal results to zero; it makes mathematical operations run

faster and usually should not make any harm,
– -ipo – turns on multi-file inter-procedural optimization (IPO),
– -prof_gen/-prof_use, -prof_dir – profile-guided optimization switches,
– -mP2OPT_hlo_prefetch=false – not documented flag which turns off

memory prefetching (makes sense only with -O3),
– -mP2OPT_hlo_loop_unroll=false – not documented flag which turns off

loop unrolling (makes sense only with -O3),
– -ansi_alias – informs the compiler that a compiled program is ANSI

compliant (see icc documentation for details), what allows for performing more
aggressive optimizations; this, however, implies a few assumptions and if either
of them is not met by the compiled code, the generated executable may be
invalid – so use it with care (you have been warned).

 3 Experimental Results

 3.1 Testbed

At the time of writing the document the newest release of ROOT was 4.00.08a. All the
results are for this particular version, if not explicitly stated otherwise. The following
compilers have been used:

– gcc 3.4.1, patched against the bug #16490 (PGO-related issue),
– gcc 3.5 (experimental), snapshot 2004-07-04, also patched against the bug,
– icc 8.0 (8.0.066_pl068.1).

Three dual-cpu Itanium 2 machines were used for the tests:
– oplapro35 – CPU 1.6 GHz, 2 GB RAM, Linux kernel 2.4.21-9.0.1.EL,
– oplapro50 – CPU 1.5 GHz, 2 GB RAM, Linux kernel 2.4.21-9.0.1.EL.cern,
– oplapro51 – CPU 1.5 GHz, 2 GB RAM, Linux kernel 2.6.7.

The first two nodes were used for benchmarking, the third one – for generating profiles
of test programs (see the following section).

 3.2 Compilation Problems

Itanium processors are very unique amongst others and they offer many new
performance-improving possibilities. However, in this architecture most of the

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 8 of 68

responsibility of code optimization has been put on compilers and so compiler
developers have now really hard job. Itanium processors have to be explicitly informed
about which instructions can be executed in parallel, what kind of speculation they can
use and so on. Fortunately, their architecture gives quite a lot of possibilities for
resolving uncertain situations and so the compilers task may seem easier. However, to
use all these mechanisms new optimization algorithms have to be developed and
obviously it can take some time until they have fully stable implementations. Therefore,
although current GNU and Intel compilers for IA64 are already very mature products,
forcing them to use very advanced optimization techniques may lead to compilation- or
run-time problems.

The good thing about GNU compilers was that if they didn't fail at compilation
time, they were producing correct executables. The Intel compiler, on the other hand,
could make some of the benchmarks fail when very strong optimization was used. This
doesn't necessarily mean that gcc is much more stable – it just indicates that the
advanced optimization algorithms which are icc-specific should be used with care as
they are laying somewhere on the Itanium compilers cutting edge, which has not been
reached yet by gcc.

 1) GNU gcc

As far as I remember there have always been problems with profile-guided
optimization in gcc. This powerful technique, especially fruitful on Itanium, seems to be
still not very well implemented in this compiler. It works well for simple examples, but
fails on complicated packages, like ROOT. At the beginning of my work this year the
problem looked like the following: the first compilation pass was ok, all the benchmarks
were generating profiling information, but the second compilation pass failed because
of the compiler crashing with the well-known “segmentation fault” message. I
submitted a bug report (bug #16490) and very soon some good people prepared a patch
for both gcc 3.4.1 and 3.5. The patch works well, but it doesn't solve the problem which I
already discovered last year. The problem is the following: once again the first
compilation pass is alright, and also the profiling information is generated, but the
second pass finishes with the following message: “error: coverage mismatch (...)” (gcc
3.4.1) or “error: corrupted profile info (...)” (gcc 3.5). Well, the good news is that it
crashes only for a few source files, so the problem can be solved by simply deleting the
profile files that cause the errors. For gcc 3.4.1 these will be:

– graf/src/TGraphAsymmErrors.gc*,
– treeplayer/src/TTreeProxyGenerator.gc*.
Unfortunately, compiling ROOT with gcc 3.5 is more complicated. The latest

snapshot at the moment (2004-08-08), always fails with “segmentation fault”, even if no
optimization is used – I've submitted this bug some time ago, but there is still no
solution available (bug #17183). Fortunately, the snapshot 2004-07-04, patched against
the bug #16490 is much more stable (although one has to keep in mind that gcc 3.5 is

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 9 of 68

still marked as experimental!). It works well with standard optimizations, but fails
when PGO is to be used. The solution is the following. Firstly, one has to delete all the
corrupted profile files (before the second compilation pass), namely:

– base/src/TFile.gc*,
– base/src/TRef.gc*,
– matrix/src/TDecompQRH.gc*,
– graf/src/TGraphAsymmErrors.gc*,
– histpainter/src/THistPainter.gc*,
– treeplayer/src/TTreeProxyGenerator.gc*,
– geom/src/TGeoManager.gc*.

Next, the second compilation pass can be started. It will fail while compiling the file
“hist/src/TFormula.cxx” (with “segmentation fault” – I haven't had time to
submit this bug yet). Therefore, one has to compile this file manually with all the
optimization options, except “-fprofile-use”. After this make may be run once
again and the second compilation pass should now finish without any more problems.

 2) Intel icc 8.0

As opposite to gcc, the Intel compiler was compiling ROOT without any problems, with
or without PGO or other advanced optimizations. However, in all cases when both IPO
and PGO were used one benchmark program – stressgeom – failed while doing some
tests. This means that in some cases IPO + PGO can result in invalid code being
generated. This serious bug has already been reported to Intel and hopefully an
appropriate patch will be available soon. Until then, we have to reject all the results for
stressgeom and IPO + PGO.

 3.3 The Results

I've made quite a lot of compilations, but it would be too much to put here the results of
all of them. Instead, in Table 1 you can find all the best results for both compiler
families – gcc and icc – and the corresponding optimizations. The abbreviations used:
“O2” and “O3” correspond to “-O2” and “-O3” options respectively, “fm” means
“-ffast-math”, “idml” – “-minline-int/float-divide-min-latency”, “ismt”
– “-minline-sqrt-min-throughput”, “PGO” – “profile-guided optimization”, “no-
prefetch” – “-mP2OPT_hlo_prefetch=false” (undocumented option), “no-unroll” –
“-mP2OPT_hlo_loop_unroll=false” (undocumented option), “ftz” – “-ftz” and
“aa” – “-ansi_alias” (see the previous section for description of these options). In
addition to that, in Figure 1 one can observe, what is a speedup of all the benchmark
programs (so of the whole package in general) when subsequent compilation options
are added to all the previous ones (so, for example, “PGO” means really “PGO + all
other possible optimizations” and “aa” means “standard + ipo + aa”). The symbols in
the legend have the same meaning as the ones used within the table. The “standard”

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 10 of 68

options are “-O3” for gcc and “-O2 -ftz” for icc.
After analyzing all the results produced by different compilers, compilation options

and even different ROOT versions, I've made the following observations:
1) The Intel compiler can produce code that is about 22% faster (on average) than

the one compiled by GNU gcc. This varies for different benchmarks from 14%
(bench) up to 37% (stressLinear). In any case this is a significant difference.

2) Profile-guided optimization can be very fruitful on Itanium and it seems that for
production applications the effect is just worth the effort. For gcc 3.4.1 the
speedup is only 3% on average (from 1% for stressLinear to 5% for stress),
but for gcc 3.5 it's already 6% (from 5% for stress and bench to 10% for
stressLinear) and for icc – 9% (from 2% for stressLinear to 13% for
stress).

3) The “-ansi_alias” option gives little on average – about 2% – but can pay off
for some benchmarks, like stressLinear for which the speedup is around 7%.
Nevertheless, one has to keep in mind that this option can be dangerous in some
cases, so it should be rather used by people who know the compiled code more
or less (better more).

4) Multi-file inter-procedural optimization, which unfortunately exists only in icc
compilers, is really powerful stuff, especially when used together with PGO.
When added to standard options, it speeds up the ROOT benchmarks by almost
5% on average (from 1% for stressgeom to 7% for stress). However, when
added to PGO flags, it makes the PGO compilation faster by more than 14%
(from 7% for stressLinear to 19% for bench). The only drawback of IPO is
that it takes so much time – linking of main ROOT libraries (when IPO starts its
job) can last for hours. And of course one has to keep in mind that icc 8.0 has still
a bug that can result in invalid code when both IPO and PGO are used.

5) There is one strange thing when moving from 1.5 GHz machine to a 1.6 GHz
one. The speedup should be, theoretically, around 6.7%. However, for ROOT
benchmarks it was on average around 5.7% for gcc and 4.3% for icc (5% with
PGO and 3.6% without PGO). This might be due to the fact that the 1.6 GHz
processors used in the tests had smaller cache, but I have no prove for that.

6) Switching from ROOT v4.00.06a to v4.00.08a has brought one huge drawback –
bench has slowed down by about 20%. I haven't found the reason, but it has to
be due to recent changes in the internal structure of ROOT. The profiles don't
show any obvious candidates. However, the output from the benchmark says
that what is really longer in the new version of bench is time to read and write
“vector<THit*>” – and this creates the whole difference. Now it would be good
to trace, how this corresponds to the source code, but I had no time for that.

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 11 of 68

Table 1. The best results for all compilers and both machines (1.5 GHz and 1.6
GHz)

Benchmark
Best results for gcc Best results for icc

1.6
GHz

1.5
GHz

Version,
options

1.6
GHz

1.5
GHz

Options

stress 911 861
3.4.1, O3,
fm, idml,

PGO
1115 1064

O3, no-prefetch, ftz,
ipo, aa, PGO

bench 758 713
3.5, O3, fm,
idml, ismt,

PGO
868 816 O3, ftz, ipo, aa, PGO

stressgeom 914 864
3.5, O3, fm,
idml, ismt,

PGO
1107 1034 O2, ftz, aa, PGO

stressLinear 574 538
3.5, O3, fm,
idml, ismt,

PGO
785 737 O2, ftz, ipo, aa, PGO

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 12 of 68

Figure 1. Summary comparison of different compilers and optimizations.
Given here is a geometric mean of best results within a given criteria

(normalized)

gcc 3.4.1 gcc 3.5 icc 8.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PGO

O3 + undoc-
umented (icc)

aa (icc)

ipo (icc)

fm, idml, ismt
(gcc)

standard

g
eo

m
et

ri
c

m
ea

n
of

 b
es

t
re

su
lts

 (
n

or
m

al
iz

ed
)

 4 Profiles of the Benchmarks
Both compilers – gcc and icc – can instrument compiled code so when it's run it saves to
disk some information about which instructions/functions have been called how many
times and how long it took to execute them. This information can be used either by
some automatic tools (e.g. for the compilers themselves when profile-guided
optimization is used) or can be converted to a human-readable form, which makes
efficiency analysis of a given program much easier. The problem is that the code has to
be specially prepared (instrumented) for this purpose, which is not very convenient.

Fortunately, HP has recently developed a nice tool for Itanium. It runs in
background and collects information about all processes running on a given machine.
This information, semantically equivalent to the one that can be produced by
instrumented executables, can be used for creating profiles of all the programs running
on the system. They might be sometimes less accurate that the ones generated by
instrumented executables, due to the sampling-related errors, but this should not be a
problem as one usually needs only some general overview of what is going on inside a
given program. This tool is called “q-syscollect” and it comes together with
“q-view” that is responsible for converting information produced by the former to a
human-readable form. The usage can be, for example, the following:

q-syscollect -t 300 (run q-syscollect for 300 seconds)
aProgramToBeTraced (one or many programs one is interested in)
and after q-syscollect finishes:
q-view .q/aProgramToBeTraced-pid1234-cpu0.info#0 > profile.txt

Obviously, the last filename in the “.q” directory may be slightly different. It's worth
noting that q-syscollect writes a separate file for each processor. Therefore, on a
multi-cpu machine it might be desirable to run the traced program with the taskset
tool, what will avoid creating multiple profiles that will have to be merged somehow
(manually) later on.

The profiles of the ROOT benchmarks for icc and gcc compilers are put in Section 2
in Part IV. Here is a short summary of the hot spots of the benchmarks and of possible
ways of improving their speed:

– What takes more than 20% of time in stress and more than 7% in bench are
the ZIP compression and decompression functions. One should really think hard
if compressing the output files is really needed (this should come with an
answer to a question, whether storage is cheaper than cpu time or vice versa). If
the compression is desired, one should think of optimizing the ZIP code, even if
it ends up on rewriting some small functions in assembly (a good candidate is
“R__longest_match”).

– The stressgeom benchmark has got even a better candidate for hand-
optimizing – the “Trandom3::Rndm(int)” method, which consumes from
25% (icc) to 32% (gcc) of the overall run time. What is really nice is that this

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 13 of 68

method is particularly small, what makes it a perfect place for various
experiments. To make it even simpler, I've created a small “sandbox” that
contains the “TRandom3” class, all the header files that it needs and a little
benchmark which only measures the efficiency of the “Rndm(int)” method3. I
didn't have enough time to play with it, but if anybody wants to optimize this
code, this is a good place to start from.

– The hot spots of the stressLinear benchmarks are matrix and vector
operations (from libMatrix.so), which take more than 80% of the overall time
altogether. Most of the very time consuming functions can be optimized well by
a compiler itself, without any hand optimizing. Some of them already are
(especially by icc), others are being looked closer by the Intel team and hopefully
future Intel compilers will make them run much faster. In these circumstances it
may be not very reasonable to try to optimize these functions manually on
assembly level, especially because it is quite a significant amount of C++ code.
On the other hand, putting a few “pragmas” in the code in order to give some
hints to a compiler can be beneficial. But waiting for a new version of icc may be
also a wise movement in this particular case.

 5 Summary
Looking at the results of ROOT benchmarks one may ask if there is really a point in
fighting so much and waiting ages for compilation to finish just to have a 20% speedup.
And one may doubt even more if changing their code to make it compile well with the
Intel compiler is worth the effort. The hand optimization of ROOT itself is at least as
much questionable – 20%, maybe 40% in a very optimistic scenario – but it's weeks or
months of difficult manual work before one can reach it. Is that all worth the effort? The
answer is not as obvious as it might seem to be. Of course, when we consider only a
single user, developing his or her own private application within the ROOT framework,
which is going to be run for a couple of nights on a home PC, we can definitely say that
this whole trouble with PGO, IPO, tricks and hand optimizing is just unreasonable. But
when we switch to thinking about the LHC experiment, in which each percent of
speedup is substantial money saved, then it becomes visible that one should definitely
do everything to make the applications run as fast as possible. I don't mean that the
advanced optimization should be used on every step of development process. It would
be actually quite inconvenient. But the production versions of LHC programs should be
tuned to the limit (if there is any). Not doing it will be just an irrational wasting of
resources (read: money).

On the other hand, advanced optimization techniques should be used with care. It's
not only because they can result in invalid code (although this is a critical issue), but
also because some of them, no matter how great they are, can decrease the efficiency of

3 It can be found at: /afs/cern.ch/user/m/mkapalka/public/Trandom3benchmark.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 14 of 68

produced programs in some circumstances. It's always good to make a few
compilations and compare. The same applies to hand optimizing ROOT code – not all
obvious optimizations can be beneficial, as one's best ideas can be just wrongly
interpreted by compilers.

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 15 of 68

 Part II
Porting LHCb Software to Itanium

 1 Introduction
Both C and C++, and also Fortran, are standardized. This means that ideally porting
some software written in any of these languages to another platform should be as easy
as recompiling it with an appropriate compiler. Unfortunately, it is usually not the case,
mainly because of two reasons. Firstly, compilers tend to have some vendor-specific
extensions and, by the way, may also not fulfill the standards in 100%. But one may just
not use these compiler-specific constructs and avoid all the things that are either out of
the standards or not handled properly by the most popular compilers. Secondly,
programmers tend to make too many wrong assumptions in their code and use some
“dirty” tricks which can speed up the execution of the program on one particular
platform, but at the same time can make the code non-portable and, by the way, a bit
more than unreadable (not to mention – difficult to debug).

I tried to port a part of the LHCb software to Itanium platform. It was not an easy
task and probably without help of people like Vladimir Litvin, who had already tried
porting SEAL and POOL to IA64 some time ago, and Markus Frank, one of the
developers of the LHCb software, I wouldn't do so much in these 2 months.
Nevertheless, the aim of this document is not only to show, how many things one has to
do to compile the packages on Itanium, but also to tell the following two messages to
programmers: firstly, that porting software to IA64 is not a “mission impossible”,
secondly, that making 64-bit compliant programs requires usually only remembering a
few basic rules (and applying them, of course, in everyday work).

The following sections give a summary of what have been achieved and what does
not work yet. They also point out the most common issues and problems with porting
programs to the Itanium platform. However, this is only a summary. For a detailed
instructions, which describe step-by-step how to compile all the packages, please refer
to Section 3 in Part IV.

 2 External Packages
Most of the external packages that are needed by the LHCb software compile well
without any additional effort. Many of them provide some automatic tests and this is
really a good thing as then it is very easy to check if the compilation is really successful.
Otherwise, one can only hope that the generated executables are valid.

The following packages have been compiled without any tricks and have been

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 16 of 68

proved to work well on Itanium (i.e. all of their built-in tests succeeded): bz2lib,
cppunit, cmake, pcre, qmtest, uuid, zlib, MySQL, Xerces-C, expat, Grace. The EDG
client libraries have been already well ported to IA64 by Andreas Unterkircher, so I
could just use the binaries. Some packages, namely Boost, UnixODBC and wxPython,
don't have any easy-to-use internal tests, so I couldn't check if they are really working.
However, they compiled without any problems. There were also some things that
didn't require compilation at all: AIDA (it's just a bunch of header files), otl4 (it's just a
single header file) and Oval (it's a tool used only for testing purposes, at compilation
time, so I just used the IA32 version without any problems).

However, the following packages caused some problems. They either didn't want
to compile on IA64 or some of their tests failed. Fortunately, most of the problems have
already been solved, but I guess there can be some hidden bugs that may come out
later. These packages are:

– GSL – compiles, but one test from cdf subdirectory fails,
– Python – compiles, but test_compile fails with the message: “eval('0xffffffff')

gave 4294967295, but expected -1” (this is obviously an IA64 issue, but shouldn't
be dangerous – maybe the bug is in the test program itself),

– MyODBC – one test fails: my_tran (we can only hope that transactions won't be
needed in LHCb; otherwise, somebody will have to come back to this package),

– gccxml – some manual patching was needed to make the program run correctly
on more complicated source files,

– MySQL++ – fortunately, somebody has prepared an IA64 version of this
package, but even this one required some manual patching and caused some
more problems later; still don't know if it works correctly (there are no tests in
the package, only some examples),

– Swig – a small correction to its Makefile was needed, but after that it compiled
well and all the tests were ok,

– Anaphe – this requires some tricks and a lot of patience to compile: two
configuration files have to be modified, some directories and symbolic links
have to be created manually and a few environmental variables have to be set
before it starts working; but still not all of its sub-packages want to compile
(fortunately, I've managed to build all the required ones); still not tested.

 3 Internal Dependencies

 3.1 Things already Ported to IA64

The following applications didn't cause any major problems while compiling on IA64:
– ROOT – this is already well ported to Itanium,
– CLHEP – it required only adding the “-fpic” option to its Makefile, but

besides that it's proved to work well on IA64,

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 17 of 68

– libshift (a part of the CASTOR project) – is not only ported to Itanium, but
also the appropriate binaries can be downloaded from the project's web page,

– CERNLIB – a small modification of its configuration files is needed to make it
use the “-fpic” compilation flag. It has been ported to IA64 by two people, but
their changes, as far as I know, haven't been officially applied to the official
release. However, I didn't experience any problems with the library, though it
may be necessary to look at it closer in the future.

 3.2 SEAL (1.3.4)

Compiling SEAL is pretty easy – only one source file has to be slightly modified to
avoid some compilation errors. However, quite significant patching of the code is
needed to make at least some of the tests run correctly. The majority of issues comes
from two common programmers' mistakes:

– Using variables of type “unsigned int” instead of “size_t” (which is in fact
“unsigned long”) to hold results of string operations. These can return a
value equal to “std::string::npos” that won't fit in any 32-bit variable on
IA64, as it's equal to “(unsigned long)-1”.

– Passing values of type “int*” to functions that expect “long*” instead. This
results in a very difficult to trace memory corruption errors.

– Defining types that are expected to be 4-byte long integers as “unsigned
long”, which has length of 8 bytes on IA64.

I've managed to find and correct many such bugs and therefore most of the SEAL tests
work now. On the other hand, quite a few tests fail on both IA32 and IA64, which
means that they are not very well maintained. And this leads to an important question
about how much we can trust these tests and about how large part of the SEAL code
and its functionality they actually cover. But this has to be answered by SEAL
developers and as it's not an IA64-specific issue, I won't bother with that.

Nevertheless, a few SEAL tests, which work well on IA32, either fail on Itanium or
produce results which do not correspond well enough to the ones produced by the 32-
bit code. As I wanted to check most of the LHCb dependencies in the 2 months of my
stay at CERN, I haven't managed to solve these problems.

 3.3 POOL (1.6.3)

Compiling POOL was much more complicated. Firstly, as this version is already pretty
outdated, there were a few bugs which made it not compile with the version of GNU
gcc that was used (3.2.3). Fortunately, there are already patches available at the POOL
web site, as these problems are not IA64-specific. Surprisingly, SEAL also had to be
patched as it had a bug that made POOL compilation fail at some point. Some other
issues which were not related to the 64-bit architecture were caused by MySQL++,
which, in my opinion, seems to be quite an immature project, with not very good

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 18 of 68

support and not very well maintained code (fortunately, quite a few people have
prepared patches which solve some problems, related either to new compilers or 64-bit
architectures). Nevertheless, the most difficult thing was to find IA64-specific bugs,
especially because there are quite a lot of them and they cause many different effects,
from simple “segmentation faults” up to some nasty and difficult to trace memory
corruption problems. Most of the issues were related to the following common
programmers' mistakes:

– Using “long” or “unsigned long” (instead of “int” and “unsigned int”)
in places where it is not necessary, not motivated or even not reasonable. I just
wonder why people use these types on 32-bit architectures if they don't expect
their code to be run on 64-bit machines. On IA32 “long int” is equal to “int”
and using the former should be really avoided, unless it's deeply motivated (e.g.
when a given variable is supposed to keep larger numbers on 64-bit
architectures – but then the whole code has to be portable!).

– Confusing “unsigned int” and “size_t”. Although these types are
equivalent on IA32, they are different on all 64-bit platforms. But this has
already been said in the section about SEAL...

– Assuming that a given class has a specified size. This is a wrong assumption,
especially when the class contains pointers or fields of type “long int”. Not to
mention things like padding (caused by data alignment requirements), which
are extremely platform-specific.

– Using constants like “0xffffffff” to initialize variables of type “long int”
(directly or indirectly) and expect later these variables to have some specified
negative values (-1 in this case). Of course “(long int)0xffffffff” will be
-1 on IA32, but not on IA64.

– Using some non-portable tricks, like very low-level bit operations or copying 4
subsequent “char” class fields to another class by copying 2 “long ints”
(with some pointer casting).

Correcting bugs like these took me and Markus Frank a few days. And it's still
quite a lot of things that don't work. What is more, a few things need to be rethought
and then changed consequently from beginning to end. And all of this should be done
as soon as possible, because when newer versions of POOL appear it will be even more
difficult to apply all the patches that are already prepared, not to mention finding all
the remaining bugs.

Fortunately, many tests work already and some behave only slightly different than
their 32-bit counterparts (e.g. for some of them the size of generated output files is a
little larger or smaller – but these files are actually created by ROOT and this
framework is supposed to produce portable files on many architectures). Therefore, I
believe that full porting of POOL to IA64 is feasible and can be done in the near future.

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 19 of 68

 3.4 PI

The compilation problems with PI were all related to some small bugs either in its
configuration files or in some external packages (e.g. missing “-fpic” option for some
libraries). They all have been solved, except for some problems with test programs,
which are not that important to waste too much time on them (but probably they can be
solved quite easily).

What is more, all the tests that run well on IA32 succeed also on IA64, so there are
almost no portability issues in this package. However, some output numbers (e.g. these
produced by Minuit library) are slightly different and I would suggest that someone
competent judge if these differences are tolerable/desirable.

 4 Gaudi Framework
The problem with SEAL, POOL, PI and also with Gaudi (as well as with other LHCb
software) is that they use some special and not very popular building tools. Well, they
don't even use a single tool. The first three packages need “scram” and the rest of the
LHCb software uses a completely different build environment called “cmt”. Personally,
I would really prefer typing the famous “configure; make; make install” than
learning how to use scram and cmt, with all of their specific environmental variables,
commands and, what's most horrible, own philosophy. Nevertheless, I believe that this
has some explanation and once one learns how to use these tools, his or her life
becomes really much easier. Thus, I won't be complaining about them anymore.

Setting up the environment for Gaudi is quite easy, although one has to use the
tcsh shell as bash-compatible scripts seem to be a bit outdated. What is also quite
annoying is that all the external packages, as well as all the internal dependencies, have
to be put into a pre-configured directory structure that is used by all the LHCb
software. I guess there must be a way to change the configuration files so that this is not
necessary, but I just found it easier to copy a dozen of directories around than to find
out how cmt can be customized.

As POOL, which is used directly by Gaudi, has changed in the porting process,
Gaudi also had to be modified. Most of the changes were related to the fact that types of
some of the parameters or return values of POOL methods were converted from
“(unsigned) long(*)” to “(unsigned) int(*)”. Therefore, the prototypes used
by Gaudi didn't match any POOL functions and so the compilation failed. Nevertheless,
as these were compilation problems, they were quite easy to repair, although it required
changing many files.

Finally, Gaudi has been compiled together with its example programs. They have
shown that the core functionality of the framework works well, but there are still
problems when either IO or more advanced functionality is used. All in all, 5 examples
work and 6 fail, which is not a very impressive result but also not very bad, taking into
account that POOL is still not fully ported to IA64, nor SEAL. Therefore, there is still

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 20 of 68

quite a lot of debugging and patching to be done, but at least voices of the prophets,
who say that the LHCb-related software is completely unportable, should now calm
down a bit, giving more motivation to the people who will move the thing forward.

 5 Porting Software to IA64 – Comments
If programmers were more careful when writing their code, there would be no issue
called “porting software to Itanium”. That is because C and C++, not to mention
Fortran, are really the same on both IA32 and IA64. Of course, there might be some few
problems when very low level mechanisms are used, which really rely on the word size
or data alignment. However, it's hardly ever the case and usually one can avoid such
situations easily. Obviously, very advanced optimizations can be very platform-specific,
but on the other hand it should be always possible to turn them off. What is more, it is
usually better to leave all the non-safe optimizations to the last stage of software
development process – when code is stable, functional and all the hot spots are
identified (i.e. appropriate profiles are prepared). That has one more obvious advantage
– it helps in avoiding loosing time for optimizing functions which finally consume less
than a percent of run-time of all real applications.

Of course, there is a question of what to do with existing code that has to be ported
to IA64. Although one can think of quite a lot of Itanium-specific issues that the
software should be checked against, the experience with porting LHCb software is that
there are really only a few types of them that cause most of the portability problems.
What's nice is that majority of them can be discovered with use of some simple text-
searching tools, like “grep”. What's much worse is that a few ones won't issue any
warnings at compilation time, no matter how advanced the compiler is. The list of the
most common portability issues I had to deal with, together with some advices I've
found relevant and maybe useful, follows.

1. The key thing to remember is the difference between “int” and “long int” on
IA64. If a given code works well on IA32, it can work equally well without using
any variables of the latter type. These two are just equivalent on 32-bit
architectures and mixing both of them is just asking for portability problems,
unless it's really well motivated and all the conversions in both ways are proved
to be safe. One should always think twice before using “long int”. But, of
course, porting software to 64-bit platforms makes little sense when 64-bit
capabilities are not used. However, it doesn't mean that all the loop counts and
other variables have to become 64-bit integers, what will happen if all of them
are declared as “long int”. Nevertheless, my point here is not that one should
never use “long int”, but that one should just never assume that these two
types mentioned here are equal. And doing a simple “grep 'long int'” is a
good start of any IA64 porting process.

2. The next common issue is the difference between “size_t” and “unsigned

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 21 of 68

int”. And although it's so similar to the previous point, I put it here separately
to say one more thing: if a function requires an argument of type “A”, feed it
with a value of the type, if it returns a value of type “B”, store the value in a
variable of the type. It sounds so obvious, but it's not, as still so many people use
“unsigned int” or even “int” in places where “size_t” would be a
straightforward choice. Assuming that “size_t” is an integer type is a safe bet
(the same applies to all similar types, like “socklen_t”). But its size is not
standardized and so every conversion from “size_t” to other type or vice
versa should be considered with care. As far as porting existing software to IA64
is concerned, doing “grep size_t” on the whole source code is also a good
starting point.

3. Constants is another porting issue. There are two related problems. Firstly, if a
constant “unsigned int A” is assigned a value “0xffffffff”, it means only that
it has a value of 0xffffffff, not -1, nor “~0x0”. It's so obvious, but one can find so
many examples of code where such wrong assumptions appear. Secondly, if a
value of a constant can be computed at compile time, instead of being hard-
coded in the source code, it should. For example, if a constant “B” is related to a
size of a given class, it should be a function of this size, rather than a fixed value.
Another thing worth mentioning is that usage of number constants should be
avoided. For example, if a function returns “-1” on error, a constant like
“ERROR” should be defined (and equal to -1) and the function should be
documented as returning ERROR, not -1 in, these situations. This will prevent
programmers from assuming that this constant has some special value which
can be used later for other purposes. Coming back to the topic of porting
software to IA64, “grep -i 0xffff” is also usually a good problems-
discovery tool.

The issues mentioned here may seem to be either very obvious or very non-
realistic. Therefore, I feel obliged to show a few examples of real code in which some of
them appear. I won't give any comments, as this code should explain everything. For
more examples, please refer to Section 3 in Part IV and the patches for SEAL, POOL, PI
and Gaudi.

Example #1
Here “lnk.second” is of type “unsigned long” and can have a special initial value
of “0xffffffff”, for which the following loop should be executed “cnt_size + 1” times.

const size_t cnt_size = nextRecordId()-stk_size;
for(size_t j=long(lnk.second); long(j) < long(cnt_size); ++j) {

...
}

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 22 of 68

Example #2
Note that “unsigned long” is 4-byte long on IA32 and 8-byte long on IA64.

class X {
public:
...
unsigned char Data4[8];
...
/// Assignment operator

 X& operator=(const X& g) {
unsigned long *p = (unsigned long*)&Data4[0];
const unsigned long *q = (const unsigned long*)&g.Data4[0];
*(p+1) = *(q+1);
*p = *q;

}

Example #3
Note that “std::string::npos” constant won't fit into “unsigned int” on IA64.

std::string dName = "~" + name();
unsigned pos = dName.find("<");
if (pos != std::string::npos) {
... // this will be always executed (!)
}

 6 Summary
To sum the things up, a substantial part of the LHCb software has been already ported
to IA64, either by myself or by many other people. There is still at least as much work
left to be done, but a few good lessons have already been learned. I think that now not
only it will be easier to proceed with the remaining issues, but also the LHCb code
being developed at the moment will be much more 64-bit aware.

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 23 of 68

 Part III
Improving GNU Compilers

 1 Motivation
Code produced by GNU compilers can be even 20% slower than corresponding code
generated by Intel ones. This doesn't make much difference on home computers, as they
are already so fast that an average user just won't feel the speedup. However, when
such demanding experiments as LHC are concerned, every percent counts, as it
corresponds to substantial amount of money.

The choice should be simple: if icc is better than gcc, let's use it and not bother with
its free competitor. The problem is, however, that currently not all applications can be
compiled with Intel icc. They can be made icc-compatible, but this may require some
effort – either with adjusting configuration files, or maybe even with changing their
source code. What's more, it would be better to have an option and, obviously, a good
one would be gcc as this is the compiler which has been used by scientists for years and
it's just what they got used to. Therefore, one should think of many possibilities: not
only of “porting” applications to icc, but also of improving gcc on Itanium.

 2 Possibilities
Physics or, in general, scientific applications do quite a lot of advanced mathematical
computations. Therefore, the speed of basic mathematical functions, implemented
either in software or in hardware, is essential. Itanium processors have only simple
operations implemented on the chip and so more complicated computations, like
division, square root or trigonometrical functions, have to be converted to sequences of
simpler instructions by a compiler. Therefore, how well the compiler do this conversion
will significantly influence the performance of the generated code.

The problem with GNU compilers is that they generate code in which most of
advanced mathematical operations are implemented as calls to appropriate library
functions. This has two drawbacks. Firstly, there is some overhead related to procedure
calling (passing parameters, saving and restoring registers, jumps to and from the
function) which can be high as compared to the time of executing a single mathematical
operation. Secondly, this way the compiler cannot make a few mathematical functions
be executed in parallel, what may result in not using given processor units in 100%.

Fortunately, the newer versions of gcc already allow for making some basic
mathematical operations (division and, on gcc 3.5, square root) inlined on Itanium.
Integer or floating point divisions can be expanded as latency- or throughput-optimized

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 24 of 68

sequences of instructions. However, square root still doesn't have its latency-optimized
version and so it would be desirable to implement it. It would be also very good to
make other frequently-used functions inlined, as this may improve performance of
compiled scientific applications.

A good place to start improving gcc at is the file gcc/config/ia64/ia64.md. It's
written in the RTL language (see gcc resources). It contains the description of the IA64
platform – what kinds of operations are supported, what arguments they can take, how
more complicated functions can be decomposed into simpler ones, which peephole
optimizations can be performed and so on. Together with a few C source files and a
configuration header file, all placed in the gcc/config/ia64 directory, it makes a
complete backend for Itanium platform. Therefore, to implement a new inlined
function, one would usually only need to add an appropriate RTL description in the
ia64.md file. Unfortunately, as shown in the next section, it's not that easy.

 3 Problems
I started my experiments with trying to construct a latency-optimized inlined square
root. As the throughput-optimized version is already implemented in gcc 3.5, it seemed
to me that it's quite a feasible task. However, the first problem that appeared was that
there is not much of any good documentation about hot to deal with RTL code. What is
available are some technical and difficult to understand documents and also some very
platform-specific descriptions of concrete porting experiments. One has to really get
deep into gcc internals and its concepts to be able to do anything reasonable with RTL
files. Well, one cannot expect a tutorial to be written for these few people who will ever
try to port gcc to some other architectures.

There is also a difficulty in making an inlined latency-optimized square root, as it
requires 6 constants to be put in registers before its code is executed (as compared to
one simple constant needed by its throughput-optimized counterpart). This raises a
question, whether a few subsequent square root operations (e.g. in a loop) can use a
common constant-initialization block which will be executed only once, before all of
them. If not, making the latency-optimized square root is just unreasonable, as with all
this initialization overhead it can be slower than the throughput-optimized one. And
for me it's still an open question, because I didn't have time and motivation (see below)
to make more investigations in this area.

Nevertheless, the major problem is not the documentation, nor the constants.
Making functions inlined can be really beneficial on IA64, but only when a few of them
can be executed in parallel. Both division and square root operations consist of a few of
“multiply and add” operations, which take a few cycles to execute. Therefore, after each
of them is started there is a gap in which some units of Itanium are free and can be used
for some other purposes. For example, if there is enough of CPU resources (like in
Itanium 2 processors), two (or even more) “multiply and add” operations can overlap,

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 25 of 68

and so two (at least) division or square root operations can be done in parallel.
Obviously, this will require assigning different “scratch” registers to them, so they don't
conflict. Unfortunately, in GNU compilers allocation of registers precedes converting
mathematical operations to their inlined (final) form. Therefore, subsequent divisions or
square roots use the same registers for their computations and so they cannot overlap.
They will be put serially by the scheduler and so they won't have any chance to be
executed in parallel. And this is a serious problem, as making functions inlined on
Itanium makes little sense when they are going to be executed one by one anyway. Of
course, doing it one removes procedure call overhead, but this is actually relatively
small on IA64 as the architecture has a few very nice features that can speed up the
process significantly (e.g. register stack frames).

There is an ongoing discussion on how the things can be improved in gcc. One
conclusion now is that it won't be that easy. It might even require changing some of the
platform-independent code of GNU compilers. And for sure it will take some time.
Therefore, I stopped the experiments with gcc, focusing on more feasible tasks,
described in this document. Hopefully somebody will come back to this topic later.

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 26 of 68

 Part IV
Appendices

 1 Scripts
Before anyone starts laughing and saying that all these scripts are so badly written,
obscure, non-commented, difficult to use and so on, and before I receive hundreds of
advices about how better they can be, and with how little effort, etc. I have to say a few
things. Firstly, I made these scripts for myself, to ease my work, and I've put them here
only in case anyone wondered how I did some things. Secondly, these scripts were
evolving all the time as I was discovering new things and I really had no time to make
refactoring or cleaning of them. Thirdly, they should work, but in some circumstances
they can fail. They worked for me at least. Anyway, use it at your own risk. You have
been warned4.

 1.1 Setting Up ROOT Environment (rootenv)

The script should be sourced from a ROOT directory. It sets the appropriate
environmental variables. It does not need any parameters (it assumes current directory
to be ROOTSYS).

export ROOTSYS=`pwd`
export PATH=$ROOTSYS/bin:$PATH
if [$LD_LIBRARY_PATH]
 then export LD_LIBRARY_PATH=$ROOTSYS/lib:.:$LD_LIBRARY_PATH
else
 export LD_LIBRARY_PATH=$ROOTSYS/lib:.
fi

 1.2 Compiling ROOT (rcomp)

The script will compile ROOT with either gcc or icc, using single- or double-pass
compilation. Run it without any parameters to see its syntax. The script will put all the
files in a subdirectory named after version of ROOT used, compiler, its version and
options. By default ROOT version 4.00.08a is used, but it can be changed with the
environmental variable ROOT_VERSION. It's worth noting that there are a few aliases
for the compiler options that are just too long to type them all the time. They're
expanded to their full version by the script. These are:

– “-idml” = “-minline-int-divide-min-latency -minline-float-

4 The scripts are in: /afs/cern.ch/user/m/mkapalka/public/scripts.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 27 of 68

divide-min-latency”,
– “-ismt” = “-minline-sqrt-min-throughput”,
– “-no-prefetch” = “-mP2OPT_hlo_prefetch=false”,
– “-no-unroll” = “-mP2OPT_hlo_loop_unroll=false”.

if [$# -le 2]
then echo 'syntax: rcomp gcc|icc|icpc s|pgo [compiler options]'
echo "gcc -- for GNU gcc/g++ compilers"
echo "icc -- for Intel icc compilers"
echo "icpc -- as above, but linking with icpc"
echo "s -- single-pass compilation"
echo "pgo -- profile-guided optimization (2-pass)"
exit 1

fi

COMPILER=$1
RUN=$2
shift 2
ORIGOPTFLAGS=$*
ROOTSTDDIR=root

if ["a$ROOT_VERSION" == "a"]
then ROOT_VERSION=4.00.08a
ROOTSTDDIR=root-v4-00-08a

fi

COMPNAME=$COMPILER
if [$COMPILER == icc -o $COMPILER == icpc]

then COMPNAME=ecc
fi
ARCH="linuxia64$COMPNAME"
ROOTVER=`echo $ORIGOPTFLAGS | tr -d ' '`

if [$COMPILER == gcc]
then COMPVER=`$COMPILER --version | head -n 1 | cut -f 3 -d ' '`
COMPVERFULL=`$COMPILER --version`

else
COMPVER=`$COMPILER --version | tr -d ' '`
COMPVERFULL=`$COMPILER -V 2>&1`

fi

if [$RUN == pgo]
then RUNNAME="-PGO"

else
RUNNAME=""

fi

ROOTVER="root-v${ROOT_VERSION}-${COMPILER}-${COMPVER}${RUNNAME}
${ROOTVER}"
ROOTDIR="`pwd`/$ROOTVER"

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 28 of 68

if [$COMPILER == gcc]
then PGO1FLAGS="-fprofile-generate"
PGO2FLAGS="-fprofile-use"

else
PGO1FLAGS="-prof_gen -prof_dir=$ROOTDIR/profile"
PGO2FLAGS="-prof_use -prof_dir=$ROOTDIR/profile -w"

fi

if [$COMPILER == gcc]
then ORIGOPTFLAGS=`echo $ORIGOPTFLAGS | awk '{ gsub(/-idml/,

"-minline-int-divide-min-latency -minline-float-divide-min-
latency"); print }'`

ORIGOPTFLAGS=`echo $ORIGOPTFLAGS | awk '{ gsub(/-ismt/,
"-minline-sqrt-max-throughput"); print }'`
else

ORIGOPTFLAGS=`echo $ORIGOPTFLAGS | awk '{ gsub(/-no-prefetch/,
"-mP2OPT_hlo_prefetch=false"); print }'`

ORIGOPTFLAGS=`echo $ORIGOPTFLAGS | awk '{ gsub(/-no-unroll/,
"-mP2OPT_hlo_loop_unroll=false"); print }'`
fi

tar -xzf root_v${ROOT_VERSION}.source.tar.gz
[$? == 0] || exit $?
mv $ROOTSTDDIR $ROOTVER
[$? == 0] || exit $?

cd $ROOTDIR
if [$RUN == pgo]

then mkdir profile
OPTFLAGS="${PGO1FLAGS} ${ORIGOPTFLAGS}"
NP="-prof"

else
OPTFLAGS=$ORIGOPTFLAGS

fi

echo "Compiling ROOT v${ROOT_VERSION}"
echo "Directory: $ROOTDIR"
echo "Compiler flags: $OPTFLAGS"

awk "{ if(\$0 ~ /^OPTFLAGS[]+=/) print \"OPTFLAGS = $OPTFLAGS\";
else print }" < config/Makefile.$ARCH > tmp
[$? == 0] || exit $?
mv tmp config/Makefile.$ARCH

awk "{ if(\$0 ~ /^CXXFLAGS[]+=/) print \"CXXFLAGS = $OPTFLAGS
-fPIC\"; else if(\$0 ~ /^LDFLAGS[]+=/) print \"LDFLAGS =
$OPTFLAGS\"; else print }" < test/Makefile.arch > tmp
[$? == 0] || exit $?
mv tmp test/Makefile.arch

awk '{ if($0 ~ /^NOOPT[]+=/) print "NOOPT = $(OPT)"; else print }'
< config/Makefile.$ARCH > tmp

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 29 of 68

[$? == 0] || exit $?
mv tmp config/Makefile.$ARCH

if [$COMPILER == icpc]
then awk '{ if($0 ~ /^LD[]+/) print "LD = icpc"; else print }' <

config/Makefile.$ARCH > tmp
[$? == 0] || exit $?
mv tmp config/Makefile.$ARCH

fi

./configure $ARCH
make -j8 2>&1 | tee compile${NP}.out.txt
[$? == 0] || exit $?

export ROOTSYS=`pwd`
export PATH=$ROOTSYS/bin:$PATH
if [$LD_LIBRARY_PATH]

then export LD_LIBRARY_PATH=$ROOTSYS/lib:.:$LD_LIBRARY_PATH
else

export LD_LIBRARY_PATH=$ROOTSYS/lib:.
fi

cd test
make stress bench stressgeom stressLinear 2>&1 | tee tstcomp${NP}.
out.txt
[$? == 0] || exit $?

echo stress${NP}
./stress -b -q > stress${NP}.res.txt
echo bench${NP}
./bench -b -q > bench${NP}.res.txt
echo stressgeom${NP}
./stressgeom > stressgeom${NP}.res.txt
echo stressLinear${NP}
./stressLinear > stressLinear${NP}.res.txt

cd ..

if [$RUN == pgo]
then make distclean
cd test
make distclean
cd ..

OPTFLAGS="${PGO2FLAGS} ${ORIGOPTFLAGS}"

echo $OPTFLAGS

awk "{ if(\$0 ~ /^OPTFLAGS/) print \"OPTFLAGS = $OPTFLAGS\"; else
print }" < config/Makefile.$ARCH > tmp

mv tmp config/Makefile.$ARCH

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 30 of 68

awk "{ if(\$0 ~ /^CXXFLAGS[]+=/) print \"CXXFLAGS = $OPTFLAGS
-fPIC\"; else if(\$0 ~ /^LDFLAGS/) print \"LDFLAGS = $OPTFLAGS\";
else print }" < test/Makefile.arch > tmp

mv tmp test/Makefile.arch

./configure $ARCH
make 2>&1 | tee compile.out.txt
[$? == 0] || exit $?

cd test
make stress bench stressgeom stressLinear 2>&1 | tee

tstcomp.out.txt
[$? == 0] || exit $?

echo stress
./stress -b -q > stress.res.txt
echo bench
./bench -b -q > bench.res.txt
echo stressgeom
./stressgeom > stressgeom.res.txt
echo stressLinear
./stressLinear > stressLinear.res.txt

cd ..
fi

grep FAILED test/*.res.txt

uname -a > results.txt

echo -n "stress: " >> results.txt
grep ROOTMARKS test/stress.res.txt | tr -d '=' | tr -s ' ' | cut -f
3 -d ' ' >> results.txt
echo -n "bench: " >> results.txt
grep ROOTMARKS test/bench.res.txt | tr -d '=' | tr -s ' ' | cut -f
4 -d ' ' >> results.txt
echo -n "stressgeom: " >> results.txt
grep ROOTMARKS test/stressgeom.res.txt | tr -d '=' | tr -s ' ' |
cut -f 3 -d ' ' >> results.txt
echo -n "stressLinear: " >> results.txt
grep ROOTMARKS test/stressLinear.res.txt | tr -d '=' | tr -s ' ' |
cut -f 3 -d ' ' >> results.txt

cat results.txt

echo $COMPVERFULL > compiler.txt

 1.3 Running ROOT Benchmarks (testroot)

The script should be called from the root directory of the ROOT compilation to be
tested. It runs each benchmark 4 times, each time on a single cpu (cpu 0, then cpu 1,

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 31 of 68

then cpu 0 and finally cpu 1 – on a dual-cpu machine) and computes the average of the
4 numbers. It puts all the results and outputs of the benchmark programs in
results.final.txt and *-final.res.txt files respectively.

export ROOTSYS=`pwd`
export PATH=$ROOTSYS/bin:$PATH
if [$LD_LIBRARY_PATH]

then export LD_LIBRARY_PATH=$ROOTSYS/lib:.:$LD_LIBRARY_PATH
else

export LD_LIBRARY_PATH=$ROOTSYS/lib:.
fi

cd test
echo stress
taskset 01 -- ./stress -b -q > stress-final.res.txt
taskset 02 -- ./stress -b -q >> stress-final.res.txt
taskset 01 -- ./stress -b -q >> stress-final.res.txt
taskset 02 -- ./stress -b -q >> stress-final.res.txt
echo bench
taskset 01 -- ./bench -b -q > bench-final.res.txt
taskset 02 -- ./bench -b -q >> bench-final.res.txt
taskset 01 -- ./bench -b -q >> bench-final.res.txt
taskset 02 -- ./bench -b -q >> bench-final.res.txt
echo stressgeom
taskset 01 -- ./stressgeom > stressgeom-final.res.txt
taskset 02 -- ./stressgeom >> stressgeom-final.res.txt
taskset 01 -- ./stressgeom >> stressgeom-final.res.txt
taskset 02 -- ./stressgeom >> stressgeom-final.res.txt
echo stressLinear
taskset 01 -- ./stressLinear > stressLinear-final.res.txt
taskset 02 -- ./stressLinear >> stressLinear-final.res.txt
taskset 01 -- ./stressLinear >> stressLinear-final.res.txt
taskset 02 -- ./stressLinear >> stressLinear-final.res.txt

cd ..

uname -a > results-final.txt

echo -n "stress: " >> results-final.txt
s=`grep FAILED test/stress-final.res.txt`
if [-z "$s"] ; then echo OK >> results-final.txt ; else echo
FAILED >> results-final.txt ; fi
res=`grep ROOTMARKS test/stress-final.res.txt | tr -d '=' | tr -s '
' | cut -f 3 -d ' '`
sum='0'
for r in $res; do sum="$sum + $r"; done
avg=`echo "scale=2; ($sum)/4" | bc`
echo $res >> results-final.txt
echo "------" >> results-final.txt
echo $avg >> results-final.txt

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 32 of 68

echo -n "bench: " >> results-final.txt
s=`grep FAILED test/bench-final.res.txt`
if [-z "$s"] ; then echo OK >> results-final.txt ; else echo
FAILED >> results-final.txt ; fi
res=`grep ROOTMARKS test/bench-final.res.txt | tr -d '=' | tr -s '
' | cut -f 4 -d ' '`
sum='0'
for r in $res; do sum="$sum + $r"; done
avg=`echo "scale=2; ($sum)/4" | bc`
echo $res >> results-final.txt
echo "------" >> results-final.txt
echo $avg >> results-final.txt

echo -n "stressgeom: " >> results-final.txt
s=`grep FAILED test/stressgeom-final.res.txt`
if [-z "$s"] ; then echo OK >> results-final.txt ; else echo
FAILED >> results-final.txt ; fi
res=`grep ROOTMARKS test/stressgeom-final.res.txt | tr -d '=' | tr
-s ' ' | cut -f 3 -d ' '`
sum='0'
for r in $res; do sum="$sum + $r"; done
avg=`echo "scale=2; ($sum)/4" | bc`
echo $res >> results-final.txt
echo "------" >> results-final.txt
echo $avg >> results-final.txt

echo -n "stressLinear: " >> results-final.txt
s=`grep FAILED test/stressLinear-final.res.txt`
if [-z "$s"] ; then echo OK >> results-final.txt ; else echo
FAILED >> results-final.txt ; fi
res=`grep ROOTMARKS test/stressLinear-final.res.txt | tr -d '=' |
tr -s ' ' | cut -f 3 -d ' '`
sum='0'
for r in $res; do sum="$sum + $r"; done
avg=`echo "scale=2; ($sum)/4" | bc`
echo $res >> results-final.txt
echo "------" >> results-final.txt
echo $avg >> results-final.txt

cat results-final.txt

 1.4 Copying ROOT Binaries between Nodes (rootscp)

It uses ssh to copy the ROOT files, but only the ones that are necessary to run all the
benchmarks, from one node to another. It takes two parameters: host name (the source
of the files) and the ROOT directory on the remote host. The copied binary files are put
on local machine in an appropriate subdirectory of the current directory.

SRCHOST=$1
SRCDIR=$2

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 33 of 68

DESTDIR=`basename $SRCDIR`

DIRS='bin cint/include cint/lib cint/stl lib etc include fonts'
FILES='cint/MAKEINFO test/libEvent.so test/stress test/TBench.so
test/bench test/stressgeom test/stressLinear'

mkdir $DESTDIR
cd $DESTDIR
ssh $SRCHOST "cd $SRCDIR; tar -czf - $DIRS $FILES" | tar -xzf -

 1.5 Setting up SEAL/POOL Environment

These commands will set up the build environment for SEAL and POOL (the setenv
script):

export PATH=$PATH:/afs/cern.ch/sw/lcg/app/spi/scram
export SCRAM_ARCH=rh73_gcc32_dbg

The following script (pool_settstenv) will prepare environment in which POOL
tests can be executed. It is probably better to use “eval `scram runtime -sh`” for
that purpose (although I haven't tried it), but this script can also be useful:

BDIR=/data1/mkapalka/build
SDIR=/data1/mkapalka/packages/POOL/POOL_1_6_3/rh73_gcc32_dbg

BL=$BDIR/boost:$BDIR/bzip2/lib:$BDIR/clhep/lib:$BDIR/cppunit/lib:$B
DIR/edg-rls-client/lib:$BDIR/expat/lib:$BDIR/gsl/lib:$BDIR/mysql/li
b:$BDIR/mysql++/lib:$BDIR/pcre/lib:$BDIR/pcre/lib:$BDIR/python/lib:
$BDIR/qmtest/lib:$BDIR/root/lib/root:$BDIR/uuid/lib:$BDIR/seal/rh73
_gcc32_dbg/lib:$BDIR/swig/lib:$BDIR/unixodbc/lib:$BDIR/uuid/lib:$BD
IR/wxpython/lib:$BDIR/xerces-c/lib:$BDIR/zlib/lib

SL=$SDIR/lib:$SDIR/tests/lib

export LD_LIBRARY_PATH=$BL:$SL

export PATH=$PATH:$BDIR/oval/bin:$SDIR/bin:$SDIR/tests/bin
export SEAL_PLUGINS=$SDIR/lib/modules:$SDIR/tests/lib/modules

 2 Short Profiles of ROOT Benchmarks

 2.1 GNU gcc

All the profiles have been produced with the binaries compiled by gcc 3.5 (shapshot
2004-07-04, patch against bug #16490) with the following options: “PGO + -O3
-ffast-math -minline-int/float-divide-min-latency -minline-sqrt-

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 34 of 68

min-throughput”.

stress

Command: ./stress -b -q
Flat profile of CPU_CYCLES in stress-pid15221-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 21.30 9.45 9.45 57.8k 164u 164u
 R__Inflate_codes

 8.04 3.57 13.02 20.8k 171u 525u
R__Deflate

 6.25 2.77 15.79 51.4M 54.0n 54.0n
R__longest_match

 5.26 2.33 18.13 125M 18.6n 18.6n
R__ct_tally

 4.17 1.85 19.98 153M 12.1n 12.1n
R__send_bits

 3.16 1.40 21.38 - - -
_init<libCore.so>

 2.78 1.23 22.61 16.1M 76.6n 76.6n
TBuffer::ReadFastArrayDouble32(double*, int)

 2.76 1.23 23.84 14.7k 83.4u 83.4u
R__compress_block

 2.76 1.22 25.06 35.5M 34.5n 34.5n
memcpy

 2.31 1.02 26.09 892k 1.15u 3.27u
TStreamerInfo::ReadBuffer(TBuffer&, void*, int, int, int, int)

 2.06 0.92 27.00 66.6k 13.7u 13.7u
R__build_tree

 1.53 0.68 27.68 55.2M 12.3n 12.3n
TBuffer::operator>>(float&)

 1.43 0.63 28.31 146k 4.35u 4.35u
R__huft_build

 1.41 0.63 28.94 29.0M 21.5n 21.5n
 TBuffer::operator<<(float)

 1.38 0.61 29.55 8.01M 76.5n 138n
 TTreeFormula::EvalInstance(int, char const**)

 1.08 0.48 30.03 10.4M 45.9n 98.6n
malloc

 1.03 0.46 30.49 7.60M 59.9n 59.9n
TAxis::FindBin(double)
 1.02 0.45 30.94 10.4M 43.7n 52.9n

 _int_malloc

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 35 of 68

bench

Command: ./bench -b -q
Flat profile of CPU_CYCLES in bench-pid15226-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 7.53 1.60 1.60 19.8M 80.8n 80.8n
R__longest_match

 7.01 1.49 3.09 - - -
R__Deflate

 4.82 1.03 4.12 3.44k 298u 298u
 R__Inflate_codes

 4.79 1.02 5.13 6.16M 165n 165n
 TBuffer::WriteFastArray(int const*, int)

 4.19 0.89 6.02 6.26M 142n 142n
 TBuffer::ReadFastArray(int*, int)

 3.74 0.80 6.82 16.0M 49.8n 93.3n
malloc

 3.56 0.76 7.58 12.9M 58.6n 163n
 TRandom::Gaus(double, double)

 3.42 0.73 8.30 30.6M 23.7n 23.7n
 R__ct_tally

 3.29 0.70 9.00 - - -
 _init<libCore.so>

 2.99 0.64 9.64 53.0M 12.0n 12.0n
 R__send_bits

 2.88 0.61 10.25 15.8M 38.6n 56.5n
cfree

 2.68 0.57 10.82 16.1M 35.3n 43.1n
 _int_malloc

 2.43 0.52 11.33 26.6M 19.4n 19.4n
 TRandom::Rndm(int)

 2.05 0.44 11.77 6.79k 64.1u 64.1u
 R__compress_block

 1.96 0.42 12.19 13.1M 31.7n 31.7n
cos

 1.92 0.41 12.60 13.2M 31.1n 31.1n
 __ieee754_log

 1.79 0.38 12.98 9.70M 39.3n 39.3n
memcpy

 1.60 0.34 13.32 4.59M 74.1n 531n
THit::Set(int)

 1.51 0.32 13.64 1.77M 181n 849n
 TStreamerInfo::ReadBuffer(TBuffer&, void*, int, int, int, int)

 1.39 0.30 13.93 4.97M 59.5n 59.5n
TExMap::FindElement(unsigned long, long)

 1.34 0.29 14.22 1.66M 171n 992n
TStreamerInfo::WriteBufferAux(TBuffer&, char**, int, int, int, int)
 1.33 0.28 14.50 15.9M 17.8n 17.8n

_int_free

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 36 of 68

 1.29 0.27 14.78 4.04M 67.8n 67.8n
 TExMap::GetValue(unsigned long, long)

 1.12 0.24 15.01 2.38M 100n 100n
 TMath::Hash(void const*, int)

stressgeom

Command: ./stressgeom
Flat profile of CPU_CYCLES in stressgeom-pid15232-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 32.28 1.54 1.54 48.5M 31.7n 31.7n
 TRandom3::Rndm(int)

 10.76 0.51 2.05 3.01M 171n 171n
 TGeoArb8::Contains(double*) const

 9.40 0.45 2.50 - - -
 sample_volume(int)

 4.66 0.22 2.72 1.25M 178n 194n
 TGeoVoxelFinder::GetNextCandidates(double*, int&)

 3.61 0.17 2.89 1.06M 163n 202n
 TGeoPgon::Contains(double*) const

 2.75 0.13 3.03 2.36M 55.4n 55.4n
__atan2

 2.56 0.12 3.15 1.98M 61.5n 61.5n
 TGeoCone::Contains(double*) const

 1.99 0.10 3.24 1.72M 55.4n 55.4n
 TMath::BinarySearch(int, double const*, double)

 1.70 0.08 3.32 1.01M 79.9n 103n
 TGeoSphere::Contains(double*) const

 1.66 0.08 3.40 1.01M 78.4n 78.4n
 TGeoPcon::Contains(double*) const

 1.51 0.07 3.48 2.01M 35.9n 35.9n
 TGeoTube::Contains(double*) const

 1.47 0.07 3.55 1.68M 41.6n 41.6n
 TGeoBBox::Contains(double*) const

 1.38 0.07 3.61 997k 66.2n 66.2n
 TGeoEltu::Contains(double*) const

 1.36 0.07 3.68 2.00M 32.5n 32.5n
cos

 1.28 0.06 3.74 1.03M 59.5n 59.5n
TGeoTrd1::Contains(double*) const

 1.26 0.06 3.80 989k 60.7n 60.7n
TGeoCtub::Contains(double*) const

 1.20 0.06 3.85 1.02M 56.0n 56.0n
TGeoTrd2::Contains(double*) const

 1.15 0.06 3.91 - - -
_init<libGeom.so>

 1.03 0.05 3.96 2.32M 21.1n 21.1n

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 37 of 68

TMath::LocMin(int, double const*)

stressLinear

Command: ./stressLinear
Flat profile of CPU_CYCLES in stressLinear-pid15236-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 15.07 5.30 5.30 112k 47.4u 47.4u
 TMatrixDSparse::AMultBt(TMatrixDSparse const&, TMatrixDSparse

const&, int)
 8.93 3.14 8.45 9.42M 334n 334n

 ApplyHouseHolder(TVectorD const&, double, double, int, int,
TMatrixDColumn&)

 6.87 2.42 10.87 241k 10.0u 10.0u
TMatrixDBase::DoubleLexSort(int, int*, int*, double*)

 6.41 2.26 13.12 69.7k 32.4u 32.4u
TMatrixD::operator*=(TMatrixD const&)

 6.28 2.21 15.34 91.7k 24.1u 24.1u
TMatrixD::AMultB(TMatrixD const&, TMatrixD const&, int)

 4.06 1.43 16.76 195k 7.33u 11.8u
TDecompSVD::Diag_3(TMatrixD&, TMatrixD&, TVectorD&, TVectorD&, int,

int)
 3.72 1.31 18.07 62.5M 21.0n 21.0n

TMatrixD::operator()(int, int) const
 3.21 1.13 19.20 94.1k 12.0u 12.0u
TDecompLU::DecomposeLUCrout(TMatrixD&, int*, double&, double, int&)
 2.63 0.93 20.13 66.8k 13.9u 13.9u

TDecompLU::InvertLU(TMatrixD&, int*, double)
 2.59 0.91 21.04 380k 2.40u 2.42u
VerifyMatrixIdentity(TMatrixDBase const&, TMatrixDBase const&, int,

double)
 2.46 0.87 21.91 4.15M 208n 208n

TVectorD::operator=(TMatrixDColumn_const const&)
 2.30 0.81 22.72 19.9M 40.6n 40.6n

TMath::BinarySearch(int, int const*, int)
 1.96 0.69 23.40 1.68M 411n 411n

ApplyHouseHolder(TVectorD const&, double, double, int, int,
TMatrixDRow&)

 1.87 0.66 24.06 61.2M 10.7n 10.7n
ApplyGivens(double&, double&, double, double)

 1.75 0.62 24.68 - - -
_init<libMatrix.so>

 1.66 0.58 25.26 184k 3.17u 3.17u
MakeHilbertMat(TMatrixD&)

 1.55 0.55 25.81 19.9M 27.5n 68.0n
TMatrixDSparse::operator()(int, int) const

 1.45 0.51 26.32 7.41M 68.7n 71.5n
_int_malloc

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 38 of 68

 1.19 0.42 26.73 185k 2.25u 2.25u
TVectorD::operator*=(TMatrixD const&)

 2.2 Intel icc

All the profiles have been produced with the binaries compiled by icc 8.0 with the
following options: “PGO + -O2 -ftz -ipo -ansi_alias”, except for stressgeom,
for which IPO was not used. Unfortunately, not all the names of functions have been
properly demangled – it's probably the case for all inlined functions. If in doubt what
this strange names may correspond to, please refer to the gcc profiles, which are much
more clear.

stress

Command: ./stress -b -q
Flat profile of CPU_CYCLES in stress-pid12701-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 6.34 2.23 2.23 51.2M 43.6n 43.6n
 R__longest_match

 4.09 1.44 3.67 - - -
.R__Inflate_codes__2486_2

 3.47 1.22 4.89 - - -
.R__Inflate_codes__2486_144

 3.36 1.18 6.08 - - -
.R__Deflate_fast$171__$2020_3$

 2.94 1.03 7.11 - - -
.R__Inflate_codes__2486_240

 2.63 0.93 8.04 29.0M 32.0n 32.0n
.l__ZN7TBufferlsEf

 2.39 0.84 8.88 - - -
.R__Inflate_codes__2486_242

 2.29 0.81 9.68 - - -
.R__compress_block$171__$2034_5$

 2.14 0.75 10.44 - - -
._ZN13TStreamerInfo10ReadBuffer__2872_1760

 2.12 0.75 11.18 11.4M 65.7n 65.7n
?0_memcopyA<libEvent.so>

 1.93 0.68 11.87 55.0M 12.4n 12.4n
TBuffer::operator>>(float&)

 1.81 0.64 12.50 - - -
_init<libCore.so>

 1.68 0.59 13.09 - - -
.R__Inflate_codes__2486_7

 1.51 0.53 13.63 - - -
.R__Inflate_codes__2486_1

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 39 of 68

 1.45 0.51 14.14 10.0M 51.1n 51.1n
_int_malloc

 1.24 0.44 14.57 10.0M 43.3n 94.2n
malloc

 1.22 0.43 15.00 22.0M 19.4n 19.4n
memcpy<libEvent.so>

 1.19 0.42 15.42 9.72M 43.2n 68.3n
cfree

bench

Command: ./bench -b -q
Flat profile of CPU_CYCLES in bench-pid12706-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 7.18 1.34 1.34 20.0M 67.1n 67.1n
 R__longest_match

 6.73 1.26 2.60 6.41M 196n 197n
 TBuffer::WriteFastArray(int const*, int)

 3.68 0.69 3.29 16.0M 43.1n 60.6n
cfree

 3.52 0.66 3.95 16.1M 40.9n 82.6n
malloc

 3.08 0.58 4.52 - - -
._ZN7TBuffer13ReadFastArrayEPii__287_12

 2.95 0.55 5.07 16.0M 34.4n 41.9n
_int_malloc

 2.31 0.43 5.51 13.2M 32.7n 32.7n
._ZN7TRandom4GausEdd__3131_19

 2.04 0.38 5.89 - - -
.l__ZN7TRandom4GausEdd

 2.03 0.38 6.27 26.2M 14.5n 14.5n
.l__ZN7TRandom4RndmEi

 1.82 0.34 6.61 - - -
_init<libCore.so>

 1.71 0.32 6.93 6.42k 49.8u 49.8u
 R__fill_window$171

 1.69 0.32 7.24 15.7M 20.1n 81.0n
.l__ZdlPv

 1.50 0.28 7.52 - - -
._ZN7TRandom4GausEdd__3131_50

 1.49 0.28 7.80 16.0M 17.4n 17.4n
_int_free

 1.46 0.27 8.08 - - -
.R__Deflate_fast$171__$2020_3$

 1.25 0.23 8.31 3.28M 71.5n 71.5n
?0_memcopyA<libCore.so>

 1.15 0.22 8.53 2.29M 93.8n 93.8n
TExMap::Add(unsigned long, long, long)

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 40 of 68

 1.11 0.21 8.73 - - -
TCloneshit::MakeEvent(int)

 1.03 0.19 8.93 15.8M 12.2n 95.5n
.l__Znwm

 1.03 0.19 9.12 50.6k 3.79u 3.79u
kernel:__copy_user

stressgeom

Command: ./stressgeom
Flat profile of CPU_CYCLES in stressgeom-pid14598-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 25.45 1.03 1.03 48.7M 21.1n 21.1n
 _ZN8TRandom34RndmEi__hot_8_0

 11.98 0.48 1.51 27.0 17.9m 59.5m
sample_volume(int)

 3.76 0.15 1.66 1.14M 133n 176n
 $_1$_ZN15TGeoVoxelFinder17GetNextCandidatesEPdRiTAGGLOB

 3.00 0.12 1.79 2.42M 50.0n 50.0n
__atan2

 2.70 0.11 1.89 - - -
._ZNK8TGeoArb88ContainsEPd__17_142

 2.20 0.09 1.98 - - -
._ZNK8TGeoArb88ContainsEPd__17_19

 2.05 0.08 2.07 - - -
._ZN8TRandom34RndmEi__8_9

 1.93 0.08 2.14 1.86M 42.0n 42.0n
.l__ZN5TMath12BinarySearchEiPKdd

 1.58 0.06 2.21 - - -
._ZNK8TGeoArb88ContainsEPd__17_3

 1.29 0.05 2.26 - - -
._ZNK8TGeoCone8ContainsEPd__20_27

 1.24 0.05 2.31 - - -
.l__Z6lengthv

 1.16 0.05 2.36 27.0 1.74m 1.74m
_init<libGeom.so>

 1.14 0.05 2.40 44.0k 1.05u 1.63u
do_lookup

 1.11 0.05 2.45 2.12M 21.3n 21.3n
.l__ZN5TMath6LocMinEiPKd

 1.09 0.04 2.49 - - -
.l__ZNK8TGeoArb88ContainsEPd

stressLinear

Command: ./stressLinear

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 41 of 68

Flat profile of CPU_CYCLES in stressLinear-pid12712-cpu1.hist#0:
 Each histogram sample counts as 1.00034m seconds

% time self cumul calls self/call tot/call
name

 8.74 2.25 2.25 14.9k 150u 156u
 TDecompSVD::Bidiagonalize(TMatrixD&, TMatrixD&, TVectorD&,

TVectorD&)
 6.99 1.80 4.04 258k 6.95u 6.95u

TMatrixDBase::DoubleLexSort(int, int*, int*, double*)
 5.83 1.50 5.54 - - -

._ZN14TMatrixDSparse7AMultBtERK__138_54
 3.94 1.01 6.55 - - -

._ZN14TMatrixDSparse7AMultBtERK__138_120
 3.23 0.83 7.38 - - -

._ZN8TMatrixD6AMultBERKS_S1_i__78_25
 3.18 0.82 8.20 67.9k 12.1u 12.1u

TMatrixD::operator*=(TMatrixD const&)
 3.16 0.81 9.01 19.7M 41.2n 41.2n

.l__ZN5TMath12BinarySearchEiPKii
 2.63 0.68 9.69 3.96M 171n 171n

.l__ZN8TVectorDC9ERK20TMatrixDColumn_const
 2.14 0.55 10.24 7.45M 73.7n 75.0n

_int_malloc
 2.09 0.54 10.78 - - -

._ZN14TMatrixDSparse7AMultBtERK__138_50
 2.05 0.53 11.31 115k 4.57u 6.84u

TDecompQRH::Solve(TMatrixDColumn&)
 2.02 0.52 11.82 19.7M 26.3n 67.5n

.l__ZNK14TMatrixDSparseclEii
 1.96 0.50 12.33 - - -

._ZN10TDecompSVD6Diag_3ER8TMatr__932_56
 1.93 0.50 12.82 39.0k 12.7u 12.7u
TDecompQRH::QRH(TMatrixD&, TVectorD&, TVectorD&, TVectorD&, double)
 1.67 0.43 13.25 - - -

.VerifyMatrixIdentity(TM__995_60 const&)
 1.62 0.42 13.67 - - -

.VerifyMatrixIdentity(TM__995_42 const&)
 1.62 0.42 14.08 - - -

.VerifyMatrixIdentity(TM__995_57 const&)
 1.35 0.35 14.43 - - -

._ZN10TDecompSVD6Diag_3ER8TMatr__932_102
 1.19 0.31 14.74 7.45M 41.2n 116n

malloc
 1.17 0.30 15.04 - - -

._ZN9TDecompLU8InvertLUER8TMatr__85_27
 1.05 0.27 15.31 - - -

._ZN10TDecompSVD6Diag_3ER8TMatr__932_51
 1.05 0.27 15.58 7.31M 36.8n 69.3n

cfree
 1.02 0.26 15.84 98.6k 2.67u 2.76u

.l__ZN10TDecompSVD5SolveER14TMatrixDColumn

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 42 of 68

 3 Compiling LHCb Software on IA64 – Step by Step
In this section the following environmental variables are assumed to be defined:

– PACKDIR – the directory where all the external packages are being unpacked
and compiled,

– BUILDDIR – the directory where binaries of all the external packages are to be
put,

– EXTLCG – LCG directory with external files,
– EXTTARFILES – a directory where source tar files of most of the external LCG-

related packages can be found.
For example, these were my settings on the machine oplapro495:

export PACKDIR=/data1/mkapalka/packages
export BUILDDIR=/data1/mkapalka/build
export EXTLCG=/afs/cern.ch/sw/lcg/external
export EXTTARFILES=$EXTLCG/tarFiles

To simplify the description of how I changed some files to make some of the programs
work, I use here the standard “diff” notation. For example the following two lines mean
that in a given file file a given line containing “old line contents” has been changed to
“new line contents”:

- old line contents
+ new line contents

 3.1 External Packages

 1) boost (1.30.2)

Some instructions are on the page: http://www.boost.org/more/getting_started.html.
First one needs to compile Boost.Jam:

cd tools/build/jam_src
bash build.sh gcc

Next comes Boost. There are some non-portable declarations in file boost/cast.hpp,
but haven't manage to change it properly.

export PYTHON_ROOT=/usr
tools/build/jam_src/bin.linuxia64/bjam "-sTOOLS=gcc"
copy all libs/*.a *.so --> $BUILDDIR/boost
copy directories boost and libs --> $BUILDDIR/boost

OK

5 The detailed directory structure of my configuration (on oplapro49) can be downloaded
from: /afs/cern.ch/user/m/mkapalka/public/dirstruct.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 43 of 68

 2) bz2lib (1.0.2)

This is quite straightforward:

cp $EXTTARFILES/bzip2-1.0.2.tar.gz .
make
make -f Makefile-libbz2_so
make install PREFIX=$BUILDDIR/bzip2
cp libbz2.so.1.0* $BUILDDIR/bzip2/lib/

All tests passed. OK

 3) cppunit (1.8.0)

Very straightforward:

./configure --prefix=$BUILDDIR/cppunit
make
make check
make install
cp $EXTLCG/CppUnit/1.8.0/rh73_gcc323/include/CppUnit_testdriver.cpp
$BUILDDIR/cppunit/include

All tests passed. OK

 4) cmake (2.0.2)

The tar file can be downloaded from www.cmake.org. The compilation is easy:

./configure --prefix=$BUILDDIR/cmake
make
make test
make install

All tests passed. OK

 5) gccxml (0.6.0)

The version 0.4.2-patch1 of the package, which is used by LHCb software on IA32, is
very buggy and I couldn't patch it enough to make it work on IA64. However, the
version 0.6.0 is much more stable and didn't cause any problems later, so I strongly
recommend using it6. Nevertheless, even this version required some manual patching –
otherwise there are problems while compiling SEAL (error messages “sorry, not
implemented: `fdesc_expr' not supported by dump_expr” when gccxml is used in
dictionary generation process). The installation steps:

mkdir gccxml-0.6.0-build
cd gccxml-0.6.0-build

6 It can be downloaded from: http://public.kitware.com/GCC_XML/HTML/Index.html

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 44 of 68

cmake ../gccxml-0.6.0 -DCMAKE_INSTALL_PREFIX:PATH=$BUILDDIR/gccxml
make
make install

It seems to be OK.

 6) gsl (1.4)

Compilation is straightforward:

./configure --prefix=$BUILDDIR/gsl
make
make check
make install

One test from cdf subdirectory fails, but it shouldn't be a problem. OK

 7) pcre (4.4)

Well:

./configure --prefix=$BUILDDIR/pcre
make
make check
make install

All tests passed. OK

 8) Python (2.2.3)

Can be downloaded from: http://www.python.org. Compilation is not very tricky:

./configure --prefix=$BUILDDIR/python
make OPT="-fpic -O2"
make test
mkdir .extract
cd .extract
ar xv ../libpython2.2.a
cd ..
gcc -shared -o libpython2.2.so .extract/*.o

make install

One test failed with the following message: “test test_compile failed -- eval('0xffffffff')
gave 4294967295, but expected -1”. It's obviously an IA64 issue... But I think we can live
with that (it's probably the test itself that is not IA64-compliant). OK

 9) Oval (3.5.0)

It's only needed to run some tests, so one can just copy the directory – it should work

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 45 of 68

like that. OK

 10) qmtest (2.0.3)

The package name is qm-2.0.3.tar.gz. Installation:

./configure --prefix=$BUILDDIR/qmtest
make
make check
make install

All tests passed. OK

 11) uuid (from e2fsprogs 1.32)

Simple. Go to the directory where uuid has been unpacked and type:

mkdir build
cd build
../configure --enable-elf-shlibs --prefix=$BUILDDIR/uuid
make
make check
make install

All tests passed. OK

 12) zlib (1.1.4)

Compilation:

./configure --prefix=$BUILDDIR/zlib
make
make test
make install

All tests passed. OK

 13) Valgrind (2.0.0)

This is x86 specific program, so it won't compile on IA64. And there is no IA64 port
available. But it's only a debugger/memory profiler, so we won't need it (although it
would be nice for debugging).

 14) edg-rls-client (2.2.1)

Fortunately, Andreas Unterkircher has ported the whole EDG to IA64, so one should
just get the appropriate rpms from him and unpack them. These are the following:

– edg-gsoap-base_gcc3_2_2-1.0.8-1.ia64.rpm
– edg-replica-location-client-c++_gcc3_2_2-2.2.1-1.ia64.rpm

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 46 of 68

– edg-replica-location-index-client-c++_gcc3_2_2-2.2.0-
1.ia64.rpm

– edg-replica-metadata-catalog-client-c++_gcc3_2_2-2.2.1-
1.ia64.rpm

I have also added the following symbolic links (their corresponding files have suffixes
with version number, compiler, etc.):

– libedg_gsoap_base.a
– libedg_local_replica_catalog_client.a
– libedg_replica_location_index_client.a
– libedg_replica_metadata_catalog_client.a

OK

 15) MySQL (4.0.13)

The build procedure (probably some of these steps can be skipped, but I'm not sure,
which ones):

./configure --prefix=$BUILDDIR/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile

make
make install

su -
groupadd mysql
useradd -g mysql mysql
scripts/mysql_install_db

$BUILDDIR/mysql/bin/mysqld_safe
cd $BUILDDIR/mysql/sql-bench
perl run-all-tests

It takes a very long time to finish all tests, but all are passed. OK

 16) MySQL++ (1.7.9, patched for IA64)

Compilation of this package on IA64 is a bit tricky, as this software is not well
maintained (it's not a part of MySQL, but rather an unofficial its extension). There are a
lot of patches for different compilers and platforms, but merging a few of them can
require changing the source code by hand. I used a version patched for IA64 and I
applied some more changes from other patches manually. The package can be
downloaded from ftp://ftp.solnet.ch/mirror/mysql/Downloads/mysql++/mysql++-
1.7.9_gcc_3.3_IA64.tar.gz. Firstly, one has to remove a bug in the configure script: in
line 1558 the right-hand expression has to be put in double quotes. Next, one has to edit
the file sqlplusint/type_info1.hh: line 25 has to be commented out:

- mysql_ti_sql_type_info (const mysql_ti_sql_type_info &b);

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 47 of 68

// can't do
+ // mysql_ti_sql_type_info (const mysql_ti_sql_type_info &b);
// can't do

The compilation itself is, however, straightforward:

./configure --prefix=$BUILDDIR/mysql++ --with-mysql=$BUILDDIR/mysql
make
make install

OK

 17) otl4 (4.0.67)

Just unpack and copy the file otlv4.h to $BUILDDIR/otl. OK

 18) UnixODBC (2.2.6)

Straightforward:

./configure --prefix=$BUILDDIR/unixodbc
make
make install

OK

 19) MyODBC (3.51)

The build procedure:

./configure --with-mysql-path=$BUILDDIR/mysql \
--with-unixODBC=$BUILDDIR/unixodbc \
--prefix=$BUILDDIR/myodbc --enable-thread-safe --enable-shared

make
make install

To run all the tests:

edit odbc.ini
export ODBCINI=/patch_to_odbc.ini/odbc.ini
ln -s /var/lib/mysql/mysql.sock /tmp/mysql.sock
make test

One test fails: my_tran. I hope transactions won't be needed... Besides that, OK

 20) Xerces-C (2.3.0)

Installation steps:

export XERCESCROOT=`pwd`
cd src/xercesc

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 48 of 68

./runConfigure -p linux -b 64 -P $BUILDDIR/xerces-c
make
make install

All tests passed. OK

 21) wxPython (2.4.0.1)

Installation:

mkdir build
cd build
../configure --with-gtk --prefix=$BUILDDIR/wxpython \

--enable-rpath=$BUILDDIR/wxpython/lib --with-opengl \
--enable-geometry --enable-optimise --enable-debug_flag \
--with-libjpeg=builtin --with-libpng=builtin \
--with-libtiff=builtin --with-zlib=builtin

make
cd ../locale
make allmo
cd ../build
make install
cd ../wxPython
$BUILDDIR/python/bin/python setup.py IN_CVS_TREE=1 \

WX_CONFIG=$BUILDDIR/wxpython/bin/wx-config build install

OK

 22) AIDA (3.0.0)

Just unpack it – it doesn't seem like there is anything you should do with that (these are
only header files). OK

 23) expat (1.95.5)

Compilation is simple:

./configure --prefix=$BUILDDIR/expat
make
make install

To run tests the “check” library (8.0) is needed (see http://check.sourceforge.net). The
installation of the library is fast and simple:

mkdir build
./configure --prefix=`pwd`/build
make
make check
make install

All tests for “check” are passed. Next, one can run the expat tests:

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 49 of 68

export LIBRARY_PATH=$PACKDIR/check-0.8.0/build/lib
export CPATH=$PACKDIR/check-0.8.0/build/include
make check

All tests passed. OK

 24) Grace (5.1.10) – needed by Anaphe

Compilation steps:

./configure --prefix=$BUILDDIR/grace
make
make check
make install

All tests passed. OK

 25) Swig (1.3.14) – needed by Anaphe

Downloaded from http://www.swig.org. Installation fails on modules “perl5” and “tcl”
(no required header files or libraries on oplapro49 machine), so I removed them, as
Anaphe probably needs only the Python module. However, the option “--without-tcl”
doesn't seem to work, so I patched the Makefile manually: line 65:

- skip-tcl = [-z "-I/usr/include" -o -z "-L/usr/lib
-ltcl8.3${TCL_DBGX}"]
+ skip-tcl = [-z "" -o -z "-L/usr/lib -ltcl8.3
${TCL_DBGX}"]

The rest of the installation process is simple:

./configure --with-python=$BUILDDIR/python/bin/python \
--prefix=$BUILDDIR/swig --without-perl5 --without-tcl

make
make -k check
make install

All tests passed. OK

 26) libshift

Downloaded libshift binaries for IA64 from the CASTOR web page:
http://castor.web.cern.ch/castor/DIST/CERN/savannah/CASTOR.pkg/1.7.1.5/IA64.direct
ory/CASTOR-client-1.7.1.5-1.longname.ia64.rpm.
Unpacked just the libraries and header files of libshift to $BUILDDIR/libshift. OK

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 50 of 68

 3.2 Internal Dependencies

 1) CLHEP (1.8.1.0)

This works pretty well:

cp $EXTTARFILES/clhep-1.8.1.0.tgz .
unpack & go to the directory
./configure --prefix=$BUILDDIR/clhep

edit Makefile --> add "-fpic" option to CXXFLAGS

make
make install

cd test
make
make check

cd ..
mkdir .extract
cd .extract
ar xv ../libCLHEP-1.8.1.0.a
cd ..
gcc -shared -pthread -o libCLHEP-g++.1.8.1.0.so .extract/*.o
cp libCLHEP-g++.1.8.1.0.so $BUILDDIR/clhep/lib
cd $BUILDDIR/clhep/lib
ln -s libCLHEP-g++.1.8.1.0.so libCLHEP.so

All tests passed. OK

 2) ROOT (3.10.02)

This is quite an old version of ROOT, but compiles well on IA64 and has been already
ported to this platform. The compilation is straightforward, but one has to remember to
turn on the RFIO support; otherwise, PI won't compile:

./configure linuxia64gcc --enable-rfio \
--with-shift-libdir=$BUILDDIR/libshift/lib \
--with-shift-incdir=$BUILDDIR/libshift/include/shift \
--prefix=$BUILDDIR/root

make
make install

OK

 3) CERNLIB (2003)

I used the official version of CERNLIB. There are two people who have made ports of
these libraries to IA64, but these have been officially accepted. As I didn't have any

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 51 of 68

access to this “private” ports, I had to used the non-ported packages, but they seem to
work, at least as far as the functionality needed by LHCb software is concerned. The
only problems I've found were related to the Minuit library (a part of PACKLIB), but it's
difficult to say if these are really errors, or just slightly different (better or worse)
approximations.

To build CERNLIB libraries, one usually has to download all the CERNLIB
*.tar.gz files and the start_cern script7. However, after problems with PI
(relocation error) I discovered that this procedure will not, by default, compile the
libraries with the required on IA64 “-fpic” option. I modified linux.cf
configuration file and the start_cern script8. OK

 3.3 Anaphe (5.0.6)

It needs SWIG, Grace, libpacklib (CERNLIB) and a lot of patience... Download the
source file from http://pcitapiww.cern.ch/anaphe/download/Anaphe-5.0.6-src.tgz. Next
come the tricky installation steps:

export \
LIBRARY_PATH=$BUILDDIR/swig/lib:$BUILDDIR/grace/grace/lib:$BUILDDIR
/expat/lib:$BUILDDIR/clhep/lib:/data1/mkapalka/libshift/lib
export \
CPATH=$BUILDDIR/grace/grace/include:$BUILDDIR/expat/include:$BUILDD
IR/clhep/include:/data1/mkapalka/libshift/include
export AIDA_DIR=$BUILDDIR/aida/cpp
export CLHEP_DIR=$BUILDDIR/clhep

admin/scripts/mkRelease.py --version 5.0.6 \
--platf redhat73/gcc-3.2 --rel=$BUILDDIR/anaphe

Normally it should work, but here it will fail... Now it's time for some dirty tricks:

cd $BUILDDIR/anaphe/specific/redhat73/gcc-3.2
mkdir -p OtherLibs/1.0.0.1/lib
cd OtherLibs/1.0.0.1/lib
ln -s $BUILDDIR/cernlib/lib/libpacklib.a libminuit.a
ln -s /usr/lib/libg2c.so.0 libg2c-forMinuit.so

cd $BUILDDIR/anaphe/specific/redhat73/gcc-3.2
mkdir CLHEP
ln -s $BUILDDIR/clhep CLHEP/1.8.0.0

Now you should edit the admin/scripts/mkRelease.py script: comment out the
two lines 454 and 455, so they look like the following:

#nag_inc_dir = os.environ["NAG_INCLUDE_DIR"]

7 See http://cernlib.web.cern.ch/cernlib/install/install.html
8 See /afs/cern.ch/user/m/mkapalka/public/cernlib2003-ia64config.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 52 of 68

#nag_lib_dir = os.environ["NAG_LIB_DIR"]

In the same file, in line 456:

+ optionNag = ''
- optionNag = '"USE_NAG=1" ...'

Next, edit the file packages/AIDA_HBookStore/GNUmakefile and change:

- CERNLIB = -static `...` -lshift
+ CERNLIB = /data1/mkapalka/build/libshift/lib/libshift.a

Once again:

admin/scripts/mkRelease.py --version 5.0.6 \
--platf redhat73/gcc-3.2 --rel=$BUILDDIR/anaphe

Still some packages will fail to compile, but we will already have all what we need. OK

 3.4 SEAL

 1) Compiling and Testing SEAL

Firstly, SEAL configuration files have to be updated (all patches to external and internal
dependencies). The files to be changed are .SCRAM/rh73_gcc/*.dat9 (remark: lib
and include patches in root.dat have to point to ROOTSYS/lib/root and
ROOTSYS/include/root respectively). I guess there exists a more efficient and
automatic way to do it, with use of the scram tool, but I didn't have enough
time/patience to look for it.

Next, we can go to the right directory and set up the SEAL environment. My
method was the following:

cd /data1/mkapalka/packages/SEAL/SEAL_1_3_4
source ../setenv

although I guess using “eval `scram runtime -sh`” instead of the setenv script
might be a better idea (I didn't know about this method at the time of porting SEAL).
Once set up, we can start compiling and testing SEAL. The scram tool will be needed
for this purpose. As it's used only at compilation phase, we don't have to port it to IA64,
but we can use the x86 version instead (the setenv script sets the PATH variable
appropriately). Well:

cd src

scram b release

or, equivalently:

9 See /afs/cern.ch/user/m/mkapalka/public/seal-ia64config.tgz for an example

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 53 of 68

scram b release-reset-arch
scram b release-build
scram b release-check
scram b release-docs (optional)
scram b release-freeze (optional -- personally I don't like it
because it makes all the files read-only...)

If scram fails with the error "/bin/sh: line 1: scram: command not found", then just copy
the scram shell script to a directory which is added to PATH by default for /bin/sh
(e.g. ~/bin at CERN). Adding PATH to .bashrc or .profile won't help, as they are
not read by /bin/sh in interactive mode.

The following paragraphs describe all the problems that I had when trying to
compile and test SEAL. I have prepared a patch10 for SEAL 1.3.4 which, after applied,
should resolve all the issues mentioned below, except for a few bugs which I haven't
managed to repair yet. Nevertheless, as SEAL 1.3.4 is already a bit outdated, one should
consider applying the patches manually to a newest version and also trying to find
more bugs (they are probably similar issues to the ones described here).

 2) Compilation and Run-Time Errors

Problem: compilation error:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/IntBits.h:99: redefinition of `struct seal::IntBits<64>'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/IntBits.h:84: previous definition of `struct
seal::IntBits<64>'

Remedy: changed “#endif + #if” to “#elif” in file IntBits.h, line 95 (see the
patch).

Problem: “Segmentation fault” when running dictionary-related tests.
Cause: Results of string operations (like “std::string::find_last_of”), which are
of type “size_t”, were stored in variables of type “unsigned int” and then
compared to the constant “std::string::npos”, which is also of type “size_t”.
The type “size_t” is defined as “unsigned long” and the constant is equal to
“(unsigned long)-1”. Therefore, the result of the following comparison: “n ==
std::string::npos”, where n is of type “unsigned int”, will always be false. The
problem doesn't exist on IA32, because on this platform both “unsigned int” and
“unsigned long” are the same types (32-bit). On IA64 the former is 32-bit and the
follower is 64-bit.
Remedy: in many files in the src/Dictionary directory all occurrences of "unsigned

10 All the patches (for SEAL, POOL, PI, Gaudi, Anaphe and MySQL++) are put in the following
location: /afs/cern.ch/user/m/mkapalka/public/ia64-patches.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 54 of 68

int" have to be changed to "unsigned long" (see the patch). Actually, it would be
probably better to change them to “size_t” instead. The patch also changes all “int”
types to “long int”. However, now it seems to be not always necessary and I think it
can even cause some other problems (like in POOL).

Problem: “Segmentation fault” when running Minuit-related tests.
Cause: The reason is similar to the previous one – passing variables of type “int*” to
functions converted from Fortran while their “integer*” type is actually “long
int*”. This makes a difference on IA64, while not being a problem on IA32. On IA64 it
results in memory corruption, which is very difficult to debug.
Remedy: Changed a few Minuit files (see the patch).

Problem: in test_SealZip_MD5Digest01 the computed MD5 sum is different on
IA32 than on IA64. What's strange is that both sums are incorrect (different than the
output of the md5sum program)
Cause: type UINT4 which obviously should be 4-bytes long is defined as “unsigned
long int”.
Remedy: changed the type definition of UINT4 from “unsigned long int” to “unsigned
int” in file src/Foundation/SealZip/src/ext/rfc1321/global.h. Now the
sums computed on IA64 are the same as on IA32, but still they both differ from the
output of the md5sum program.

 3) Compilation Warnings

Problem: cast from pointer to integer of different size
Remedy: this shouldn't cause any problems as the warning appears when the following
type of expression is used (note the second line):

c.addField("thePabs", "float", "",
(int)(&((PSimHit*)64)->thePabs)-64, PRIVATE);

The 3rd parameter of the "addField" function is a relative position of a given field
within a class. This will do the right computations (I've checked that it really works).

Problem: a lot of warnings of type "unused parameter" or "defined but not used".
Remedy: shouldn't be dangerous, so I won't check it.

Problem: in SealBase/Signal, quite a few warnings like the following one:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/sr
c/Signal.cpp:1049: warning: int format, different type arg (arg 3)

Cause: the following instruction:

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 55 of 68

write(fd, buf, sprintf(...));

The “write” function takes a variable of type “size_t” (unsigned long) as its third
argument, while sprintf returns “int”.
Remedy: sprintf should always return positive numbers, so this shouldn't be a
problem.

Problem: a few warnings like the following one:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/sr
c/Signal.cpp:1135: warning: unsigned int format, different type arg
(arg 4)

Cause: the following instruction:

write (fd, buf, sprintf (buf, " stack = (%x, %x, %p)",
 uc->uc_stack.ss_flags,
 uc->uc_stack.ss_size,
 uc->uc_stack.ss_sp));

The field “uc_stack.ss_size” is “size_t” (unsigned long) and “%x” modifier
corresponds to “unsigned int”.
Remedy: it also shouldn't be a problem, but I've made the small change: “%x” to “%lx”.

Problem: in SealBase/Socket a lots of warnings like the following:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/sr
c/Socket.cpp:169: warning: invalid conversion from `int*' to
`socklen_t*'

Cause: the following type of code:

SOCKOPT_LEN_TYPE length = sizeof (data);
if (::getsockopt (SOCKETFD (), level, option, (char *) &data,

&length) < 0)
throw NetworkError ("getsockopt()", ERRNO);

The type “SOCKOPT_LEN_TYPE” is set by configure script to "int", while the
"length" parameter should be of type "socklen_t", which is 32-bit “unsigned
int”.
Remedy: To suppress the warnings, I had to manually change the file
src/Foundation/SealPlatform/src/network.m4 (see the patch) and then
rebuild the configure script:

aclocal -I src
mv aclocal.m4 src
autoconf -Isrc

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 56 of 68

Problem: bit operations cause the following warnings:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h: In instantiation of
`seal::BitPatternHelp<2>::PatWrapper<65535, 32>':
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:272: instantiated from `seal::BitPattern<65535,
32, 2>'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:272: instantiated from
`seal::BitOpsMagic<16>::Type<size_t>'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:272: instantiated from
`seal::BitOpsCeil2<16>::Op<size_t>'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:272: instantiated from `static T
seal::BitOpsCeil2::Op<T>::compute(T) [with T = size_t, unsigned
int B = 32]'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:286: instantiated from `static T
seal::BitOps<T>::ceil2(T) [with T = size_t]'
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealIOTools
/src/ReadBuffer.cpp:207: instantiated from here
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Foundation/SealBase/Se
alBase/BitOps.h:272: warning: left shift count >= width of type

And the same for ReadWriteBuffer.cpp:336.
Remedy: using the Vladimir's solution:

- size_t newsize = BitOps<size_t>::ceil2 (oldsize + n);
+ size_t newsize = BitOps<int>::ceil2 (oldsize + n);

Problem: in PyLCGDict/MethodDispatcher:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Scripting/PyLCGDict/sr
c/MethodDispatcher.cpp:63: warning: int format, different type arg
(arg 3)

Cause: the following line:

sprintf(txt, "None of the %d overladed methods succeded",
m_methods.size());

Remedy: not dangerous.

Problem: in PyROOT:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Scripting/PyROOT/PyROO
T/CTypePtr.h:167: warning: no return statement in function
returning non-void

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 57 of 68

Remedy: this function always throws an exception, so the warning is irrelevant.

Problem: some warning in tests:

/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/MathLibs/Minuit/tests/
MnSim/PaulTest.cpp:68: warning: comparison between signed and
unsigned integer expressions
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/MathLibs/Minuit/tests/
MnSim/PaulTest2.cpp:54: warning: comparison between signed and
unsigned integer expressions
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/MathLibs/Minuit/tests/
MnSim/PaulTest3.cpp:53: warning: comparison between signed and
unsigned integer expressions
/data1/mkapalka/packages/SEAL/SEAL_1_3_4/src/Scripting/PyLCGDict/te
sts/dict/myclass.h:107: warning: deprecated conversion from string
constant to `char*'

Remedy: all PaulTests fail anyway (also on IA32), because they need some input
parameters and I have no idea what to pass to them. I didn't waste time on that.

 4) Remaining Issues

Although many issues have been solved, some tests still fail. Surprisingly, some of them
fail also on IA3211, what means that they are not very well maintained and already
outdated. Therefore, what we should worry about are only the tests that show some
IA64-specific problems. These are the following:

– test_PyROOT_basics.py – complains about missing "PyROOT" module (this
should be easy to solve as soon as I find the missing module),

– test_SealBase_LocalServerSocket01 – failure,
– test_SealBase_TimeInfo01 – complains about real time being smaller than

CPU time (it's a bug),
– test_SealKernel_Exception – the output on IA32 is slightly different that

on IA64. One has to look closer at that,
– test_SealZip_CPIOOutputStream0{0|2|3} – failure.

None of these issues look like very critical bugs, so I proceeded with other LHCb-
related packages. However, one should repair these bugs sooner or later.

 3.5 POOL

 1) Compiling and Testing POOL

Unpack the source and next, after adjusting the configuration files12, like it was with

11 See /afs/cern.ch/user/m/mkapalka/public/seal-test-results.tgz for the full output of all the
SEAL tests on IA32 and IA64

12 See /afs/cern.ch/user/m/mkapalka/public/pool-ia64-config.tgz for an example configuration

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 58 of 68

SEAL, type:

cd POOL/POOL_1_6_3/src
source ../setenv
scram b

Unfortunately, with POOL one cannot just type “scram b release-build” and
“scram b release-check” (like it was with SEAL), nor “scram b release” –
these targets are not defined. Therefore, the build & test process is more complicated.

The testing procedure is more convenient when the oval tool is used. To run a test
one has to go to its source directory (where OvalFile is put) and type “oval prod”.
This will firstly run the test and then compare its output to an appropriate reference
file. If there are any differences, they will be shown. But before that, one has to set up
the testing environment:

cd POOL/POOL_1_6_3/src
source ../pool_settstenv

It's also worth noting that many of the tests run only when all *.root, *.pool, etc.
files are deleted before – they cannot overwrite the files and so they complain about not
being able to open their output files for writing. Pretty annoying...

The Intel compiler has some nice portability warnings enabled by: “-Wcheck” and
“-Wp64” options (see the manual). Also “-Wall” and “-w2” can make it produce much
more warnings than would a GNU compiler for the same source files. This can be quite
helpful in detecting all the IA64 issues, although it doesn't, unfortunately, discover all
the problems (e.g. explicit casts from “long” to “int”, even if they are semantically
wrong, won't be signalized for obvious reasons). Unfortunately, POOL doesn't have a
built-in configuration file for icc, so I've created one13. The problem is that not all the
files will compile with the Intel compiler – some of them have some constructs which
are causing compilation errors. Nevertheless, the aim was not to produce executables
with icc, but to have some warnings – and this has been achieved.

The files should be downloaded and unpacked in the POOL directory. The
SCRAM_ARCH environmental variable should be set to “rh73_icc71_dbg” (I actually
use icc 8.0, but there were already some few configs for 7.1, so I just used them and
extended a bit). Next the "icc" tool should be added to scram:

scram setup -i icc 7.1 file:./.SCRAM/ToolFiles/icc_7.1
scram tool list (check that "icc" is on the list)

Another problem with icc is that it can produce too many irrelevant warnings.
Therefore, its output should be well filtered before it's actually analyzed by anyone.

13 Can be found at: /afs/cern.ch/user/m/mkapalka/public/pool-icc-config.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 59 of 68

 2) Compilation and Run-Time Errors

Problem: quite a lot of errors of type:

/data1/mkapalka/packages/POOL/POOL_1_6_3/src/StorageSvc/src/DbDatab
aseObj.cpp:399: no match for `seal::MessageStream& <<
std::ios_base&(&)(std::ios_base&)' operator

Cause: the problem is with constructs like “log << std::hex” where “log” is of
type “MessageStream”.
Remedy: SEAL has to be patched (not POOL!). I've found a patch in the SEAL bug
database (file SealKernel/MessageStream.h). It's already included in my patch.

Problem: configuration problems with MySQL++ headers – a few errors of type:

/data1/mkapalka/build/mysql++/include/defs:5:19: mysql.h: No such
file or directory

Cause: MySQL puts its header files in $BUILDDIR/mysql/include/mysql by default
but POOL looks for them in $BUILDDIR/mysql/include. The same problem is with
libraries.
Remedy: Copy, link or move the files to appropriate directories.

Problem: MySQL++ once again – in many files the following problem appears:

/data1/mkapalka/packages/POOL/POOL_1_6_3/src/MySQLCatalog/src/MySQL
FileCatalog.cpp: In member function `virtual void
pool::MySQLFileCatalog::insertPFN(pool::PFNEntry&) const':
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/MySQLCatalog/src/MySQL
FileCatalog.cpp:464: ISO C++ says that `std::basic_ostream<char,
_Traits>& std::operator<<(std::basic_ostream<char, _Traits>&, const
char*) [with _Traits = std::char_traits<char>]' and `SQLQuery&
operator<<(SQLQuery&, const mysql_ColData<std::string>&)' are
ambiguous even though the worst conversion for the former is better
than the worst conversion for the latter

Cause: in the following code the “<<” operator is ambiguous:

Query q;
...
q << "a query string...";

Remedy: need to explicitly cast “Query” to “SQLQuery” before the “<<” operator is
used, like the following:

(SQLQuery)q << "a query string...";

Problem: while linking EDG tests with the EDG libraries:

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 60 of 68

/data1/mkapalka/packages/POOL/POOL_1_6_3/rh73_gcc32_dbg/lib/liblcg_
EDGCatalog.so: undefined reference to `__ctype_b'

Cause: the symbol “__ctype_b” is defined in libc-2.3.2.so and is no longer
defined in later versions of this library. This is a compatibility problem between
different glibc versions and it appears when one uses “__ctype_b” directly (like in
EDGCatalog). It's an internal symbol, so it should not be used by any applications, but
here it is, so we have a problem.
Remedy: Andreas has recompiled the EDG libraries with the newest glibc library and
this works perfectly now.

Problem: “unsigned int” vs. “size_t” – the same story once again:

/data1/mkapalka/packages/POOL/POOL_1_6_3/src/DataSvc/src/Cache.h:75
: conflicting return type specified for `virtual unsigned int
pool::Cache::cacheSize()'
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/DataSvc/src/ICache.h:8
5: overriding `virtual size_t pool::ICache::cacheSize()'

Cause: a virtual method “cacheSize” is defined as returning “unsigned int” in
parent class and “size_t” – in a descendant class. This makes difference only on 64-bit
architectures.
Remedy: changed “unsigned int” to “size_t” in files: Cache.h and Cache.cpp.
However, CacheSVC and ICacheSVC both use "unsigned int" instead of "size_t",
so they compile well, but it might cause some problems in future – we'll see...

Problem: lcgdict complains:

In file included from /
data1/mkapalka/packages/POOL/POOL_1_6_3/src/Tests/DataSvc_CrossRefe
rence/dict/allHeaders.h:1:
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/DataSvc/DataSvc/AnyPtr
.h: In
 constructor `pool::AnyPtr::AnyPtr(const T*) [with T =
RelatedClass]':
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/DataSvc/DataSvc/Ref.h:
189: instantiated from `pool::Ref<T>& pool::Ref<T>::operator=(T*)
[with T = const RelatedClass]'
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/Tests/DataSvc_CrossRef
erence/src/CrossReferenceClass.h:34: instantiated from here
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/DataSvc/DataSvc/AnyPtr
.h:21: error: invalid
 use of undefined type `struct RelatedClass'
/data1/mkapalka/packages/POOL/POOL_1_6_3/src/Tests/DataSvc_CrossRef
erence/src/CrossReferenceClass.h:7: error: forward
 declaration of `struct RelatedClass'
Parsing file /
data1/mkapalka/packages/POOL/POOL_1_6_3/src/Tests/DataSvc_CrossRefe

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 61 of 68

rence/dict/allHeaders.h with GCC_XML Error processing file with
gccxml

Remedy: it's a known POOL bug (#3062), so an appropriate patch is available.

Problem: while creating libDataSvc_RootSvcPerformanceDict.so:

/data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Tes
ts/DataSvc_RootSvcPerformance/dict/../src//capabilities.o
(.text+0x0): In function `SEAL_CAPABILITIES':
/data1/mkapalka/build/seal/src/Dictionary/ReflectionBuilder/Reflect
ionBuilder/SealCapabilities.h:17: multiple definition of
`SEAL_CAPABILITIES'
/data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Tes
ts/DataSvc_RootSvcPerformance/dict/../src//capabilities.o
(.text+0x0):/
data1/mkapalka/build/seal/src/Dictionary/ReflectionBuilder/Reflecti
onBuilder/SealCapabilities.h:17: first defined here

Cause: it's because the capabilities.o file is given twice in the command line.
Remedy: the library can be linked manually:

/usr/bin/c++ -o /
data1/mkapalka/packages/POOL/POOL_1_6_3/rh73_gcc32_dbg/tests/lib/li
bDataSvc_RootSvcPerformanceDict.so -shared /
data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Test
s/DataSvc_RootSvcPerformance/dict/../src/RandomDataDump_dict.o /
data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Test
s/DataSvc_RootSvcPerformance/dict/../src/DataDump_dict.o /
data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Test
s/DataSvc_RootSvcPerformance/dict/../src/RandomDataDump_dictstubs.o
/
data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Test
s/DataSvc_RootSvcPerformance/dict/../src/DataDump_dictstubs.o /
data1/mkapalka/packages/POOL/POOL_1_6_3/tmp/rh73_gcc32_dbg/src/Test
s/DataSvc_RootSvcPerformance/dict/../src//capabilities.o -L/
data1/mkapalka/packages/POOL/POOL_1_6_3/rh73_gcc32_dbg/lib -L/
data1/mkapalka/packages/POOL/POOL_1_6_3/rh73_gcc32_dbg/tests/lib
-L/data1/mkapalka/build/uuid/lib -L/data1/mkapalka/build/boost -L/
data1/mkapalka/build/root/lib/root -L/data1/mkapalka/build/pcre/lib
-L/data1/mkapalka/build/seal/rh73_gcc32_dbg/lib -lStressTestBase
-llcg_DataSvc -llcg_PersistencySvc -llcg_StorageSvc -llcg_POOLCore
-llcg_SealBase -llcg_PluginManager -llcg_SealKernel
-llcg_ReflectionBuilder -llcg_Reflection -llcg_FileCatalog
-llcg_AttributeList -llcg_Collection -llcg_CollectionBase -luuid
-lCint -lCore -lHist -lGpad -lGraf -lMatrix -lPhysics -lPostscript
-lTree -lpcre -lnsl -lcrypt -ldl -Wl,-E

Problem: most of the tests fail with the following error:

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 62 of 68

/data1/mkapalka/packages/POOL/POOL_1_6_3/src/StorageSvc/src/DbHeap.
cpp:228: static DbObject* pool::DbHeap::allocate(long unsigned int,
pool::DbContainer*, const pool::DbLink*,
pool::DbObjectHandle<DbObject>*): Assertion `sizeof(DbObjectGuard)
<GUARDSIZE' failed.

Cause: as the class “DbObjectGuard” contains some pointers and “size_t” variables,
its size has increased while moving from IA32 to IA64. The constant “GUARDSIZE” is
hard-coded to 64.
Remedy: I've changed GUARDSIZE in StorageSvc/src/DbHeap.cpp to 128. It might
have been better to compute the value, based on the size of DbObjectGuard – to be
considered in the future.

Problem: many test fail with “segmentation fault”.
Cause: many reasons, mainly related to the difference between “int” and “long” (or
“unsigned int” and “unsigned long”) on IA64.
Remedy: I've prepared appropriate patches that solve most of the problems. However,
this is an ad-hoc solution, as many unanswered questions appeared – but it's up to
Markus Frank and other POOL developers to think about them.

 3) Remaining Issues

Well, most of the POOL tests work well. It's difficult to say, how large is their code
coverage, but hopefully they test most of the needed functionality. Nevertheless, some
things are still causing problems and there is probably no better way to repair them
than detailed analysis of the whole source tree and debugging the crashing programs. It
may also require rethinking some of the assumptions, e.g. answering the question:
where are “longs” really needed and where “ints” are just sufficient. The following test
programs fail at the moment:

– PersistencySvc_Functionality – it works, but the output is slightly
different than in the reference file: “database 2 size : 20 kB” instead of “database
2 size : 19 kB”,

– DataSvc_CMSMultiCache and DataSvc_PtrOwnership tests hang,
– DataSvc_ResetObject – finishes with some errors,
– DataSvc_RootSvcPerformance – fails (an exception thrown),
– MultiCollection_BasicFunctionality – “segmentation fault”,
– ExplicitCollection_Functionality – hangs,
– Collection_* tests: Read, Write, Update, MultiFileWrite,

MultiFileUpdate, Explicit{Read|Write}Performance are ok, but their
output is slightly different than in the reference files; however, in my opinion
the differences should not cause any problems – but this, of course, should be
judged by a more competent person,

– Collection_FileInfoRetrieve – “segmentation fault”,

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 63 of 68

– FileCatalog_Functionality – fails because it expects some data present in
a MySQL database and I have no idea, what should be put there,

– DataRegression_DataSvc_* tests: CMSCollDataModel and
SimpleEmbeddedRefs hang,

– XMLCatalog/tests/XMLFunctionality – runs well, but some differences
from the reference file,

– EDGCatalog/tests/EDGlookupTest – ok, but difference from the reference
file: the output is “bestpfn: replicapfn filetype: ROOT_All” instead of “bestpfn:
pfntest filetype: text”,

– EDGCatalog/tests/EDGFunctionality – fails with a message “wrong file
type” (this might be related to the previous error),

– RootCollection/tests/{read|update} – “segmentation fault”,
– MySQLCatalog/tests/* tests: importTest, MySQLFunctionality,

insertTest, lookupTest, metadataTest don't fail, but one can find the
following message within their output: “pool::FC::MySQL++Query in
MySQLFileCatalog::insertPFN Query was empty Status=5”, which is quite
suspicious,

– MySQLCollection and MySQLltCollection related tests – they all fail. Probably a
local MySQL database has to be configured somehow and has to have some
tables already present. Unfortunately, I have no idea, how to prepare the run-
time environment for these tests.

 3.6 PI

 1) Compiling and Testing PI

Firstly, adjust PI configuration files14 (in the same way as for SEAL and POOL). Next,
you can compile PI with the following commands:

cd PI/PI_1_1_3/src
eval `scram runtime -sh`
scram b release-build

The “scram runtime -sh” seems to be easier to use than my “setenv” and
“settstenv” scripts, although it works equally well. To test PI, one can use the
“scram b release-check” command. However, it produces quite a huge file, which
is difficult to analyze. My method was to run all the test programs from the
“rh73_gcc32_dbg/bin” directory one by one and see, what's happening (e.g.
compare the outputs on IA32 and IA64).

14 See /afs/cern.ch/user/m/mkapalka/public/pi-ia64-config.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 64 of 68

 2) Compilation Errors

Problem: libpacklib.a is needed, but the path /cern/pro/lib/libpacklib.a is
hard-coded in a makefile.
Remedy: edit src/AnalysisServices/AIDA_HBookStore/src/BuildFile and
change:

- CERNLIB = -static ...
+ CERNLIB = -static $BUILDDIR/cernlib/lib/libpacklib.a
$BUILDDIR/cernlib/lib/libkernlib.a -L$BUILDDIR/libshift/lib -lnsl
-lcrypt -ldl -lshift

Of course, it's better to replace $BUILDDIR with an appropriate patch manually, as I'm
not sure if it will be substituted at compilation time.

Problem: the compilation error:

/data1/mkapalka/packages/PI/PI_1_1_3/rh73_gcc32_dbg/lib/liblcg_AIDA
_HBookStore.so: load failed:
Shared library operation dlopen() failed because: libshift.so:
cannot open shared object file: No such file or directory

Remedy: add $BUILDDIR/libshift/lib to LD_LIBRARY_PATH.

Problems: an undefined symbol:

/data1/mkapalka/packages/PI/PI_1_1_3/rh73_gcc32_dbg/lib/liblcg_Plug
inFaFNative.so: undefined symbols
 intrac_

Remedy: if you followed all the steps with Anaphe, it shouldn't occur. It was solved by
using static libpacklib.a instead of libminuit.so in Anaphe.

Problem: some files missing (a configuration problem, as the files are present in the
directory tree):

/data1/mkapalka/packages/PI/PI_1_1_3/src/AnalysisServices/DataXML/t
ests/dxml_test.cpp:1:25: DataObject.h: No such file or directory
/data1/mkapalka/packages/PI/PI_1_1_3/src/AnalysisServices/DataXML/t
ests/dxml_test.cpp:2:24: XMLStream.h: No such file or directory

Remedy: probably one should edit the configuration file
src/AnalysisServices/DataXML/tests/GNUmakefile. However, I haven't
managed to make it work – actually I haven't spent too much time on that as this is only
a test program, so it's not that important.

Problem: a very common error on IA64:

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 65 of 68

/usr/bin/ld: /data1/mkapalka/build/cernlib/lib/libpacklib.a
(cfopei.o): @gprel relocation against dynamic symbol cfopen_perm

Cause: it means that the library (libpacklib.a) hasn't been compiled/linked with
“-fpic” option.
Remedy: the CERNLIB has to be compiled with “-fpic” option – if you followed the
steps in previous sections, it's already done.

 3) Remaining Issues

A few tests don't want to compile. But the question is if we really need them. If yes, it
might be needed to tune up the configuration files, as they are probably causing all the
problems. On the other hand, most of the tests that compile run well. All the tests that
fail on IA64, fail also on IA32, so there is no problem. However, some output numbers
and output files are slightly different on IA64 than on IA3215 – maybe it will be
necessary to trace this problem further in the future.

 3.7 Gaudi

 1) Compiling and Testing Gaudi

Firstly, all the relevant packages have to be copied from $BUILDDIR and $PACKDIR
(SEAL, POOL and PI) to /data1/lhcb/sw/packages. The structure of this directory
should be the same as on /afs/cern.ch/sw/packages16 (it may require some file
movements). Next, one should set up the LHCb and Gaudi environment and start
building the libraries (this is valid on oplapro49):

tcsh
source /afs/cern.ch/lhcb/scripts/lhcbenv.csh
cmt64

setenv GAUDIDIR /data1/lhcb/GAUDI/GAUDI_v14r5 (for our convenience)
GaudiEnv v14r5
cd $GAUDIDIR/Gaudi/v14r5/cmt
cmt show uses
source setup.csh
cmt broadcast gmake

The Gaudi examples can be compiled with the following command (after setting up the
environment as for compiling Gaudi itself):

cd $GAUDIDIR/GaudiExamples/v14r1/cmt
source setup.csh

15 See /afs/cern.ch/user/m/mkapalka/public/pi-test-results.tgz for the output of all the PI test
programs on both IA32 and IA64

16 See /afs/cern.ch/user/m/mkapalka/public/dirstruct.tgz

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 66 of 68

gmake

To run one of the examples:

setenv LD_LIBRARY_PATH ${LD_LIBRARY_PATH}:
${BUILDDIR}/libshift/lib:
${GAUDIDIR}/GaudiSvc/v11r6p1/cel3-ia64_gcc323:
${GAUDIDIR}/GaudiExamples/v14r1/cel3-ia64_gcc323

../cel3-ia64_gcc323/AlgSequencer.exe ../options/AlgSequencer.opts

Other examples can be run run in the same way. Their input parameters are in the
options directory and the reference output files are in the home directory (both of
them under $GAUDIDIR/GaudiExamples/v14r1).

To debug the examples that fail one might need to compile Gaudi with debugging
information. This can be done in the following way (note, that the creating symbolic
links part is needed only once – and it's needed because of a silly bug in one of the
configuration files):

setenv CMTCONFIG $CMTDEB
bash (I just got used to this shell)
for i in `find /data1/lhcb/sw/packages -name cel3-ia64_gcc323`;\

do echo $i; ln -s $i `dirname $i`/cel3_ia64_gcc323; done
exit
cmt broadcast "make clean"
cmt broadcast gmake

 2) Compilation and Run-Time Errors

Problem: linker: cannot find libshift
Remedy: so obvious, but has to be done many times, as Gaudi configuration scripts
overwrite the LD_LIBRARY_PATH variable:

setenv LIBRARY_PATH $BUILDDIR/libshift/lib

Problem: linker: cannot find libRFIO
Remedy: ROOT has to be built with RFIO support added (see previous sections).

Problem: problems with Python:

File "/data1/lhcb/sw/packages/SEAL/SEAL_1_3_4/cel3-
ia64_gcc323/bin/lcgdict.py", line 1, in ?
import sys, os, gendict, selclass, string, getopt
ImportError: No module named os

Remedy: we have to advice Python to use the right directory:

setenv PATH $BUILDDIR/python/bin:$PATH
setenv PYTHONHOME $BUILDDIR/python/

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 67 of 68

Problem: linker: cannot find libpython2.2
Remedy: simply:

cd /data1/lhcb/sw/packages/Python/2.2.2/cel3-ia64_gcc323
ln -s lib/libpython2.2.so libpython2.2.so

Problem: in GaudiPoolDb and other modules:

../src/PoolDbAddress.cpp:103: cannot convert `const unsigned int*'
to `const long unsigned int*' in return

Cause: POOL has changed (i.e. was ported), so some return types have also changed
and obviously it will cause problems in every package that uses POOL directly.
Remedy: well, I had to convert a lot of things, as it was with POOL... Hard work, but
after that Gaudi has successfully compiled. Of course, I've prepared a patch, but it's an
ad-hoc solution for this particular version of Gaudi and POOL and should be rather
considered as a didactic example and a base for further, complete and overall
corrections of the newest versions of the packages.

 3) Summary of the Test Results

There are only few examples shipped with Gaudi and it's difficult to say to which extent
they test the whole framework. Nevertheless, they are pretty easy to use and to check,
as they are option and reference files available. These are the results:

– AlgSequencer – OK,
– AlgTools – OK,
– ColorMsg – OK,
– GaudiMT – I couldn't run it and there is no reference file (probably the example

is somehow outdated or requires some special treatment),
– Gpython – “segmentation fault”,
– GSLTools – seems to be OK, but there is no reference file,
– Histograms – fails,
– Ntuples – fails,
– Properties – OK,
– RandomNumber – “segmentation fault”,
– RootIOWrite – some errors,
– RootIORead – output different than the reference file (but the input file is

produced by RootIOWrite, which fails, so that might be the reason).

CERN, openlab DRAFT (version 7.IX 2004) PUBLIC page 68 of 68

