
CERN openlab

Page 1 of 15

oTN-2008-08 openlab Technical Note

The SNARL Service: Standards-based Naming
for Accessing Resources in an LFC

By Karolina Sarnowska
Supervisors: Erwin Laure, Andrew Grimshaw, and Akos Frohner

 16 August 2008
Version 2

Distribution:: Public

1� Introduction ... 2�

1.1� Grid Software Interoperability ..2�
1.2� Open Grid Forum ..2�
1.3� Resource Naming Service Specification ...2�
1.4� LCG File Catalog ..3�
1.5� The SNARL Service..3�

2� Development.. 3�
2.1� SNARL Service Overview ..4�
2.2� Axis2/C, A Web Services Framework ..4�

2.2.1� Running an Axis2 Server... 4�
2.3� Service Generation with the WSDL2C Tool ...4�

2.3.1� WSDL Files for SNARL ... 5�
2.3.2� Axis Data Binding ... 5�
2.3.3� Running the WSDL2C Tool .. 5�
2.3.4� WSDL2C Tool Output... 5�
2.3.5� Compiling the Service Skeleton .. 6�
2.3.6� Deploying an Axis2 Service .. 6�

2.4� Creating an Axis2 Client ...6�
2.4.1� SNARL Client Overview... 6�
2.4.2� Axis2 Client Components.. 6�
2.4.3� Axis Object Model... 6�
2.4.4� Engaging WS-Addressing ... 7�
2.4.5� Compiling an Axis2 Client .. 7�

2.5� Implementing the RNS Operations..7�
2.5.1� Naming Replicas.. 7�
2.5.2� RNS Add Operation... 8�
2.5.3� RNS Remove Operation .. 9�
2.5.4� RNS List Operation ... 10�
2.5.5� RNS Move Operation .. 11�
2.5.6� RNS Query Operation ... 11�

3� Interoperability Testing... 13�
3.1� The Setup...13�
3.2� Interoperability Results ...14�

3.2.1� RNS Add Operation Testing.. 14�
3.2.2� RNS List Operation Testing .. 14�
3.2.3� RNS Remove Operation Testing ... 14�

4� Future Work ... 14�
4.1� Adding Security...14�
4.2� Implementing ByteIO..14�
4.3� RNS 2.0 ...15�
4.4� SNARL in the Middle ...15�

5� Conclusions... 15�
6� Acknowledgement... 15�
References .. 15�

Karolina Sarnowska

 Page 2 of 15

1 Introduction
This report presents the SNARL (Standards-based Naming for Accessing Resources in an LFC) service.
SNARL is a web services implementation of one of the Open Grid Forum (OGF) [1] specifications.
Specifically, SNARL is an implementation of the first version of the Resource Naming Service (RNS) [2]
specification for the LCG File Catalog (LFC) [3]. The creation of the SNARL service occurred as a part of
the 2008 Openlab Summer Student Program at CERN.

This report is divided as follows. First, we present background information describing the grid software
interoperability problem, the Open Grid Forum, the Resource Naming Service specification, and the SNARL
service. Next, in the main section of this report, we describe the design and development of the SNARL
service. We end with a discussion of future work and conclusions.

In this section, we present the background concepts that the SNARL service is based upon. To put the
relevance of the SNARL Service into context, we begin with a discussion of the grid software
interoperability problem. We then discuss how the mission of the OGF has been to strive to find solutions to
this problem. Finally, we discuss the specific interoperability area that is addressed by the RNS specification
and implemented by the SNARL service.

1.1 Grid Software Interoperability
The high-level problem area that has motivated the creation of the SNARL service is the problem area of
grid software interoperability. It is difficult if not impossible for users in different scientific communities
using different grid infrastructures to collaborate directly using their own grid software. Instead users must
download and install specialized clients to communicate with other grids or collaborate entirely outside their
grid environment. Both of these alternatives are much less efficient for basic collaborations involving grid
data than simply utilizing the native grid environment. The root of the problem is that grid software is not
generally interoperable.

1.2 Open Grid Forum
There is no direct way for different grid infrastructures to communicate and understand each other unless the
grids share some common interfaces. Over the past years, the Open Grid Forum (OGF) has been attempting
to help address this issue. The OGF is the organization leading the global standardization effort for grid
computing. During OGF events, users, developers, and vendors gather together to discuss their experiences
with grids and distributed systems. In their discussions, they attempt to consolidate their best practices into
grid standards that specify sets of interfaces for accomplishing common grid tasks. Through these efforts,
the OGF strives to address the grid software interoperability issue. If different grids follow the same
standards, then it will be possible for grids to directly interoperate. In this way, the OGF hopes to help drive
the evolution and adoption of applied distributed computing environments.

1.3 Resource Naming Service Specification
The ways in which grid software could interoperate is as varied as the complexity of a grid’s infrastructure.
The goal of creating grid standards is not to embody every possibility but instead to describe a standard
means of achieving interoperability for basic functionality. Over the past years, many standards have been
developing via the OGF to address different types of interoperability. Since these standards are meant to be
implementation independent, they are described in terms of operations provided by web services. One such
standard is described by the Resource Naming Service (RNS) specification. This specification deals with the
access to resources and their naming.

Accessing resources in a grid is a fundamental task. To be able to access resource, users require some means
of referring to the resources. Often resources are named in a human-readable fashion that is then used by
users to refer to them. In turn, this name maps to some meaningful address that uniquely identifies the
resource. The RNS specification is concerned with the handling of such mappings. It specifies a standard
way for mapping names to entities within a grid. If different grids follow the RNS specification, then they

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 3 of 15

can understand what named entities exist in each other’s grid space. This is a basic interoperation that lays
the foundation for further collaboration such as manipulating the data that may be represented by named
resources.

The RNS specification is based on other OGF standards. To make interoperability possible, the specification
needs to be built from standards compliant pieces. One really important standard utilized by the RNS
specification is concerned with how grid resources are addressed. This standard, WS-Addressing [4],
describes XML elements needed to identify web service endpoints. The resulting endpoint reference (EPR)
is basically a handle to any referenceable grid resource, processor, or other entity to which a web service
message can be addressed. The RNS specification describes a standard means for mapping human readable
names to these EPRs.

In specifying a means of handling name-to-resource mappings, the RNS specification describes a set of five
basic operations associated with such mappings: add, remove, list, query, and move. The add operation adds
a new entry into the namespace. The remove operation deletes an existing entry from the namespace. The
list operation lists entries associated with a given name in the namespace. The move operation provides a
means of renaming an existing entry. The query operation is used to get the properties associated with a
particular name. In this way, the RNS specification provides a standard mechanism for performing basic
interactions on named entities with the namespace of a grid.

1.4 LCG File Catalog
SNARL is a web service that implements the RNS specification for the LCG File Catalog. We now provide
some background about the LFC. The LFC is one means of tracking and facilitating access to data in EGEE
grids. As the name indicates, the LFC is a file catalog keeping track of the locations of files in the grid.
Files that are distributed amongst various storage elements in a grid can be registered in an LFC. Each
unique file is given a unique logical file name. For each logical file name, a mapping is created to the actual
address of the file. If multiple replicas of one logical file exist, these replicas are registered under one logical
name. Thus, for each logical file name entry registered in the LFC, there can be one or more physical files
associated with that logical name. The LFC stores a list of all logically different file names along with the
mapping between logical file names and the addresses needed to access the data.

1.5 The SNARL Service
As standards develop, it is important to also develop implementations that attempt to follow these standards.
Such implementations help to ensure that the purpose of a specification does not inadvertently get lost in the
often multiyear effort involved in standards development. In our work, we strive to validate the RNS
specification by creating an implementation for LFC’s in EGEE grids. The Standards-based Naming for
Accessing Resources in an LFC (SNARL) service is the first implementation of RNS for a pre-existing grid
system. The University of Virginia’s Genesis II [5] grid and a grid at the University of Tsukuba are the only
other existing implementations of the RNS specification. We hope to provide useful feedback to the OGF
and the RNS working group through this work.

2 Development
In this section, we describe the design and development of the SNARL service. We begin with a general
overview of the SNARL service and then proceed with a detailed discussion of the development of the
service. This process can be divided into distinct phases. First, we setup a web services framework to
provide the infrastructure for a web service. Next, we used this framework to generate a skeleton web
service compliant with the RNS specification. To test the operation of the SNARL service, we created a
local Axis2 client. We then implemented each RNS operation by filling in the skeleton service with the
appropriate business logic. Finally, once everything was working, we performed a set of interoperability
tests with a different grid.

Karolina Sarnowska

 Page 4 of 15

2.1 SNARL Service Overview
The SNARL service is a web service that implements the RNS specification for LFCs. The SNARL service
basically serves as a translator between LFC and RNS calls. This enables other grid implementing the RNS
specification to contact the LFCs in EGEE grids and communicate via the SNARL service. An illustration
of this interaction is provided in Figure 1.

Figure 1. A depiction of the SNARL service in relation to other grid components. The SNARL service

understands RNS calls and translates them into LFC API calls to answer RNS operation requests. Here, the
SEs represent different grid storage elements hooked into a grid. The orange bubbles represent different grid

infrastructures. The two grids are directly communicating with RNS calls.

2.2 Axis2/C, A Web Services Framework
We have used Apache Axis2/C [6] to create the SNARL web service. Apache Axis2/C is a web services
engine used to provide and consume web services. It supports both the SOAP and REST style of web
services.
We decided to use Axis2/C for two main reasons. Firstly, Axis2/C provides a web services implementation
in C and the LFC is written in C. Secondly, Axis2/C supports a variety of WS-* specification
implementations including WS-Addressing and WS-Security [7]. Since the RNS specification is based on
WS-Addressing, it was very useful to have this support and not have to implement it separately.
Additionally, we hope to use the WS-Security support of Axis2/C in future work that will incorporate
security into the SNARL service. In this section we briefly summarise our experiences with setting up and
running an Axis2/C server.

2.2.1 Running an Axis2 Server
Setting up the Apache Axis2/C web service environment was the first step in creating the SNARL service. A
free copy of binary release version 1.4.0 was downloaded from the Apache Axis2/C website. The online
installation instructions for setting up Axis2/C under Linux were used to get an Axis2/C server running.
Initial test runs with sample client and service code were successful. In these tests and throughout the
development of the SNARL service, we have used the simple axis server provided with the Axis2/C
framework. This server is started with the following command.

 AXIS2_HOME/bin> ./axis2_http_server

2.3 Service Generation with the WSDL2C Tool
The WSDL2C tool is a code generation tools provided by the Axis2/C framework. This is a command line
code generation tool used to create a skeleton web service in C. The tool processes a given WSDL file and

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 5 of 15

produces a skeleton web service based on that WSDL. Once a skeleton web service is created, the business
logic for the service must be filled in to create fully functioning service. In this section, we describe how the
SNARL service skeleton was created using the Axis2/C WSDL2C tool.

2.3.1 WSDL Files for SNARL
There are two different approaches to implementing a web service: code-first or contract-first. In the code-
first approach, a developer first codes the business logic and then exposes the implementation as a web
service. In the contract-first approach, a contract in the form of WSDL and XML schema files is created
specifying what the web service is to offer and then the business logic is implemented to provide what was
promised in the contract. We used the contract-first approach in creating the SNARL service as the RNS
specification precisely outlines using WSDL what an RNS compliant service is to offer.

The main WSDL file for the SNARL service was created using the RNS specification and the Genesis II
RNS WSDL. We started off with a copy of the Genesis II RNS WSDL. This file was then modified to
specify all the needed elements to be compatible with the Axis2/C WSDL2C tool. This included adding
appropriate <service> and <binding> tags to the WSDL file. The resulting WSDL file actually specifies a
set of WSDL and XML schema files needed to describe an RNS compliant service.

2.3.2 Axis Data Binding
We chose to generate the SNARL web service skeleton with Axis Data Binding (ADB) support. A data
binding framework such as ADB maps XML schema constructs to programming language objects. The
WSDL2C ADB support maps schema types in the given WSDL to native C types and structures. Thus, in
the SNARL service code we are able to program with simple C types instead of dealing with XML.

2.3.3 Running the WSDL2C Tool
Once the WSDL and XML schema files were appropriately setup, we were able to automatically generate a
web service skeleton for the SNARL service using the WSDL2C tool. The following command-line options
were used.

 AXIS2_HOME/bin/tools/WSDL2C> WSDL2C.sh -uri RNS.wsdl -u -ss -sd -d adb -o
SNARL_Service_Code

We describe the function of each command line option that was utilized. The '-u' option specifies that each
structure should be put in separate files. The '-ss' specifies that server side code is to be generated. The '-sd'
option specifies that the service descriptor file which contains information about the service name, operations
and other metadata required for service deployment in Axis2/C should be created. The '-d' option with
parameter adb specifies that Axis data binding should be used. The '-o' option specifies the output directory.

2.3.4 WSDL2C Tool Output

The WSDL2C tool generates many files that describe the skeleton for the web service specified by the given
WSDL file. However, there is only one file that needs to be edited to add the actual business logic for the
service. This is the axis2_skel_<service_name>.c file. Inside this file, the locations where the
business logic is missing are clearly marked with the following comment.

 /* TODO fill this with the necessary business logic */

As expected, for the SNARL service skeleton that was generated by the WSDL2C tool, this comment
appeared in five locations. Each of these locations corresponded to where the business logic for each of the
five RNS operation should be implemented.

Karolina Sarnowska

 Page 6 of 15

2.3.5 Compiling the Service Skeleton

After creating the SNARL service skeleton, our next goal was to run the empty service. The first step in this
process was to compile the code automatically generated by the WSDL2C tool. For this purpose, a build
script is utilized. This script is also automatically generated by the WSDL2C tool along with all the service
code. However, executing the build script produced several compilation errors. The bugs in the generated
code concerned undeclared identifiers. We were able to determine the source of each problem and modify
the code such that the service skeleton compiled. These bugs and solutions were reported to the Axis2/C
development group. As a result, the bugs have been fixed in the current version of the tool.

2.3.6 Deploying an Axis2 Service
Once the SNARL service code was compiling, we were able to successfully deploy the service in Axis2. To
make any Axis2 service available, it must first be deployed. To deploy a service, a new folder named after
the service is created under the AXIS2_HOME/services directory. Into this new folder, a description of the
service (service.xml) and the shared library file (*.so) are placed. To verify that a service has been
properly deployed, one can start-up an Axis2 server and browse the list of deployed services using a web
browser. The service list is located at http://localhost:<port_number>/axis2/services. The
default port number for the Axis2 simple server is 9090.

2.4 Creating an Axis2 Client
To test the SNARL service locally, we needed to create a client to consume the web service. We created an
Axis2 client to test the operation of the SNARL service throughout development. This client was used to
send a variety of RNS requests as per the RNS specification. In this section, we describe the creation of a
client in Axis2.

2.4.1 SNARL Client Overview
The basic job of a client is to prepare a payload, send it to a service, receive a response, and process it. For
testing the SNARL service, the SNARL client prepares a payload consisting of one of the RNS operation
requests. This request is sent to the SNARL service. The response message from the service is then
displayed. The request messages sent by our client were formed as per the RNS specification while the
response messages were tested for conformation to the RNS specification.

2.4.2 Axis2 Client Components
The Axis2 documentation describes five general steps that need to be fulfilled in creating an Axis2 client.
We list and briefly describe each of these steps below.

1. Create the environment to be used by the client: The environment instance encapsulates the memory
allocator, error handler, and logging and threading mechanisms. Each function in Axis2/C takes a
pointer to this instance.

2. Create and set an options instance: An options instance is used to set options such as the endpoint
address of the service to be consumed by the client.

3. Create and set options to service client instance: The service client instance is set with the options
to be used by the service client.

4. Send request and receive response: The axis2_svc_client_send_receive method can be used to
invoke the send receive operation on the service client instance. The send receive operation takes
the request payload as an AXIOM node and returns the response payload as an AXIOM node. This
node can then be processed accordingly.

5. Process request

2.4.3 Axis Object Model
AXIOM stands from AXIs Object Model. It refers to the XML infoset model used by Apache Axis2. The
XML infoset is the information encoded inside an XML file. The goal behind AXIOM is similar to the goal
behind XML models such as DOM and JDOM that represent the XML infoset in a language specific manner

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 7 of 15

that makes it more convenient to manipulate programmatically. Two versions of AXIOM exist: AXIOM/C
and AXIOM/Java. The payload for the client messages is created using AXIOM. Similarly, the response
payload is represented as an AXIOM node. To create a client for consuming the SNARL service, we had to
become familiar with AXIOM to create requests and process the responses correctly.

2.4.4 Engaging WS-Addressing
Axis2/C provides an implementation of WS-Addressing in a built-in module. This module can be globally
or programmatically engaged. The module is globally engaged by adding the following line to the axis2.xml
file located under the AXIS2_HOME directory.
 <module ref="addressing"/>
To programmatically engage the WS-Addressing module, the following line client API call is made.
 axis2_svc_client_engage_module(svc_client, env, AXIS2_MODULE_ADDRESSING);
In our implementation, we have chosen to globally engage WS-Addressing. With the module engaged, no
special options need to be set server side. WS-Addressing is automatically employed if incoming messages
have WS-Addressing headers. There is one mandatory client side requirement for using WS-Addressing.
The WS-Addressing action for the operation that is to be invoked must be set accordingly. This action then
appears in the SOAP header of an outgoing message. The action is set using the following client side API
call.
 axis2_options_set_action(options,env,<action_name>);

2.4.5 Compiling an Axis2 Client
Once the Axis2 client has been created, it must be compiled before it can be used. Here we list the basic
required dependencies to compile an Axis2 client. These dependencies arise from utilizing the Axis2 client
APIs to setup the client as described in the sections above.
gcc -o <client_output_name>
 -I$AXIS2C_HOME/include/axis2-1.4.0/
 -L$AXIS2C_HOME/lib
 -laxutil
 -laxis2_axiom
 -laxis2_parser
 -laxis2_engine
 -lpthread
 -laxis2_http_sender
 -laxis2_http_receiver <client_filename>.c
 -ldl -Wl,--rpath -Wl,$AXIS2C_HOME/lib

2.5 Implementing the RNS Operations
To be compliant with the RNS specification, the SNARL service implements each of the five RNS
operations: add, remove, list, query, and move. To implement each operation, the SNARL service must
make the appropriate LFC API calls. In this section we describe in detail the specifics relating to each RNS
operation and the LFC API calls that were chosen to carry out these operations. In making these
implementation decisions, a dilemma arose regarding the representation of replicas in an RNS namespace.
We begin with a discussion of this dilemma.

2.5.1 Naming Replicas
In creating a correspondence between LFC entries and RNS resources, the question arose of whether to
depict replicas as named entities in the RNS namespace. At one level, LFCs are registries of logical file
names. However, each logical file name corresponds to one or more physical files (aka replicas). It is about
these physical files that LFCs contain more detailed information such as creation time, size, and last access
time.

In choosing whether to depict replicas in the RNS namespace, we considered the consequences of our
choice. If we did not reveal replicas in the RNS namespace, a separate method would be needed to convey
this information. One could image using a separate service to deal with the replicas. However, such a
service would no longer be under the RNS specification and thus our hope for interoperating would be lost.

Karolina Sarnowska

 Page 8 of 15

Another option would be to use other WS-* standards to handle this situation. The WS-Naming [8] standard
describes how resolvers can be used to handle resolution between multiple endpoints such as in the case of
replicas. This option also requires the creation of a separate resolution service to handle the replicas.
However, the service falls under the WS-Naming specification that extends WS-Addressing and thus being
standards compliant would work with the RNS specification and not hurt interoperability. However, even
when using a resolver service, information about only one replica is presented at one time. The additional
concern of how to choose one replica arises. We decided that for our first SNARL service implementation
we would depict replicas as any other named entity in the namespace. Thinking about these issues brought
out the simplicity of the RNS interface.

Figure 2. A diagram of the distinction between logical file names in an LFC and physical file locations on

different storage elements. This distinction brought up the question of how replicas should be represented in
an RNS namespace.

2.5.2 RNS Add Operation
The add operation defines a new name-to-resource mapping that is to be entered into the namespace. The
provided name is to be mapped to an optionally specified endpoint reference (if not specified, one is created).
In relation to an LFC, an RNS add operation translates to the creation of a new logical file entry in the LFC.
Additionally, since replicas appear as named entities in the RNS namespace, the RNS add request may be
requesting the addition of a new replica mapping into the LFC. We distinguish between these two cases as
they require different LFC API calls.

Figure 3 below provides an example of an add request and response message using SOAP 1.1 as taken from
the RNS specification document. This example illustrates the exchange for a request to register an entry
named “foo.txt”.

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 9 of 15

Figure 3a. An example of an RNS add request message using SOAP 1.1. The request is to register a new
entry “foo.txt” into the namespace that maps to an EPR with address “http://xyz.com/misc/foo.txt”.

Figure 3b. An example of an RNS add response message using SOAP 1.1. The response indicates that a new

mapping has been entered into the namespace for an EPR with address “http://xyz.com/misc/foo.txt”.

2.5.3 RNS Remove Operation
The remove operation is used to delete an existing name-to-resource mapping from the namespace. In
relation to an LFC, an RNS remove operation corresponds to the deletion of an existing logical file entry
from the LFC. Additionally, since replicas appear as named entities in the RNS namespace, the RNS remove
request may be requesting the deletion of an existing replica mapping from the LFC. We distinguish
between these two cases as they require different LFC API calls.

Figure 4 below provides an example of a remove request and response message using SOAP 1.1 as taken
from the RNS specification document. This example illustrates the exchange for a request to remove an
entry named “foo.txt”.

Figure 4a. An example of an RNS remove request message using SOAP 1.1. The request is to remove an

entry named “foo.txt” from the namespace.

Karolina Sarnowska

 Page 10 of 15

Figure 4b. An example of an RNS remove response message using SOAP 1.1. The response indicates that

the entry named “foo.txt” was removed from the namespace.

2.5.4 RNS List Operation
The list operation is used to request a list of subentries associated with a given name in the namespace. In
the RNS 1.0 specification, this request can be made with the exact directory name or using a regular
expression. In relation to an LFC, an RNS list operation corresponds to a directory listing. Additionally,
since replicas appear as named entities in the RNS namespace, the RNS list request may be requesting the
listing of the replicas associated with a logical file entry. We distinguish between these two cases as they
require different LFC API calls.

It has been noted in experiences with other RNS implementations that accepting regular expressions makes
the implementation of this operation very difficult. As was done in the Genesis II RNS implementation, we
have chosen to accept the exact name of the RNS directory to be listed. If no name is specified, the root
directory listing is returned.

Figure 5 below provides an example of a list request and response message using SOAP 1.1 as taken from
the RNS specification document. This example illustrates the exchange for a request to list the current
operating directory.

Figure 5a. An example of an RNS list request message using SOAP 1.1. The request is to list the subentries

of the current operating directory.

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 11 of 15

Figure 5b. An example of an RNS list response message using SOAP 1.1. The response lists the names and

EPRS of each of the named subentries in the current operating directory.

2.5.5 RNS Move Operation
The move operation provides a means of moving or renaming an existing entry in the namespace. In relation
to an LFC, an RNS move operation corresponds to the deletion of an existing logical file entry from the LFC
and the creation of a new logical file entry with the specified name. Additionally, since replicas appear as
named entities in the RNS namespace, the RNS move request may be requesting the deletion of an existing
replica mapping from the LFC and the creation of a new mapping with a different name. We distinguish
between these two cases as they require different LFC API calls.

Figure 6 below provides an example of move request and response messages using SOAP 1.1 as taken from
the RNS specification document. This example illustrates the exchange for a request to rename an entry
named “foo.txt” to “bar.txt”.

2.5.6 RNS Query Operation
The query operation is used to get the properties associated with an existing name-to-resource mapping in
the namespace. In relation to an LFC, an RNS query operation corresponds to a stat operation for an existing
logical file entry in the LFC. Additionally, since replicas appear as named entities in the RNS namespace,
the RNS query request may be querying a replica. In this case the appropriate replica stat LFC API call is
made.

Figure 7 below provides an example of query request and response messages using SOAP 1.1 as taken from
the RNS specification document. This example illustrates the exchange for a query of an entry named
“foo.txt”.

Karolina Sarnowska

 Page 12 of 15

Figure 6a. An example of an RNS move request message using SOAP 1.1. The request is to rename an entry

from “foo.txt” to “bar.txt”.

Figure 6b. An example of an RNS move response message using SOAP 1.1. The response indicates that an

entry has been mapped into the namespace for an EPR with address “http://abc.com/rns/A/bar.txt”.

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 13 of 15

Figure 7a. An example of an RNS query request message using SOAP 1.1. The request is to query a
namespace entry named “foo.txt”.

Figure 7b. An example of an RNS query response message using SOAP 1.1. The response indicates that

queried entry’s name, the entry EPR, and the entry’s parent EPR.

3 Interoperability Testing
Once the development of the SNARL service was completed, we conducted RNS interoperability tests with a
Genesis II grid. The Genesis II grid system developed at the University of Virginia contains one of two
existing implementations of the RNS specification. The other RNS implementation was developed at the
University of Tsukuba. However, the SNARL service is the first RNS implementation to have been done for
a pre-existing grid system. The interoperability tests with the Genesis II grid were the big trail of the success
of the implementation of the SNARL service. In this section, we describe the testing setup and the
interoperability results.

3.1 The Setup
A Genesis II RNS test client was created for the interoperability testing. This Genesis II client was setup to
send request messages to the SNARL service for three (add, list, and remove) of the RNS operations. All
Genesis II security features were turned off for the interoperability testing. Specifically, the Genesis II
security configurations were set to the WARN level that allows a Genesis II client to communicate with
resources that cannot be authenticated.

Two separate machines were used for the interoperability testing. Both machines resided inside the CERN
internal network. On one machine, an LFC was setup along with an instance of the SNARL service. On
another machine, a Genesis II grid was setup. Messages were sent between these two machines for the
interoperability testing.

Karolina Sarnowska

 Page 14 of 15

3.2 Interoperability Results
The interoperability tests were carried out successfully. Three of the five RNS operations were tested. The
query and move RNS operations could not be tested as the Genesis II implementation of these operations
does not comply with the RNS specification. RNS list, add, and remove requests were sent by a Genesis II
client to the SNARL service. The service processed each request, made the corresponding LFC API calls,
and returned the appropriate response messages to the Genesis II client. In parallel to the interoperability
testing, LFC command line calls were made to confirm the correctness of each response and that each
operation had indeed occurred as expected. We describe this procedure in more detail for each tested
operation.

3.2.1 RNS Add Operation Testing
The RNS add operation creates a new entry in the namespace. Before the start of the RNS add request to the
LFC, an lfc-ls call was made to check what entries existed in the LFC. This command-line call directly
queries the status of the LFC. After the completion of the RNS add operation, an lfc-ls call was again
made. This call confirmed that the new entry had been created in the LFC via the SNARL service as
requested by the Genesis II client request.

3.2.2 RNS List Operation Testing
The RNS list operation requests the listing of subentries associated with a given entry. The list of subentries
returned in the RNS list response message was compared against the list of subentries existing in the LFC for
the specified directory. The LFC was contacted using the command-line lfc-ls call to make this
comparison. This call confirmed that the correct entry listing was returned to the Genesis II client via the
SNARL service in the RNS response message.

3.2.3 RNS Remove Operation Testing
The RNS remove operation requests the deletion of an entry from the namespace. Before the Genesis II
client sent the remove request to the SNARL service, the LFC was directly contacted using the command-
line lfc-ls call to check what entries existed in the LFC. After the completion of the RNS remove
operation, the lfc-ls call was once again performed. It was confirmed that the SNARL service had
successfully deleted the requested entry from the LFC as per the RNS remove request issued by the Genesis
II client.

4 Future Work
The current SNARL service provides a very basic implementation of the RNS specification. There are many
enhancements that could be made to make the service more useful and well-rounded. In this section, we
mention some of these possible enhancements to the SNARL service.

4.1 Adding Security
To make the SNARL service actually usable in a production-level environment, security mechanisms need to
be incorporated into the service. Currently, the service does not facilitate any security measures. This can be
changed by utilizing one of the OGF security specifications. Conveniently, the Axis2/C framework provides
built in support for the WS-Security standard that could be utilized to include security information with RNS
operations.

4.2 Implementing ByteIO
The logical next step after implementing the RNS specification is implementing the ByteIO [9] specification.
This OGF specification describes a standard way of handling the transfer of data associated with grid
endpoints. The RNS specification reveals named entities in a namespace while the ByteIO specification
enables manipulation of any bytes of data associated with theses named entities. Providing a standard
specified way to access this data is the next logical step in expanding the interoperability between EGEE
LFCs and other standards compliant grids.

The SNARL Service: Standards-based Naming for Accessing Resources in an LFC

 Page 15 of 15

4.3 RNS 2.0
Revisions to the first version of the RNS specification are already in progress. A new version of the
specification is scheduled to appear in the next year. We hope that our experiences with the implementing
the SNARL service may help shape the development of this update to the RNS specification. Regardless, to
remain useful from the interoperability perspective, the SNARL service will need to be updated to comply
with the next version of the RNS specification.

4.4 SNARL in the Middle
If an implementation of the ByteIO specification and security mechanisms are incorporated into SNARL
service, use opportunities for the SNARL service outside the grid interoperability space would be possible.
The service could provide basic access capabilities for LFCs not just between grid infrastructures but also
programming platforms. Since the LFC is implemented in C, access to LFC APIs for Java developers has
not been easily possible. Perhaps the SNARL service could bridge this gap and serve as the interface for
such interactions. The performance ramifications of using the SNARL service over other alternatives would
have to be investigated.

5 Conclusions
This project was an implementation exercise of the RNS specification for EGEE LFCs. It was the first
undertaking to implement this OGF specification for an existing grid system. The resulting SNARL service
successfully enabled direct interoperation between an LFC in an EGEE grid and a Genesis II grid using the
RNS standard specified operations. We hope our work will provide the RNS OGF working group with
useful insights into the difficulties of trying to make a production-level system utilize this OGF specification.

6 Acknowledgement
I would like to acknowledge the individuals who have made the creation of the SNARL service possible. In
particular, I want thank my advisors Erwin Laure and Andrew Grimshaw for the project idea, and my daily
mentors Akos Frohner and Mark Morgan for their help with the implementation details.

References
1. "Open Grid Forum," http://www.ogf.org.
2. M. Pereira, O. Tatebe, L. Luan, and T. Anderson, "Resource Namespace

Service Specification,"
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.gfswg/d
ocman.root.working_drafts/doc8272/5, World Wide Web Consortium, 2006.

3. L. Abadie, P. Badino, J.P. Baud, J. Casey, A. Frohner, G. Grosdidier, S.
Lemaitre, G. Mccance, R. Mollon, K. Nienartowicz, D. Smith, P. Tedesco,
“Grid-Enabled Standards-based Data Management”. IEEE Mass Storage
Conference, 2007.

4. Gudgin, M., Hadley M., and Rogers T., 9 May 2006, “Web Services Addressing
1.0 – Core,” World Wide Web Consortium, http://www.w3.org/TR/2006/REC-ws-
addr-core-20060509.

5. M. M. Morgan and A. S. Grimshaw, "Genesis II – Standards Based Grid
Computing," Seventh IEEE International Symposium on Cluster Computing and
the Grid, 2007.

6. “Apache Axis2/C,” http://ws.apache.org/axis2c.
7. Lawrence, K., Kaler, C., and Flinn, D., 2006, “WS-Security,”

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.
8. WS-Naming Working Group at OGF, 2006, “WS-Naming Specification,”

https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.ogsa-
naming-wg/docman.root.current_drafts/doc6861/1.

9. Morgan, M., Chue-Hong, N., and Drescher, M., 2006, “ByteIO Specification
1.0,”
https://forge.gridforum.org/sf/docman/do/downloadDocument/projects.byteio-
wg/docman.root.current_documents/doc13719/1.

