

Perfmon2: A leap forward in Performance Monitoring

Sverre Jarp, Ryszard Jurga, Andrzej Nowak

CERN, Geneva, Switzerland

Sverre.Jarp@cern.ch

Abstract. This paper describes the software component, perfmon2, that is about to be added to
the Linux kernel as the standard interface to the Performance Monitoring Unit (PMU) on
common processors, including x86 (AMD and Intel), Sun SPARC, MIPS, IBM Power and
Intel Itanium. It also describes a set of tools for doing performance monitoring in practice and
details how the CERN openlab team has participated in the testing and development of these
tools.

1. Introduction: Justifying performance monitoring
There are multiple reasons why performance tuning of an application or a subsystem is still worth the
effort, even in an era where hardware is seen as “cheap” and manpower is considered expensive.
The first case is when computers are purchased for tens of millions of euros, so that even economies of
just a few percent can compensate for the salaries of the people doing performance work.

A second case, which is fairly recent, is when computer centres fill up to their power and thermal
limits with the consequence that no more servers can be installed. If additional capacity is nevertheless
needed, one may either be forced to exchange some of the equipment with more thermally-efficient
hardware (if it exists) or turn to performance tuning in order to squeeze out more performance.

A third case is when high-cost personnel wait for computers to complete their calculations.
Percentage gains in turn-around time can then be translated directly into more efficient manpower.

An additional incentive is no doubt personal pride of the software designer/programmer. Ideally,
one wants performance analysis to be performed throughout the entire development cycle of an
application, so that the application does not exhibit “inefficient” behaviour or excessive consumption
of computing resources.

2. The initial Itanium development
When the Itanium processor was designed (jointly by HP and Intel) a Performance Monitoring Unit
(PMU) was added to the processor architecture as a complete and consistent facility. The PMU
presented a well-defined interface to the operating system for both the programming and the
corresponding data collection. For counting events, a vast number of counters were added – so that,
for instance, every cycle in the execution pipelines could be accounted for or every action in the cache
hierarchy could be explained. In addition, several advanced features, such as Branch Trace Buffers,
were introduced.

When Linux was initially ported to the Itanium in the late nineties [1], Stéphane Eranian from HP
Labs took on the task of developing the required software to exploit the PMU in order to monitor the

performance of applications or even the kernel itself. The tool became an important instrument in the
effort to port applications to the Itanium platform.

3. A bright idea comes along
As a natural extension to the work he had done on the Itanium, Stéphane then decided to extend the
Linux kernel support to cover all modern processor families. He called the successor product,
perfmon2 [2]. In addition to providing a broad support for hardware variants, he negotiated with the
Linux kernel maintainers to get the patch added to the main kernel tree. In the beginning the
maintainers were sceptical, primarily because the kernel hooks for perfmon2 sit in very sensitive areas
of the kernel, such as the dispatcher and the interrupt handler. The community did not want any
unnecessary overhead to be added to such time-critical kernel areas, and it took several kernel releases
to introduce the appropriate infrastructure for perfmon2 without upsetting the community. At the time
of writing it seems that perfmon2 will be entirely added as of kernel version 2.6.24 later this autumn.

4. Detailed description of perfmon2/pfmon
Perfmon2 aims to be a portable interface across all modern processors [3][4]. It is designed to give full
access to a given PMU and all the corresponding hardware performance counters. Typically the PMU
hardware implementations use a different number of registers, counters with different length and
possibly other unique features, a complexity that the software has to cope with. Although processors
have different PMU implementations, they usually use configurations registers and data registers.
Perfmon2 provides a uniform abstract model of these registers and exports read/write operations
accordingly. The software supports a wide variety of processor architectures, including Intel Itanium,
Intel P6, P4, P2, Pentium M, Core and Core 2 processors, the AMD Opteron (Dual and Quad-core),
IBM Cell processor and a range of MIPS processors [5].

Figure 1. One tool on all supported platforms

 The interface is implemented using system calls in order to support per-thread monitoring,

implying a costly context switch by the kernel. The interface provides support for system-wide
measurements. Multiple per-thread perfmon2 contexts can coexist at the same time on a system.
Multiple system-wide sessions can co-exist as long as they monitor different processors. Per-thread
mode and system-wide mode cannot exist at the same time. For each mode, it is possible to collect
simple counts or create full sampling measurements, in both cases using 64-bit counters, in either user
or kernel mode. Perfmon2 uses the number of events in order to determine the sampling period. In
sampling mode, the interface uses a kernel sampling buffer in order to minimize the overhead, since
this reduces the communication between user and kernel levels on each sampling counter overflow.

Figure 2. What is where regarding pfmon

For the cases where the performance units have too few counters, or when some events can not be

measured together, perfmon2 supports event sets and multiplexing.
The perfmon2 interface is complemented by the libpfm library as well as with the pfmon tool. The

library provides the actual access to the interface for user applications since it contains a set of
functions, adapted to each processor, for read/write operations to the perfmon2 exported registers. The
library also provides the API in order to take advantage of more complex PMU features, like the
Branch Trace Buffer (BTB) and “opcode matching” on Itanium.

Pfmon [6] is a stand-alone command-line tool which takes advantage of perfmon2 and libpfm. It
was initially designed in order to test the features of the interface and the library, but since users found
it to be a very helpful tool, it accumulated features and matured over the years.

Figure 3. Profiling example

Pfmon can do system-wide or per-thread measurements, by monitoring across pthread_create, fork

and exec function calls. Such measurements can be done for a new process or for an existing one by
attaching dynamically to the process. The measurements can be triggered at a specific code location if
desired. This can be useful if, for instance, one wants to skip the initialization phase of a program and
only monitor the rest. In addition to counting PMU events, pfmon supports profiling without requiring
a recompilation of the application. It can report which addresses from the application contribute to the
overall number of cycles, instructions, cache misses etc. With the CERN openlab [7] extensions to
pfmon, it can map these addresses to symbol names across multiple processes and shared libraries,
dynamically loaded or linked against the application. For C++ and Java symbols pfmon can demangle
symbols and produce more user-friendly names. In order to avoid pathological patterns in sampling
mode, pfmon provides the possibility to randomize sampling periods. All results can be aggregated
across different measurement domains and can be either printed on the screen or saved into a file for
further analysis.

5. Complexity of CERN benchmarks - Shared library support in perfmon2.
The High Energy Physics (HEP) community develops a great deal of in-house software. There is a
wide spectrum of components involved in the programming process, including programming
languages such as C/C++, Java and even FORTRAN, in addition to scripting languages, such as
python or bash. The applications are run on top of multiple hardware configurations and set-ups. The
global development effort produces software that has a wide variety of functionality and complexity,
from simple applications to huge simulation frameworks built with hundreds of shared libraries. These
complex frameworks are based on a multitude of components developed by different teams inside
HEP or by the open source community. As already mentioned in the introduction, there are multiple
reasons for wanting to tune the performance of such frameworks.

Both pfmon, and the underlying perfmon2, offer many features that should be useful in the HEP
computing environment in terms of performance monitoring and profiling. The portability and
scalability across different hardware platforms is of particular value. However, pfmon was also found
to have some limitations, especially related to dynamic libraries [8]. The HEP applications make
extensive use of such libraries, and because they spend most of their execution time in these libraries,
the weaknesses in pfmon become problematic. In addition, if dynamic libraries are loaded and
unloaded in various ways (i.e., from C/C++ program or from python script) in different parts of the
application, pfmon’s raw addresses can be misleading. Further problems are caused by the fact that a
lot of HEP applications run as a consecutive series of smaller processes which is reported as a series of
fork/exec events.

6. Bugs and other issues dealt with by CERN openlab
As already described, pfmon does not handle dynamic libraries correctly. It reports raw addresses from
dynamic libraries instead of function names, which makes the analysis difficult, almost impossible.
There is also the issue of multiple processes (created via fork or exec) that causes problems when we
want to observe symbols instead of virtual addresses, since pfmon initially could perform symbol
resolution only from the main executable. Given that pfmon, nevertheless, has a lot of other useful
features, we have contributed some extensions in order to meet our requirements.

We have extended pfmon’s functionality [9] allowing it to handle all libraries, both those that were
linked against applications as well as those that were dynamically loaded during the execution. As a
result our extended pfmon is able to deal with all symbols from such libraries and report profiling
results with function names. Thanks to our improvement we are also able to see these symbols across
all processes started from the main executable. Our extensions are fully portable and run on IA-32,
Intel-64, and AMD64 as well as on IA-64 platforms. In the process of working on these
improvements, we also solved a few additional issues related to pfmon. Since the HEP applications’
set-up and resource requirements are very demanding, our tests helped us to find and solve memory

leak problems. We have also solved a “dangling file handler” issue when we reached more than five
thousand open files while running profiling. During various tests we have discovered a few bugs in
verbose mode, where in some cases pfmon tries to print data which is not accessible. We have also
found an issue with automatic inheritance of debug registers on fork call, which is acceptable for the
x86 architecture, but not for IA-64.

7. GPFMON
Gpfmon [10] is a graphical front-end to pfmon, written in Python and GTK-2, running on Linux
systems. The concept for this application, developed by CERN openlab, stems from the need to
provide a convenient and user friendly way to launch pfmon/perfmon2 monitoring sessions. The front-
end, nearing the beta phase as of this writing, not only does this but also brings additional value on top
of the original program. Most notably, it provides an advantage to less advanced users, as well as
advanced users requiring visualization capabilities.

Apart from the fact that gpfmon relieves users from writing 250-character long command lines, the
tool provides some aid in event selection, by visualizing available PMU events, their descriptions,
dependencies and counters independently of the architecture. The event selection process is assisted,
according to the amount and availability of counters in the PMU. Moreover, scenarios consisting of
event ratios may be selected, such as cycles per instructions or the percentage of missed branch
predictions. Gpfmon automatically selects events needed to produce the selected ratios, in order to
eventually produce either a single figure or time-dependent data. In effect, it is easy to gain a more
complex insight into the monitored program and see how some ratios change over time. In addition,
gpfmon supports remote monitoring sessions via plain SSH, without the need to install any additional
software. In this scenario, the client (gpfmon) uses the SSH protocol to connect to a remote machine
running perfmon2 and pfmon, and shows the results locally on the user's computer. This solution not
only lifts the burden of supporting the GUI from the monitored machine, but also enables monitoring
in GUI mode on less robust network links, which might not be able to support the GUI displayed via
X-forwarding or VNC. Gpfmon also generates several types of plots for flat profile and sampling data,
enabling users to see the characteristics of their applications at a glance.

Figure 4. A gpfmon session and a produced graph

The tool will continue to evolve towards a robust user interface, adding even further value to

pfmon, and including such features as advanced scenario support, results and profile management and
enhanced plot generation. A fully stable 1.0 version of the program is expected in the fourth quarter of
2007.

8. Conclusions
Perfmon2 is an exciting development that is about to be included in the Linux kernel as the standard
interface to the PMU on modern microprocessors. In our opinions it is likely that performance tuning
will remain an important activity in the years to come, due to problems such as the capping of
processor frequency because of power leakage issues or the saturation of cooling capacity in computer
centres for the same reason. Once perfmon2 has been integrated with all the required hooks, tools like
pfmon and gpfmon can be used without difficulty to monitor the performance of software applications.
Thanks to the development in CERN openlab, the demands of the complex LHC applications will be
fully covered.

References
[1] D.Mosberger, S.Eranian, “IA-64 Linux Kernel: Design and Implementation”, Prentice Hall,

2002
[2] The perfmon2 home page: http://perfmon2.sourceforge.net/
[3] S. Eranian, “Quick overview of the perfmon2 interface”,

http://www.gelato.unsw.edu.au/archives/linux-ia64/0512/16211.html
[4] S. Eranian, “The perfmon2 interface specification”, 2005
[5] S. Eranian, “Update on the perfmon2 monitoring interface”
[6] The pfmon tool home page: http://perfmon2.sourceforge.net/pfmon_usersguide.html
[7] CERN openlab webpage: http://cern.ch/openlab
[8] R. Jurga, "Practical experience with performance monitors on Xeon and Itanium", October 2006
[9] R. Jurga, “Recent developments in performance monitoring”, openlab Quarterly Review

Meeting, 31 Jan 2007
[10] The gpfmon home page: http://cern.ch/andrzej.nowak

