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Chapter 1

Introduction

In this project we have done a study of the most popular compilers of
C/C++ today (gcc[1] and icc[2]) using several tests extracted from ROOT[3],
Geant4[4] and CLHEP[5].

The extracted battery of tests is described below:
• ROOT:

� TGeoArb8::Contains(...)
� TGeoCone::Contains(...)
� TRandom::Landau(...)
� TRandom3::Rndm(...)

• Geant4:
� G4AffineTransform::InverseProduct(...)
� G4Mag::EvaluateRhsGivenB(...)
� G4Tubs::Inside(...)

• CLHEP:
� HepMatrix::invertHaywood5(...)
� RanluxEngine::flat(...)
� HepRotation::RotateX(...)/RotateY(...)/RotateZ(...)

For every test we have taken times using Itanium 2 and Xeon platforms
(detailed in Appendix A).
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Chapter 2

The timing library

We have develop a timing library to measure the time necessary for every
execution.

We have implemented functions that return the spent Real1, User2 and
System Time3.

Also, we have develop a function that returns the number of cycles spent
by the machine, reading the RDTSC (in x86 architectures) and the ITC register
(in Itanium architectures). The assembly code used by this function has been
tested for Itanium, Xeon and Pentium IV architectures using icc and gcc
compilers.

1The total time.2The time dedicated to computational tasks.3The time dedicated to I/O, context changes, etc.
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Chapter 3

ROOT

3.1 TGeoArb8::Contains(. . . )

This function is a geometrical function. It takes the vertices of a polygon
and the coordinates of a point and evaluates if this is inside or outside the
polygon.

This is a computational function, all the work is done by the processor
and its ALU.

We can see the results in the tables 3.1 and 3.2.

Table 3.1: ROOT::TGeoArb8 in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 23.913 (100.0%) 24.144 (100.9%) 19.103 (79.80%) 21.107 (88.20%) 8.9508 (37.40%) 14.051 (58.70%)
-O3 23.211 (100.0%) 23.195 (99.90%) 20.539 (88.40%) 9.0506 (38.90%) 14.117 (60.80%) 7.8834 (33.90%)

-O2 + -ipo 18.634 (100.0%) 64.472 (345.9%)
-O2 + -�nline-functions 24.445 (100.0%) 22.794 (93.20%) 20.538 (84.00%) 20.325 (83.10%) 18.635 (76.20%) 14.062 (57.50%)

Table 3.2: ROOT::TGeoArb8 in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 5.62 (100.0%) 10.63 (189.1%) 11.77 (209.4%) 11.7 (208.1%) 5.38 (95.70%) 5.52 (98.20%)
-O3 5.69 (100.0%) 8.11 (142.5%) 11.78 (207.0%) 5.82 (102.2%) 5.39 (94.70%) 5.52 (97.00%)

-O2 + -ipo 5.21 (100.0%) 5.2 (99.80%)
-O2 + -�nline-functions 5.62 (100.0%) 10.59 (188.4%) 11.78 (209.6%) 11.65 (207.2%) 5.22 (92.80%) 5.53 (98.30%)

We can see a strange time for icc 9.0 and -02 + -ipo compilation �ags
in table 3.1. In this case the algorithm requires more than three times the
time required for icc 8.1.

13



14 CHAPTER 3. ROOT

3.2 TGeoCone::Contains(. . . )

This function is very similar to the previous one, a geometrical function that
returns if a point is inside a cone or not.

In summary, high computational power and low memory access.
In the tables 3.3 and 3.4 is possible to show the obtained results:

Table 3.3: ROOT::TGeoCone in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 32.226 (100.0%) 31.224 (96.80%) 25.198 (78.10%) 27.051 (83.90%) 23.542 (73.00%) 23.195 (71.90%)
-O3 29.202 (100.0%) 31.224 (106.9%) 25.211 (86.30%) 27.05 (92.60%) 20.203 (69.10%) 19.203 (65.70%)

-O2 + -ipo 23.195 (100.0%) 22.193 (95.60%)
-O2 + -�nline-functions 32.561 (100.0%) 31.892 (97.90%) 25.197 (77.30%) 26.699 (81.90%) 22.193 (68.10%) 22.194 (68.10%)

Table 3.4: ROOT::TGeoCone in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 9.21 (100.0%) 13.66 (148.3%) 13.59 (147.5%) 11.76 (127.6%) 10.16 (110.3%) 10.23 (111.0%)
-O3 9.38 (100.0%) 11.99 (127.8%) 13.92 (148.4%) 11.76 (125.3%) 10.15 (108.2%) 10.23 (109.0%)

-O2 + -ipo 10.15 (100.0%) 10.22 (100.6%)
-O2 + -�nline-functions 9.28 (100.0%) 13.66 (147.1%) 13.57 (146.2%) 11.77 (126.8%) 10.14 (109.2%) 10.28 (110.7%)
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3.3 TRandom::Landau(. . . )

The TRandom class contains a lot of functions to generate random numbers. In
this case, this is not a real random number generator, it generates a random
number following a Landau distribution with mpv(most probable value) and
sigma.

In this case, the problem has a bottleneck due to the elevate memory use
(we have a huge table used by the Landau function and it may be statically
allocated in memory).

The results are in the tables 3.5 and 3.6.

Table 3.5: ROOT::TRandom in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 22.525 (100.0%) 22.632 (100.4%) 22.565 (100.1%) 35.115 (155.8%) 28.707 (127.4%) 22.369 (99.30%)
-O3 22.421 (100.0%) 22.605 (100.8%) 22.531 (100.4%) 22.59 (100.7%) 31.85 (142.0%) 22.364 (99.70%)

-O2 + -ipo 28.701 (100.0%) 22.368 (77.90%)
-O2 + -�nline-functions 22.55 (100.0%) 22.632 (100.3%) 22.532 (99.90%) 22.59 (100.1%) 28.691 (127.2%) 22.354 (99.10%)

Table 3.6: ROOT::TRandom in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 35.28 (100.0%) 46.05 (130.5%) 46.92 (132.9%) 45.13 (127.9%) 34.9 (98.90%) 34.32 (97.20%)
-O3 35.18 (100.0%) 45.12 (128.2%) 45.86 (130.3%) 46.3 (131.6%) 34.22 (97.20%) 35.64 (101.3%)

-O2 + -ipo 34.49 (100.0%) 34.65 (100.4%)
-O2 + -�nline-functions 35.79 (100.0%) 45.13 (126.0%) 45.18 (126.2%) 45.78 (127.9%) 34.53 (96.40%) 33.47 (93.50%)

TRandom::Rndm

TRandom::Landau

memcpy

(12.94 %)

(4.61 %)

(80.46 %)

Figure 3.1: Problem with memory access.

In this algorithm is really important improve the memory management,
in the Figure 3.1 we can see how more than the 80% of the total time is
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necessary due the memcpy function. The real algorithm is only a 13% of the
total time1.

1For the gcc 3.2.3 compiler
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3.4 TRandom3::Rndm(. . . )

This is a real number generator that uses the Mersenne Twistor method.
In this case, the algorithm doesn't use a huge table, is only computational

power and we haven't the memory problem viewed in the previous analyzed
function.

Table 3.7: ROOT::TRandom3 in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 16.914 (100.0%) 17.294 (102.2%) 17.592 (104.0%) 17.248 (101.9%) 12.927 (76.40%) 13.811 (81.60%)
-O3 16.923 (100.0%) 17.296 (102.2%) 17.592 (103.9%) 17.264 (102.0%) 13.138 (77.60%) 13.381 (79.00%)

-O2 + -ipo 13.251 (100.0%) 13.706 (103.4%)
-O2 + -�nline-functions 16.926 (100.0%) 17.282 (102.1%) 17.592 (103.9%) 17.247 (101.8%) 12.918 (76.30%) 13.794 (81.40%)

Table 3.8: ROOT::TRandom3 in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 7.05 (100.0%) 6.93 (98.20%) 7.07 (100.2%) 7.16 (101.5%) 6.61 (93.70%) 7.46 (105.8%)
-O3 7.07 (100.0%) 6.92 (97.80%) 7.07 (100.0%) 7.17 (101.4%) 7.47 (105.6%) 7.46 (105.5%)

-O2 + -ipo 6.62 (100.0%) 7.49 (113.1%)
-O2 + -�nline-functions 7.05 (100.0%) 6.93 (98.20%) 7.06 (100.1%) 7.14 (101.2%) 6.62 (93.90%) 7.45 (105.6%)
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Chapter 4

GEANT4

4.1 G4A�neTransform::InverseProduct(. . . )

This function implements the inverse product of two matrix and store the
result into another one.

In this problem we have a lot of �oating point multiplications, but the
matrices are really small and we can work with the cache memory all the
time.

Table 4.1: GEANT4::G4A�neTransform in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 11.154 (100.0%) 11.154 (100.0%) 10.888 (97.60%) 10.887 (97.60%) 14.56 (130.5%) 14.551 (130.4%)
-O3 11.155 (100.0%) 11.154 (99.90%) 10.88 (97.50%) 10.887 (97.50%) 14.551 (130.4%) 14.555 (130.4%)

-O2 + -ipo 14.56 (100.0%) 14.56 (100.0%)
-O2 + -�nline-functions 11.155 (100.0%) 11.153 (99.90%) 10.88 (97.50%) 10.887 (97.50%) 14.559 (130.5%) 14.561 (130.5%)

Table 4.2: GEANT4::G4A�neTransform in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 3.05 (100.0%) 7.31 (239.6%) 12.49 (409.5%) 10.15 (332.7%) 3.71 (121.6%) 3.65 (119.6%)
-O3 3.12 (100.0%) 5.69 (182.3%) 12.48 (400.0%) 10.15 (325.3%) 3.71 (118.9%) 3.66 (117.3%)

-O2 + -ipo 3.71 (100.0%) 3.65 (98.30%)
-O2 + -�nline-functions 3.05 (100.0%) 7.3 (239.3%) 12.49 (409.5%) 10.15 (332.7%) 3.71 (121.6%) 3.65 (119.6%)

19
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4.2 G4Mag::EvaluateRhsGivenB(. . . )

This function returns the value of the magnetic �eld B and calculates the
value of the derivative dydx.

Table 4.3: GEANT4::G4Mag in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 29.555 (100.0%) 28.854 (97.60%) 23.009 (77.80%) 23.044 (77.90%) 9.4198 (31.80%) 8.8128 (29.80%)
-O3 23.945 (100.0%) 23.676 (98.80%) 22.843 (95.30%) 17.723 (74.00%) 8.4178 (35.10%) 7.8164 (32.60%)

-O2 + -ipo 8.3829 (100.0%) 8.1782 (97.50%)
-O2 + -�nline-functions 24.364 (100.0%) 24.063 (98.70%) 22.844 (93.70%) 17.733 (72.70%) 8.3826 (34.40%) 8.8126 (36.10%)

Table 4.4: GEANT4::G4Mag in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 8.96 (100.0%) 12.74 (142.1%) 12.43 (138.7%) 12.7 (141.7%) 9.41 (105.0%) 9.08 (101.3%)
-O3 8.18 (100.0%) 9.21 (112.5%) 12.42 (151.8%) 12.39 (151.4%) 9.4 (114.9%) 9.09 (111.1%)

-O2 + -ipo 9.1 (100.0%) 9.09 (99.80%)
-O2 + -�nline-functions 8.81 (100.0%) 12.2 (138.4%) 12.41 (140.8%) 12.42 (140.9%) 9.09 (103.1%) 9.09 (103.1%)
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4.3 G4Tubs::Inside(. . . )

We have, again, a geometric function that return if a vector is inside, outside
or in the surface of a tube.

In the �rst implementation of test we didn't use the return of the function
at the end of the main, the result of the execution is in the Table 4.5.

Table 4.5: GEANT4::G4Tubs in Itanium 2 architecture (if we don't use the
return)

gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0
-O2 25.713 (100.0%) 26.701 (103.8%) 26.716 (103.9%) 27.049 (105.1%) 26.049 (101.3%) 0.44509 (1.700%)
-O3 24.378 (100.0%) 27.048 (110.9%) 26.699 (109.5%) 27.7 (113.6%) 26.032 (106.7%) 0.4452 (1.800%)

-O2 + -ipo 0.44503 (100.0%) 0.44554 (100.1%)
-O2 + -�nline-functions 25.031 (100.0%) 26.716 (106.7%) 26.715 (106.7%) 27.716 (110.7%) 0.44527 (1.700%) 0.44531 (1.700%)

As we can see, the icc 9.0 compiler (and icc 8.1 with -ipo or -finline-functions
�ag) discovers that the return of the function is not necessary and doesn't
compute this, obtaining a execution time of 1.7% respect the time taken by
gcc 3.2.3.

In Tables 4.6 and 4.7 we have the results using the return of the function
an forcing to icc compilers to process it. In this case, gcc compilers have the
best improve (for Itanium 2 architecture).

Table 4.6: GEANT4::G4Tubs in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 20.358 (100.0%) 22.375 (109.9%) 24.043 (118.1%) 23.877 (117.2%) 26.548 (130.4%) 27.534 (135.2%)
-O3 19.869 (100.0%) 22.194 (111.7%) 24.044 (121.0%) 23.878 (120.1%) 26.533 (133.5%) 26.55 (133.6%)

-O2 + -ipo 26.548 (100.0%) 26.55 (100.0%)
-O2 + -�nline-functions 20.37 (100.0%) 22.361 (109.7%) 23.71 (116.3%) 23.863 (117.1%) 26.549 (130.3%) 27.552 (135.2%)

Table 4.7: GEANT4::G4Tubs in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 6.71 (100.0%) 8.56 (127.5%) 9.03 (134.5%) 8.16 (121.6%) 7.34 (109.3%) 4.82 (71.80%)
-O3 6.86 (100.0%) 9.07 (132.2%) 9.03 (131.6%) 8.19 (119.3%) 7.34 (106.9%) 4.83 (70.40%)

-O2 + -ipo 7.35 (100.0%) 4.82 (65.50%)
-O2 + -�nline-functions 6.68 (100.0%) 8.51 (127.3%) 9.05 (135.4%) 8.18 (122.4%) 7.36 (110.1%) 4.83 (72.30%)

We obtain a really good time for icc 9.0 and Xeon architecture (see
table 4.7).
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Chapter 5

CLHEP

5.1 HepMatrix::invertHaywood5(. . . )

This function get an input matrix of 5x5 and calculates its inverse, returning
it.

This operation uses a lot of local variables and a big vector to generate
the output matrix.

Table 5.1: HepMatrix::invertHaywood5 in Itanium 2 architecture

gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0
-O2 3.8455 (100.0%) 3.5846 (93.20%) 2.9668 (77.10%) 2.8597 (74.30%) 32.793 (852.7%) 2.9509 (76.70%)
-O3 3.6318 (100.0%) 3.6986 (101.8%) 2.9665 (81.60%) 2.8613 (78.70%) 32.581 (897.1%) 2.8469 (78.30%)

-O2 + -ipo 35.838 (100.0%) 35.479 (98.90%)
-O2 + -�nline-functions 3.9008 (100.0%) 3.5808 (91.70%) 2.9659 (76.00%) 2.86 (73.30%) 35.962 (921.9%) 2.9508 (75.60%)

Table 5.2: HepMatrix::invertHaywood5 in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 5.22 (100.0%) 16.21 (310.5%) 18.83 (360.7%) 20.67 (395.9%) 4.37 (83.70%) 4.44 (85.00%)
-O3 4.84 (100.0%) 9.13 (188.6%) 18.89 (390.2%) 20.62 (426.0%) 4.4 (90.90%) 4.43 (91.50%)

-O2 + -ipo 23.18 (100.0%) 22.1 (95.30%)
-O2 + -�nline-functions 5.25 (100.0%) 16.22 (308.9%) 18.85 (359.0%) 20.68 (393.9%) 4.41 (84.00%) 4.46 (84.90%)

I think that this function is a interesting function to study (maybe the
most interesting function in all the report).

In table 5.1 we can see a really bad time for icc 8.1, however, for Xeon
architecture it is the best one. Other interesting thing is that icc compilers
obtain really bad results with -ipo �ag in both architectures.

23



24 CHAPTER 5. CLHEP

5.2 RanluxEngine::�at(. . . )

This function returns a pseudo random number in the open interval (0,1).
We are, again, in front of a computational task.

Table 5.3: RanluxEngine::�at in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 55.393 (100.0%) 54.298 (98.00%) 51.948 (93.70%) 51.982 (93.80%) 23.13 (41.70%) 17.413 (31.40%)
-O3 54.042 (100.0%) 46.981 (86.90%) 51.843 (95.90%) 51.841 (95.90%) 19.781 (36.60%) 13.779 (25.40%)

-O2 + -ipo 22.303 (100.0%) 22.305 (100.0%)
-O2 + -�nline-functions 55.392 (100.0%) 52.723 (95.10%) 51.843 (93.50%) 51.812 (93.50%) 22.42 (40.40%) 17.414 (31.40%)

Table 5.4: RanluxEngine::�at in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 30.28 (100.0%) 36.87 (121.7%) 28.34 (93.50%) 27.93 (92.20%) 38.37 (126.7%) 33.53 (110.7%)
-O3 30.17 (100.0%) 36.07 (119.5%) 28.45 (94.20%) 27.06 (89.60%) 38.39 (127.2%) 34.26 (113.5%)

-O2 + -ipo 37.5 (100.0%) 33.72 (89.90%)
-O2 + -�nline-functions 30.09 (100.0%) 35.87 (119.2%) 28.03 (93.10%) 27.05 (89.80%) 37.68 (125.2%) 34 (112.9%)

The results for icc compilers are really good for this algorithm and Ita-
nium architecture.
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5.3 HepRotation::RotateX(. . . )/RotateY(. . . )/RotateZ(. . . )

This function rotates a HepRotation object using simple �oating point op-
erations.

In the Tables 5.5 and 5.6 we can see the results of the execution.

Table 5.5: HepRotation::Rotate in Itanium 2 architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 32.396 (100.0%) 32.526 (100.4%) 32.527 (100.4%) 32.66 (100.8%) 14.018 (43.20%) 13.826 (42.60%)
-O3 30.59 (100.0%) 29.986 (98.00%) 29.722 (97.10%) 29.636 (96.80%) 14.018 (45.80%) 13.817 (45.10%)

-O2 + -ipo 2.338 (100.0%) 2.0025 (85.60%)
-O2 + -�nline-functions 30.704 (100.0%) 29.853 (97.20%) 29.722 (96.80%) 29.654 (96.50%) 2.136 (6.900%) 13.827 (45.00%)

Table 5.6: HepRotation::Rotate in Xeon architecture
gcc 3.2.3 gcc 3.4.4 gcc 4.0.1 gcc 4.1.0 icc 8.1 icc 9.0

-O2 65.39 (100.0%) 73.87 (112.9%) 73.88 (112.9%) 74.65 (114.1%) 49.75 (76.00%) 20.34 (31.10%)
-O3 64.82 (100.0%) 73.72 (113.7%) 77.13 (118.9%) 77.24 (119.1%) 49.81 (76.80%) 20.38 (31.40%)

-O2 + -ipo 17.75 (100.0%) 20.36 (114.7%)
-O2 + -�nline-functions 64.76 (100.0%) 76.97 (118.8%) 77.14 (119.1%) 77.24 (119.2%) 17.68 (27.30%) 20.4 (31.50%)

Again, we obtain very good times for icc compilers.
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Chapter 6

Conclusions

In summary, we can say that the icc compiler is a bit unstable (in fact, it
is under development). It is really good with some tasks, specially where the
memory access is the bottleneck. Also, we obtain really good results with
some geometric functions. However, when we have tasks with high computa-
tional requisites (like random number generators) icc can take a lot of time,
if we compare with gcc.

We should try with di�erent compilation �ags, take a look of the generated
assembly code and study the internal architecture (and, maybe, the code) of
the respective compilers to give better conclusions. In fact, we can't be sure
about the reasons that convert one compiler in the best one, we only know
the situations in which one compiler is better than others.

27



28 CHAPTER 6. CONCLUSIONS



Appendix A

Architectures

We have used the architectures described below for all the tests (the speci�-
cation is for every node of the respective cluster).

• oplaslim1:
� Linux Distribution: Scienti�c Linux CERN release 3.0.5.
� Linux Version: 2.4.21-32.0.1.EL.cern
� CPU : Intel Xeon 64 bits 3.60 GHz (two per node).
� Cache Memory : 2048 KB (per CPU).
� Main Memory : 7 GB.

• oplapro21:
� Linux Distribution: Scienti�c Linux CERN release 3.0.5.
� Linux Version: 2.6.12.2
� CPU : Intel Itanium 2 64 bits 1.50 GHz (two per node).
� System Bus Bandwidth: 6.4 GB/s.
� Cache Memory :

∗ L1 : 32KB.
∗ L2 : 256 KB.
∗ L3 : 6 MB.

� Main Memory : 2 GB.
� Main Memory Bus Bandwidth: 6.4 GB/s.
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Appendix B

Compilers

We have used these versions of the gcc and icc compilers:
• gcc 3.2.3

• gcc 3.4.4

• gcc 4.0.1

• gcc 4.1.0

• icc 8.1

• icc 9.0

31



32 APPENDIX B. COMPILERS



Appendix C

Optimization Flags

Every version of gcc or icc has their own group of �ags for every level of
optimization. In this Appendix, we use like example the optimization of �ags
of gcc 4.0.1, described below:

• -O2:
� -fdefer-pop (from -O1)
� -fdelayed-branch (from -O1)
� -fguess-branch-probability (from -O1)
� -fcprop-registers (from -O1)
� -floop-optimize (from -O1)
� -fif-conversion (from -O1)
� -fif-conversion2 (from -O1)
� -ftree-ccp (from -O1)
� -ftree-dce (from -O1)
� -ftree-dominator-opts (from -O1)
� -ftree-dse (from -O1)
� -ftree-ter (from -O1)
� -ftree-lrs (from -O1)
� -ftree-sra (from -O1)
� -ftree-copyrename (from -O1)
� -ftree-fre (from -O1)
� -ftree-ch (from -O1)
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� -fmerge-constants (from -O1)
� -fthread-jumps
� -fcrossjumping
� -foptimize-sibling-calls
� -fcse-follow-jumps
� -fcse-skip-blocks
� -fgcse
� -fgcse-lm
� -fexpensive-optimizations
� -fstrength-reduce
� -frerun-cse-after-loop
� -frerun-loop-opt
� -fcaller-saves
� -fforce-mem
� -fpeephole2
� -fschedule-insns
� -fschedule-insns2
� -fsched-interblock
� -fsched-spec
� -fregmove
� -fstrict-aliasing
� -fdelete-null-pointer-checks
� -freorder-blocks
� -freorder-functions
� -funit-at-a-time
� -falign-functions
� -falign-jumps
� -falign-loops
� -falign-labels
� -ftree-pre

• -O3:
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� -O2
� -finline-functions
� -funswitch-loops
� -fgcse-after-reload

• -O2 + -ipo (only icc):
� -O2
� -ipo

• -O2 + -finline-functions:
� -O2
� -finline-functions

For more information, you can visit the documentation section into the
webpage of the gcc[1] project.
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