

Towards efficient resource
allocation on scientific grids

Vers une allocation efficace des
 ressources des grilles scientifiques

Xavier Gréhant
Isabelle Demeure

Sverre Jarp

Mai 2005

2008

Département Informatique et Réseaux
Groupe S3 : Systèmes, Logiciels, Services

2008D001

École Nationale Supérieure des Télécommunications

Towards efficient resource
allocation on scientific grids

Vers une allocation efficace des ressources des

grilles scientifiques

Xavier Gréhant12 Isabelle Demeure2

Sverre Jarp1

1 CERN openlab, Geneva, Switzerland
2 ENST, Paris, France

Contents

1 Introduction 1
1.1 Down-to-earth analysis . 1
1.2 Scope . 1
1.3 Outline . 2

2 Stressing traditional models: a survey 3
2.1 Scientific grids on stage . 3
2.2 Applications . 4
2.3 Workloads . 5
2.4 Job: the element of a computation 6
2.5 Expanding local systems . 7
2.6 Scheduling problems . 9

3 Disruptions to resource allocation 12
3.1 Authentication at the site gatekeeper 12
3.2 User and job disconnected . 14
3.3 Site selection . 16
3.4 Intersecting the capabilities of local systems 17

4 User-driven allocation 19
4.1 Motivation . 19
4.2 Infiltrating resources . 20
4.3 Allocation by applications . 21
4.4 Allocation by collaborations . 22
4.5 Sudden success of an old Condor mechanism. 24
4.6 An evolution of VO strategies . 25
4.7 Specific constraints . 26

5 Conclusion 29

6 Acknowledgments 30

1

Abstract

In this report we propose a pragmatic synthesis of the different ways scien-
tific grids carry out computing resource allocation. We analyze the systems
in place today, their emergence and their structures. Beyond the different
middleware distributions, services, protocols and standards, we draw a simple
picture: Application-agnostic infrastructures built for communication, authen-
tication and agreements, provide initial access to computing resources. More
complex allocation is managed by independent systems that temporarily infil-
trate grid nodes on behalf of applications or a federation of users. We derive the
allocation opportunities and constraints that make the case of scientific grids
specific among computer systems.

Ce rapport est une synthèse pragmatique des différentes manières d’allouer
les ressources de calcul des grilles scientifiques. Nous analysons les systèmes en
place aujourd’hui, leur émergence et leurs structures. Au delà des différentes
distributions intergicielles, des services, protocoles et standards, nous dressons
un tableau simple: les infrastructures généralistes déployées pour la communica-
tion, l’authentification et les accords de services fournissent un accès initial au
ressources. Une allocation plus fine est réalisée par des systèmes indépendants
qui infiltrent temporairement les nœuds d’exécution pour les relier à des ap-
plications ou des fédérations d’utilisateurs. Nous dérivons les opportunités et
contraintes de ces systèmes qui font des grilles scientifique un cas spécfique dans
l’allocation des ressources de calcul.

Chapter 1

Introduction

1.1 Down-to-earth analysis

Allocating resource for scientific computations is the purpose of scientific grids.
Literature abounds in presenting what systems should do ideally but lacks a
concrete description of the mechanisms actually implemented [Sto07]. In this
report we carry an analysis of such mechanisms. We consider the constraints
specific to scientific grids, how these constraints shaped resource allocation sys-
tems, and the design of allocation algorithms.

The first question that arises is: In terms of computing resource allocation,
what is specific about scientific grids as opposed to other computer systems?

1.2 Scope

Definition 1. Grids coordinate resource sharing and problem solving in dy-
namic, multi-institutional virtual organizations [Fos01].

Definition 2. Virtual Organizations (VOs) enable disparate groups of orga-
nizations and/or individuals to share resources in a controlled fashion, so that
members may collaborate to achieve a shared goal [Fos01].

More precisely grids emerged from metacomputing [FK97].

Definition 3. Metacomputing is the seamless application of geographically-
separated distributed computing resources to user applications [Wei98].

In grids these applications are large-scale, resource-intensive [BFH03], and
each task could require computing resources that are distributed geographically
and come from several administrative domains. [CCHJ05].

Definition 4. In the following, we call grid a metacomputing system whose
resources span independent administrative domains and are used by independent
collaborations.

1

In scientific grids the administrative domains are mostly academia or other
public-funded institutions that voluntarily offer a certain amount of their com-
puting resources to scientific projects (the user collaborations).

Definition 5. A grid site is a set of grid nodes under the same administrative
domain and controlled by the same resource allocation mechanisms and policies.

In particular grid sites define their own set of user priorities.

Our study excludes a number of related computer systems:

• The term grid is often abusively used for clusters inside a single organi-
zation. It is a simpler case than the one of grids addressed here.

• Our study does not directly take into consideration general overlay net-
works and testbeds such as PlanetLab which are not meant to run com-
putations but to experiment the deployment of networked services [Fiu06].
Such infrastructures can be used to deploy services destined to scientific
grids but also any other kind of service.

• Desktop grids like SETI@home are a particular case of scientific grids
that group together single nodes belonging to individuals, instead of com-
puting sites from different organizations. In our discussion we do not
specifically target desktop grids, although they are also meant to run sci-
entific computations [And03]. However the reader familiar with desktop
grids may understand that the allocation mechanism by infiltration de-
scribed in the last section also fits in their context.

1.3 Outline

The fact that grid resources are administered by multiple independent orga-
nizations introduces a number of challenges: security, user identification, in-
formation flow, seamless resource integration, central monitoring, etc. Among
these, resource allocation is considered as yet another concern. Traditional sys-
tems provide scientific collaborations with access to grid resources, but do not
allocate resources efficiently.

The remainder of the paper is organized as follows. In a first section we
describe the way grid resource allocation is implemented traditionally: from
job submission to local batch systems towards job submission to grids. We
then assess the degrees of freedom of resource allocation algorithms in these
infrastructures. Finally we consider grafting allocation systems: we observe
their different implementations, their common model, and the new frame they
define for allocation algorithms.

2

Chapter 2

Stressing traditional
models: a survey

Despite ideals of ubiquitous resource presence inspired by power grids, comput-
ing grids emerged by implementing simple batch job submission, thus reviving
with a different scale the history of computing systems [Cer94].

In this section we survey major grid projects. Their computational workload
is introduced, the notion of job is defined, and grids are related to local batch
systems. We then present resource allocation problems scientists may face.
These notions help to understand how the independence of grid sites limited
their aptitude for solving these allocation problems, which is developed in the
next section.

2.1 Scientific grids on stage

A few grid projects scale to tens of thousands of nodes. Efforts to build grids
started around year 2000. The infrastructure itself consists in hardware to build
and link computer centers maintained mostly in public institutions, and software
to operate hardware resources at the local and global level. Infrastructures
currently in production rely on public hardware resource and integrate open-
source and academic software distributions.

EGEE

Enabling Grids for E-science has sites mainly in Europe, but also in Taiwan and
Korea. It has over 41,000 CPUs from 240 sites [ABD+04]. EGEE took in 2004
over the work of the European DataGrid project started in 2000 [Rud01] and
the infrastructure of the LCG, the Computing Grid launched in 2001 for the
Large Hadron Collider, CERN particle accelerator in Switzerland [BBB+05].

EGEE is supported by the European Commission and more than 90 orga-
nizations from over 30 countries. It integrates infrastructures like GridPP,

3

funded by the UK government through the Science and Technology Facilities
Council, which provides 9000 processors [tGC06].

OSG

The Open Science Grid, started in 2005, funded by U.S. LHC software and
computing programs, the National Science Foundation (NSF), and the U.S.
Department of Energy. It continued Grid3, started in 2003 [Ave07].

TeraGrid

TeraGrid started in 2001 with funds from the NSF to establish a Distributed
Terascale Facility (DTF). It includes collaboration from 9 major national com-
puter centers in the U.S. It provides 250 teraflops of computing capacity and
plans to integrate a petaflop system in 2009 [Pen02].

NorduGrid

In 2001 the NORDUNet2 program funded NorduGrid to build a grid for coun-
tries in northern Europe. The NORDUNet2 program aimed to respond to the
”American challenge” of the Next Generation Initiative (NGI) and Internet2
(I2). NorduGrid provides around 5,000 CPUs over 50 sites [EGK+07].

Naregi

The Japanese grid project National Research Grid Initiative started in 2003.
It is deployed in beta on a 3,000 CPUs testbed and targets the PetaFLOPS
in 2010 on national computer centers. The software development is done by
private companies (Fujitsu, NEC, Hitachi, NTT). It is funded by the Ministry
of Education, Culture, Sports, Science and Technology (MEXT) [Miu06].

Each of these grids is distinctive by the hardware resources integrated, hence
by the organizations supplying these resources, by the scientific projects sup-
ported, and by the distributed software used (aka middleware).

These infrastructures must not be confused with software development projects
like Globus1 and VDT2 which distribute consistent sets of components for
grids and are active in the standardization effort [FKNT02]. Grids may or may
not integrate some of these components in their middleware.

2.2 Applications

Scientific grids are concerned with high throughput computing, and most often
with distributed data analysis.

1www.globus.org
2Virtual Data Toolkit: vdt.cs.wisc.edu

4

Definition 6. High Throughput Computing (HTC) is the area of computer
systems concerned with effective management and exploitation of all available
computing resources in environments that can deliver large amounts of process-
ing capacity over long periods of time [Con96].

We note that HTC applies in presence of multiple tasks. As opposed to high
performance where the concern is the number of operations per second, high
throughput systems are typically concerned with the statistical distribution of
the time perceived by users to run their computations.

Hard computational problems with divisible workloads may typically be
submitted to high-throughput systems. The resolution of NUG30, a famous
quadratic assignment problem, is an early example which pushed the study of
metacomputing models [ABGL00, GLY00].

Definition 7. Distributed data analysis is the analysis of large data sets
which are best handled by distributed computation [MB03].

From the angle of resource allocation, distributed data analysis is the area of
high throughput computing in which computing resource allocation is influenced
by data location.

Major grids were prominently pushed by the will to analyze unprecedented
amounts of data, especially in the field of particle physics. In this discipline
scientists search for interesting events in the vast amount of data generated by
detectors [WDRT97, GCC+04, RSZ+06]. The experiments driven at CERN, the
European Center for Nuclear Research, and Fermilab, its American counterpart,
attract collaborations of physicists who represent most users and contributions
to EGEE/LCG, OSG, TeraGrid and NorduGrid [Ter02, FPC+02].

However particle physics are not the unique applications, as shown by Naregi,
essentially targeted at nanotechnologies and biotechnologies, and EGEE, which
diversifies in a variety of disciplines, including in silico drug discovery [LSJ+06,
BBH+06].

2.3 Workloads

Computationally intensive, embarrassingly parallel workloads are the most straight-
forward to process on grids [GMP06]. They belong to the class of divisible
problems [LSV06].

Definition 8. A problem of size N is embarrassingly parallel if it is “quite
easy” to achieve a computational speedup of N without any interprocess com-
munication [Har03].

Definition 9. A divisible task is a computation which can be divided with ar-
bitrary granularity into independent parts solved in parallel by distributed com-
puters [BDM99].

More precisely, distributed data analysis processed on grids present partially
data-parallel workloads [HGLS86].

5

Definition 10. A partially data parallel problem divides the input data into
a number of completely independent parts. The same computation is undertaken
on each part. It may require pre and post processing and redundant computations
to avoid communication [Har03].

For instance a paving may be extracted from satellite images for independent
analysis of the elements [Zha02]. In particle physics, the thousands of tracks
detected at the occasion of collisions are bunched in dozens for analysis and for
each bunch.

2.4 Job: the element of a computation

Definition 11. A computational job is a uniquely identifiable task, or a num-
ber of tasks running under a workflow system, which may involve the execution
of one or more processes or computer programs [SAB+05].

For clarity we consider in the following that a job may run on a single
computer at a given time; a task that simultaneously runs on several computers
is a set of jobs. In practice a divisible load is divided into jobs before submission
to a grid and is never re-arranged after submission [GLMR07].

Job requirements

A job carries requirements constraining the allocation in order to end up on an
execution node with the proper operating system flavor and application soft-
ware, and close to its data.

Specific hardware and software may be necessary for a job execution. If
not already present on a grid node the software may be installed before a job is
run.

In distributed data analysis the bulk of the data is found on the grid site.
Jobs do not carry substantial data, and will probably never do so, since the
transfer/processing time ratio is not decreasing with the progress of technology.
Specialized components of the infrastructure handle the data distribution, and
jobs are allocated close to their data if possible: in the absence of intelligent data
distribution mechanisms this means close to data generators and their storage
devices (e.g. detectors, telescopes).

Job load

Grids understand job requirements and route them accordingly to appropri-
ate grid nodes. A general-purpose grid is not concerned, however, with how
a computation should be divided into jobs. This is application-specific, and
the responsibility of grid users. Their applications have integrated submission
systems and software to run on grid nodes [Mac04].

Jobs’ sizes have consequences on the throughput: the time to process a job
must be long with regards to the time to queue in the grid, and the whole data

6

required by a job must be found on a single grid site or engage little transfer
[GMP07].

2.5 Expanding local systems

By allocating jobs to nodes, scientific grids extend the model of local batch
systems across grid sites.

Definition 12. A batch system is an enterprise software application that is
in charge of unattended background executions, commonly known for historical
reasons as batch processing3.

Before the advent of grids, scientists would submit their jobs on their local
cluster, inside their own laboratory. However local clusters are not sufficient
for highly demanding applications. Thus grids bring together multiple clusters
from different organizations with an infrastructure that acts like a super or
meta-batch system:

What distinguishes resource management in a Grid environment
from these local systems is the fact that the managed resources span
administrative domains [CFK04].

We distinguish between queuing systems and Condor -based systems. We can
compare the former to subcontracting companies and the latter to recruitment
agencies. They influenced the evolution of grids in different ways.

Queuing systems

Most batch systems essentially manipulate job queues. We mention the most
prominent. They were evaluated by [CCF+94] in their early days.

LSF. Load Sharing Facility started with Utopia [ZZWD93], whose authors
created Platform Computing, a company with now 360 employees. See
[XLT+05] for an integration into a grid.

PBS. Portable Batch System is maintained by Altair, a 1200 employees corpo-
ration [Hum06]. It was originally developed at NASA since 1993 [Hum06].
BPS comes along with a separate scheduler (e.g. Torque or Maui [BHK+00])
or a language to write one to implement site specific allocation policies.
In [BLT03] PBS is integrated in the framework of a particle physics col-
laboration for use in grids or local clusters.

SGE. Sun Grid Engine started as DQS (Distributed Queuing System) at
Florida State University in 1993. In 2000, Sun acquired all rights and re-
named the product. Its integration with EGEE is described in [BDG+07].

7

Figure 2.1: Generic batch system

Batch systems manage queues of jobs and submit jobs to available nodes, in
an order optimizing performance, and relative to the site’s internal precedence
policies.

Figure 2.1 shows the standard features of a generic batch system. A batch
system is composed with a master node and worker nodes. Jobs waiting to be
scheduled are classified in different queues, depending on their priorities or their
load characteristics (duration, memory consumption, required data, etc.). The
scheduler running on the master node may reorder jobs within and between
queues. When the load of worker nodes permits, the scheduler selects a job and
allocates it to a worker node. when a job is allocated, it usually waits on a
smaller queue in front of the assigned worker node. At that time, the scheduler
can still reorder worker node queues or move jobs from one queue to another,
in order to handle dynamic events like a priority change or a worker slowdown.

Condor: CPU scavenging and matchmaking

In addition to queue management, in order to handle CPU scavenging, Condor
introduces the matchmaking mechanism.

Definition 13. CPU scavenging means utilizing non-dedicated CPUs when
primary users would otherwise leave them idle.

CPU scavenging is primarily used in desktop grids where resources are taken
from individuals computers [And03]. This is also the specificity of Condor

3From Wikipedia, Job scheduler (as of Nov. 8, 2007, 12:46 GMT).

8

among other batch systems. Focused on dynamic, heterogeneous pools of re-
source, Condor developed the matchmaking mechanism which became a critical
component of grids.

Definition 14. Matchmaking is the process of associating nodes and jobs into
fitting couples.

Figure 2.2 shows how this is done. A job submitted to Condor waits for
a matching CPU to be idle. On the other hand, An idle node describes itself
to be made available to a remote user. The match is good when the node has
the resources, operating system flavor, application software and access to data
required by the job to execute. Making the match is the responsibility of the
Matchmaker, depicted on the figure.

In fact the job is not really forwarded to the matchmaker. It is kept on
the user node by a scheduler daemon, Schedd on the figure. Instead of the
job, the Schedd sends the job requirements in a file called ClassAd4 in Condor
terminology. The process is symmetric and from the idle worker node, the starter
daemon (Startd on the figure) also sends a ClassAd advertising its resources
[RLS98].

The Collector collects ClassAds, passes them to the Matchmaker. When a
match is appropriate, the Scheduler notifies the corresponding Schedd with the
address of its appointed Startd. The Schedd launches a process, the Shadow,
that sends the job directly to the Startd. The Startd launches a process, the
Starter, to take care of the job. Shadow and Starter stay connected while the
job is running.

Like any other batch system, Condor is used inside grid sites. As we will
see in the following sections, its derivatives are also used in other core places of
grids and allocation systems [TTL02].

2.6 Scheduling problems

Grids have been built under the assumption that the input of their resource
allocation system is an independent set of jobs. In general scheduling problems,
however, resource allocation systems face other constraints such as co-allocation,
priorities, job dependencies, interactivity, inter-process communication and mi-
gration.

• Co-allocation. The co-allocation of several jobs to the same node in
order to improve resource utilization is not processed at the global grid
level but left to the grid sites policies. The synchronous co-allocation of
several nodes to a set of jobs to means the allocation of several nodes is a
requirement for IPC and raises interesting challenges [CFK99].

• Run-time priorities. On a single machine run-time priorities are set by
the CPU scheduler provided as part of the operating system: it dispatches

4from Classified Advertisement

9

Figure 2.2: Condor

the computing capacity between different processes so that priorities are
maintained while processes are running. At the scale of a computing
center, resources can also be attributed in a dynamic manner, as is the
case for networked services [CGR+06].

• Dependencies. Dependencies are expressed with Direct Acyclic Graphs
(DAGs). DAGs occur when, in order to start, a job needs another job
to be processed first. DAGs constrain the workflow [MFRW06]. When
there is no proper DAG management mechanism in the infrastructure
an alternative consists in tinkering with the submission interface: the
application waits for the grid to return the result of a job before submitting
the next one in the DAG.

• Interactive jobs. While the job is running, it communicates with the
user and needs user input to proceed. This case requires a communication
path between the user and the execution node. It requires that the job
starts straight at submission because the user is waiting. Interaction with
the user induces long interrupts. Condor provides a library to support
interactive jobs, as long as a connexion between the user and worker nodes
is possible.

• Inter-Process Communication (IPC). Jobs are not really indepen-
dent and need to communicate at runtime. This requires a communication

10

path with low latency between the nodes where jobs are executed, and a
synchronous execution.

• Process migration. On a single system image, processes are constantly
migrated from one node to another where they find the resources they
need. Condor and LSF enable process migration provided the code of the
application linked with a specific library. For most systems, job migration
means that a job is moved from one queue to another instead of migrated
at runtime [MDP+00]. Grids currently do not handle job migration: if a
job, possibly after many hours, overpasses its lease period on its node, it
has to be resubmitted and starts again from scratch on another node.

These problems may well be solved on local clusters. In grids, additional con-
straints make their resolution more complex: latency between sites is inherently
high; access to data is not uniform; the infrastructure development is separated
from the development of its applications; and grid sites are independent admin-
istrative domains. Each of these four constraints would require proper investi-
gation. In the following we focus on the grid sites’ administrative independence
and the serious consequence of this constraint on resource allocation on grids.

11

Chapter 3

Disruptions to resource
allocation

In this section we explain how the independence of resource providers deter-
mined a de facto choice for a grid allocation model.

Before addressing resource allocation, grids are shaped by other concerns
that result from the independence of grid sites: the need for a site to authen-
ticate grid users, apply its own policies, account its resource heterogeneity and
integrate its own systems. These determinants suffice to draw a simple picture
of the level of freedom left to resource allocation algorithms in grids.

3.1 Authentication at the site gatekeeper

Grid resource allocation is disrupted by the separation between grid sites and
the grid broker.

In a batch queuing system (fig. 2.1), the user submits a job to the master,
which in turn, submits to the worker. In general-purpose grids, the job flow is
analogous but more complex.

Definition 15. A Grid resource broker is an service with which the end users
interact and that performs resource discovery, scheduling, and the processing of
application jobs on the distributed Grid resources [ABK+04].

The grid broker chooses an appropriate grid site and delegates job allocation
to its gatekeeper.

Definition 16. The gatekeeper is a process which exists before any request is
submitted. When the gatekeeper receives an allocation request from a client, it
mutually authenticates with the client, maps the requester to a local user, starts
a job manager on the local host as the local user, and passes the allocation
arguments to the newly created job manager [Gra].

12

Figure 3.1: Delegation of job submission to Globus Resource Allocation Man-
ager (GRAM)

Grid sites authenticate jobs because they only accept jobs submitted by
trusted users, and provide differentiated service levels to different users. Job
allocation is simply delegated by the grid broker to the grid site via the site
gatekeeper because this is the simplest way to let grid sites authenticate jobs
and enforce their own access policies.

Definition 17. Service Level Agreements (SLA) implement Commitments
and assurances and determine the contract between the user and the service
provider stating the expectations and obligations that exist between the two [PDD05].

GRAM

In most infrastructures, authentication and delegation is done by Globus Re-
source Allocation Manager (GRAM), illustrated on figure 3.1 [Fos06]. Jobs
queue at the Grid broker which acts like the master node of a local queuing
batch system (see fig. 2.1). The broker never submits to a worker node. Instead
it finds an appropriate site and submits a job to its Gatekeeper, along with a
certificate to authenticate the owner of the job. If the gatekeeper refuses the job
it sends it back to the broker. If it accepts it, it starts a job manager process.
The job manager submits the job to the local batch system and collects job
status information.

As a consequence of this necessary separation between sites and global bro-

13

kers, no single component in a grid controls resource allocation from job sub-
mission to end node assignment, and the set of grid nodes is not considered
as a whole: a node is never compared for assignment with another node from
another site.

Execution nodes are disconnected from the grid broker and from each other
across grid sites. They are also disconnected from the users.

3.2 User and job disconnected

A few batch systems allow interactive jobs and runtime job migration using a
direct connection between user and execution node. In grids, since job submis-
sion is delegated to sites and execution nodes are not directly accessible from
outside of their site, this connection is lost.

From Condor to Condor-G

In Condor, daemons take responsibility of a job on both user node (the shadow)
and execution node (the starter). This is mentioned in section 2.5 and depicted
on figure 2.2. These daemons maintain a connexion between each other through
which users may control their jobs at runtime. Provided the job’s code is linked
with a specific Condor library, the starter can checkpoint it while it is running,
and send checkpoints to the shadow, possibly for migration on another execution
node.

This connexion, runtime management and migration was lost with Condor-
G, that the Condor team produced in 2001 in order to integrate delegation to
grid sites [FTF+02]. The G originated from Globus because Condor-G was
initially intended to support GRAM, but was turned to Grid in the end to
denote the generality of the mechanism (fig. 3.2).

By comparing fig. 3.2 with fig. 2.2, we note that the Grid broker has taken
over the Schedd that would be run by the user in Condor. This means that the
user fully delegates job submission and all potential management to the broker.
The Grid manager is the process responsible for the job and launched by the
schedd. The grid manager must submit the job to the Gatekeeper of the Grid
site. As on fig. 3.1, the gatekeeper decides to accept or return the job to the
broker. If it accepts the job, it forwards it to the Startd, which deploys a Job
manager process. The job manager, in turn, submits to the grid site’s Local
batch system of choice, which can be other than Condor. In recent versions
of Condor-G, the Matchmaker can be used to select an appropriate site.

Grid manager and Job manager in Condor-G are the counterparts of Shadow
and Starter in Condor. They have reduced functionality because they only
submit jobs and do not manage them at runtime.

The example of gLite

Condor-G illustrates the separation between a user and her running job. In
practice Condor-G can be integrated into more complex submission chains. This

14

Figure 3.2: Condor-G

is the case in gLite, the LCG/EGEE middleware distribution [Lit07]. To handle
its heavy load, gLite replicates its broker, and uses a trick to know to which
instance the job status should be communicated back. Once a site is selected to
run a job, a gLite broker submits a Condor Schedd to this site. Once running
on the site the Schedd sends a simple ClassAd to the gLite broker to request its
associated real job. The Schedd then forwards the job to the local batch system.
It knows which replica of the grid broker sent the job and can communicate back
the job status. In this case the Condor matchmaker is not used to select the
appropriate site but only to wait for the request of a single Schedd.

Once it is accepted that in the end, allocation capabilities are not enhanced
by intricate job submission chains, simple replacement systems are developed.
An alternative deployment of gLite proposes two simple java servlets, ICE and
CREAM1, that implement the practical functionality of a gLite grid broker
(ICE) and interface a local batch system on a grid site (CREAM) [And06]. ICE
and CREAM provide only the access to the different sites and no solution to
specific allocation problems, but no less than other grid implementations.

We describe these infrastructures’ capabilities in the remaining of part 3
on disruptions to resource allocation, after more details on the site selection
process.

1Computing Resource Execution And Management

15

3.3 Site selection

From the previous section we understand that a grid broker acts as a gate to the
different sites and does not match jobs against end nodes for allocation. Instead,
it matches job requirements against site resource advertisements, similarly to
Condor matchmaking process between a job and a node.

Job description

When a a job is submitted to a grid, it carries along a description of hardware
and software flavor and configuration, resources and data that it expects to find
on the execution node. This is done in a format chosen by the infrastructure.
gLite uses Condor ClassAds (see section 2.5), renamed JDL (Job Description
Language). NorduGrid middleware, ARC2, has its own format called RSF
(Resource Selection Language). The Open Grid Forum, a standardization con-
sortium assembling representatives from industry and academia, recommends
another variant: JSDL (Job Submission Description Language) [SAB+05].

Resource description

Sites, on the other hand, advertise their resources. They do not publish spe-
cific information for every node but instead group their nodes into computing
elements [Chi04].

Definition 18. As a common abstraction, the Computing Element refers to
the characteristics, resource set and policies of a single queue of the underlying
management system.

At the Grid level, computing capabilities appear as Computing Elements
(each being a set of job slots to which policies and status information are asso-
ciated) that are reachable from a specific network endpoint [ABD+07].

The description of a computing element includes information about the fla-
vor, configuration, resource of its nodes, along with the number of nodes, overall
load, and access control rules. The same configuration is maintained on all nodes
of a computing element, so that a job description matches a computing element
as a whole, and the grid broker submits jobs to the intent of a computing ele-
ment, and not to each node independently. Therefore each computing element
has its own batch system. A site usually contains one or a few computing
elements.

Computing elements can be advertised according to different models: the
GLUE schema, which stands for Grid Laboratory Uniform Environment is the
most used by early grids. GLUE is specialized in grid resources and its specifi-
cations extend our discussion with insightful details [ABD+07]. The Common
Information Model (CIM) is a general schema recommended by DMTF3 and
used as an alternative notably in Naregi. Different schemes may be converted

2Advanced Resource Connector
3Distributed Management Task Force: www.dmtf.org

16

into ClassAds in the grid broker for processing by Condor matchmaker (e.g. in
OSG Resource Selection Service (ReSS) [BGK+03]).

Among suitable computing elements, the grid broker submits to the least
loaded. Each computing element typically updates its information every five to
fifteen minutes, which leaves little space for dynamic allocation.

Bypassing site selection

Users have the option to skip queues at the broker and submit directly to a
computing element known to be appropriate. Jobs may also be submitted to a
local batch system which redirects them to the grid broker only if no appropri-
ate node is found locally. This is known as the flocking mechanism [TTL02].

The grid broker is the top-level component in grid resource allocation. It
handles relatively static, bulk resource information. The next level is the local
systems. How do their capabilities scale to cross-organization scheduling?

3.4 Intersecting the capabilities of local systems

A grid broker heads a variety of local batch systems. Communication is seamless
but skims allocation capabilities.

There are two ways to integrate different implementations in the same in-
frastructure: standard interfaces or translators.

Standards

In this first approach, components on both sides of a communication implement
a standard interface4 [Fos05]. Once an agreement is reached concerning the
generic interface between two well-defined components, and once all flavors of
these components implement this interface, functionality is not lost along the
path for communication problems [FKNT02].

It is however difficult to agree on functionality. There is not yet even a clear
agreement with regards to the components involved in a grid. To reach such
agreements, not only must standards integrate current practice, they also need
to predict evolutions.

Translators

The second approach is pragmatic. Before standard interfaces are implemented
for all components in use, these components have to communicate anyways.
Instructions from the grid broker, forwarded to the site, must be understood by
the variety of local batch systems available.

4Standardization organizations involved in grid computing include OGF (Open Grid Fo-
rum: ogf.org), IETF (Internet Engineering Task Force: ietf.org), OASIS (Organization for
the Advancement of Structured Information Standards: oasis-open.org), DMTF (Distributed
Management Task Force: dmtf.org).

17

Thus comes the GAHP (Grid ASCII Helper Protocol). GAHP is a trans-
lation protocol originally developed as part of Globus Toolkit [Fos06]. It trans-
lates instructions from the grid broker to various implementations of a site’s
gatekeeper (Globus, Condor, gLite, etc) and from the site’s job manager5 to the
local batch system [NYI+05].

Unfortunately the vocabulary of translators intersects the capabilities of the
systems they interface. With a few variants is is reduced to: submit to submit
a job, cancel to cancel a job submission and status to get the status of a job
submission [Reb05].

In this section we noticed that grid resources are located under different
administrative domains. As a consequence resource allocation is delegated to
clusters instead of grid-wide, and the management capabilities left to the user
or a central allocation system are simplistic [NLJ+05]. Advanced allocation
strategies must look at the problem from a different angle, which we do in the
next section.

5the process to which a job is delegated on the site, see section 3.2.

18

Chapter 4

User-driven allocation

4.1 Motivation

Grids follow the application-agnostic model of a super-batch system with re-
duced functionality. This model lacks opportunities for allocation problem-
solving and performance.

Problem-solving. In practice, users or applications may have requirements
susceptible to affect resource allocation: DAGs, interactivity, IPC, real-
time prioritization, etc. these demands are not covered by grids. As a
consequence, only a restricted class of applications can be handled di-
rectly: independent jobs resulting from embarrassingly parallel, divisible
workload.

Performance. In these favorable cases, specific job profiles may be worth
taking into account for efficient allocation. For example users may know
that some of their jobs are network intensive and others CPU-intensive.
In this scenario it would not decrease the performance to co-allocate a
network-bound job with a CPU-bound job on the same node and thus
save half of the nodes. Such opportunities are lost by relying on the grid
for the allocation [XZQ00].

From previous section we conclude that the provision of grid resources is made
inflexible by side concerns subsequent to the independence of grid sites. Grids
do not have the freedom left to implement all particular scheduling strategies
that arise from application requirements and optimization opportunities.

The field of performance analysis and optimization for Grid appli-
cations is still in its infancy [RMdL04].

A practical solution resides in independent allocation systems implemented by
users or application portals, grafted to the grid.

In the following we define their common model, their implementations, their
benefits in presence of large federations of collaborative users; we then derive
the new constraints for resource allocation methods in these environments.

19

Figure 4.1: Generic infiltrating system

4.2 Infiltrating resources

Independent allocation systems may take temporary control over grid nodes, as
explained in the following.

Definition 19. We call infiltration system a system that submits monitors to
grids under the form of jobs, and submits actual jobs directly to these monitors
when they are running on grid nodes.

An infiltration system is described on figure 4.1. The central component
submits monitors to the grid broker through the standard grid job submission
mechanism (1): the Grid broker delegates submission to the site Gatekeeper
(2) which forwards it to the batch system, and the batch system assigns an
Execution node (3). Once running on the execution node, the monitor waits
for actual job submissions from the Allocation system (4).

Definition 20. In the following we call direct submission a job submission
to a running monitor by an infiltration system, as opposed to standard sub-
mission: a job submission to a grid broker or a computing element.

The infiltration mechanism allows:

20

• No submission delay. Direct submission results to consecutive execu-
tion.

• Runtime communication. A connection or a message initiated by the
monitor can cross the site’s firewall.

The monitor communicates information about the node and the job, the
allocation system replies with scheduling decisions, and the application or
user may interact with the job at runtime.

4.3 Allocation by applications

Direct control necessary for fine grid resource allocation is possible by infiltrating
resources accessed through grids.

Applications benefit from infiltration

Performance gains and problem solving capability justify that applications im-
plement their infiltration system.

Performance. Applications benefit from the absence of delay between job
submission and execution, after the start-up time corresponding to the
submission of monitors. To the opposite, by directly submitting jobs to
EGEE, half of them wait for more than five minutes before execution, and
5% wait for more than 15 minutes [GLMR07].

Problem solving. By directly interacting with end nodes, application-specific
problems (see section 2.6) may be addressed: Job dependencies, interac-
tion with the user, interaction between jobs, real-time control, priorities;
Besides strict resource allocation, fault tolerance may be provided [J.T06].

Development. An application ported to a grid generates jobs and submits
them, infiltrating grid nodes does not require much additional effort, which
may still be eased by general-purpose frameworks.

DIANE, an infiltration framework

DIANE1 is a framework that implements infiltration logic for applications [Mos03].
The project started in 2002 to port CERN applications to the DataGrid, the
ancestor of LCG/EGEE. It has also been used notably for gene sequencing
[MHS+04], and for one of the pilot applications of EGEE, in-silico drug discov-
ery against malaria and bird flu [LHC+06].

DIANE dynamically balances jobs across grid nodes in order to minimize
the time before the last job completes and the application returns: it keeps
queues in front of each execution node and re-assigns jobs to different queues.
Re-assignment is triggered when new monitors start execution and contact the

1DIstributed ANalysis Environment

21

framework or when the job progress on a node is too slow [J.T06].

The power of DIANE’s load balancing system resides in the heavy workload
of large, embarrassingly parallel applications: job liquidity is sufficient to gain
substantially by coordinating their allocation. Comparable or greater liquidity
can be reached by centralizing job submissions in a scientific collaboration.

4.4 Allocation by collaborations

Scientific collaborations already provide an ’access card’ to grids. In addition
they may provide their own centralized allocation systems.

Virtual Organizations

Let us recall the definition of Virtual Organization (def. 2) by [Fos01]: a group
of organizations and/or individuals who share resources in a controlled fashion,
so that members may collaborate to achieve a shared goal.

In practice the scientific collaborations that consume grid resources are dis-
tinct from the institutions that provide resources to grids. The term virtual
organisation almost always refers to federations of grid users and not resource
providers. We adopt this restriction in the remainder of the paper.

In particle physics, A VO corresponds to a collaboration that builds a de-
tector and analyzes its data.

• At Fermilab, in the area of Chicago, CDF2 and D03 are two VOs that
study the results of Protons-Antiprotons collisions, scheduled to analyze
data until 2009. MINOS4 analyzes Neutrino oscillations.

• At SLAC, Stanford Linear Accelerator Center, BaBar5 analyzes the vio-
lation of charge and parity (CP) symmetry in the decays of B mesons.

• At CERN, the European Center for Nuclear Research in Geneva, four
VOs are finishing to build detectors and preparing for data analysis for
the coming years. Atlas6 and CMS7 are two general-purpose detectors
to analyze proton-proton and heavy ions collisions. Alice8 studies Pb-Pb
collisions generating a quark-gluon plasma as in the early universe, and
LHCb9 studies collisions of baryons containing the Beauty quark for CP
violation measurements and rare decays observations.

2Collider Detector at Fermilab. www-cdf.fnal.gov
3www-d0.fnal.gov
4Main Injector Neutrino Oscillator Search.

www-numi.fnal.gov
5BB̄. www-public.slac.stanford.edu/babar
6A Toroidal LHC ApparatuS. altas.ch
7Compact Muon Solenoid. cms.cern.ch
8Large Ion Collider Experiment. aliceinfo.cern.ch
9Large Hadron Collider beauty. lhcb.web.cern.ch

22

EGEE supports many other scientific collaborations. For example, BIOMED
is a VO divided in 3 sectors: Medical Imaging, Bio-informatics and Drug Dis-
covery. Major applications of the area are ported to EGEE, with integrated job
generation and submission [LHC+04], and domain-specific portals are provided
[GSM+07].

Grids originated inside particle physics VOs (see section 2.1). In resulting
general-purpose grids the VO name is now a group identifier for a grid user,
which lets grid sites define bulk resource supply contracts and authenticate job
owners [Fos01]. In these infrastructures VOs do not control the hardware but
they may control the resource allocation by infiltration.

Benefits

There are several reasons why the infiltration model is well suited to VOs:
VOs share the efforts; they have homogeneous resource usage; their members
collaborate and their large number leverage optimization opportunities.

• De-multiplied effort. In large VOs most job submissions to grids are
naturally delegated to a few members. The gap is narrow between central-
ized skills to manage grid jobs and the development of a single allocation
system for the whole VO.

• Homogeneity. Jobs from the same VO have similar resource require-
ments: they expect the same software to run on execution nodes, and
their profile follow a certain regularity.

• Cooperation. VO members collaborate for a shared goal, so a global
allocation strategy can be implemented instead of a competition between
multiple users. For example a job may be reasonably delayed to run
another more important for the group or for the overall allocation perfor-
mance.

• Liquidity. Finally, VOs may be large. For example 1900 physicists col-
laborate in Atlas. The number of users and jobs, and thus the number of
grid nodes controlled by a VO, may gives sufficient liquidity to justify an
allocation mechanism and raise opportunities for performance optimiza-
tion.

Infiltration mechanism

VOs request the highest possible/useful number of grid nodes and maximize the
computing throughput on these nodes.

Grid nodes are requested by submitting monitors as described in section 4.2.
Usually a job can run on a grid node until its termination. A monitor pretends
to be a job that never terminates. However there are maximum job lengths set
by site policies, typically 48 or 72 hours.

For this time period, monitors get actual jobs from the VO and control their
execution. If jobs appear to the grid as if they run for days, actual jobs last for

23

a few minutes to a few hours. They bypass queues of the traditional grid sub-
mission flow to be directly allocated to grid nodes following a strategy defined
for the benefit of the collaboration.

VO-specific infiltration systems are relatively recent and few. Despite their
performance they are not widely identified in the literature. We briefly survey
them below.

4.5 Sudden success of an old Condor mecha-
nism.

Specialized in CPU scavenging (def 13), Condor was designed to operate exe-
cution nodes with transient availability. Therefore it was well suited to serve
as the basis for a generic infiltration system. The following is a description of
Condor infiltration mechanism and Condor-based infiltration systems.

Definition 21. The Condor-G GlideIn mechanism is the use of grid protocols
to dynamically create a Condor pool out of grid resources by “gliding-in” Condor
daemons to the remote resource (adapted from [FTF+02]).

Portable shell scripts called glideIns are submitted to a grid and, once run-
ning on end nodes, launch processes equivalent to Condor startd’s10 connecting
to a central Condor matchmaker. The GildeIn mechanism is available in Condor
since version 6.1 (year 2001).

Only recently a few allocation systems equipped with a Condor matchmaker
started to systematically send glideIns for subsequent direct submissions to grid
nodes. Once glideIns are running on worker nodes, direct job submissions are
processed like in a local condor system (figure 2.2).

Communication

Direct communication between the user’s shadow and the glideIn’s starter may
be instantiated by the starter because grid nodes and grid sites normally have
outbound connectivity.

To bridge incoming messages from the central allocation system to glideIn’s
running on execution nodes, Condor provides a proxy: the GCB (Generic Con-
nexion Broker) [BSK05]. Grid sites may run this proxy on a special node where
VO administrators have direct access.

glideCAF

The Central Analysis Farm (CAF) of CDF, the particle physics VO and Fermilab
experiment, was extended in 2005 to use grid resources with glideCAF, which
integrates direct submission to Condor glideIns [BHL+06].

10See section 2.5

24

Cronus

An individual initiative in Atlas gradually gained momentum and led to Cronus
in 2006 [PW07]. Cronus allocates a substantial part of Atlas jobs and con-
trols a dynamic pool of about 8500 CPUs infiltrated through EGEE, OSG and
NorduGrid.

In addition to short-circuiting grid submission delays, Cronus manages data
distribution and load takeover.

• Data distribution. Considering that Atlas jobs do not consume network
bandwidth, Cronus glideIns download data in the background from major
storage systems. Future jobs do not wait for their data to be downloaded.
Instead they are executed where their data already is.

NorduGrid already plans in advance data downloads before jobs are sched-
uled for execution, but EGEE does not: jobs start execution by requesting
the data and stay idle until the download is complete. Cronus saves this
idle time.

• Load takeover. Cronus lets glide-ins take over the jobs of others whose
lease is about to expire. This saves from 80% of the jobs failures observed
on standard grid submission.

glideinWMS

glideinWMS is a project started in 2007 by US CMS, the American part of
the CMS collaboration. It extends glideCAF and Cronus information system
[Sfi07].

4.6 An evolution of VO strategies

Infiltration naturally emerged from the same VOs that built the cornerstones
of general purpose grids. CMS was the last CERN VO to start working on
infiltartion systems. Agents were introduced in AliEn (Alice) for node control
and configuration. They leveraged in DIRAC (LHCb) for high throughput, and
Panda (Atlas) followed.

AliEn: controlling resources

AliEn, Alice Environment, has been since 2001 the distributed data analysis
environment of Alice, a CERN detector and collaboration [BPS03, SAB+03,
SBP03]. It is written in Perl. In 2004 it served as a basis for the general-
purpose gLite middleware (LCG/EGEE) and kept evolving besides for Alice
[BPSGO04, LHA+04]. AliEn was the first infrastructure where resources (com-
puting elements) trigger job submission based on their real-time state. While
job submission in gLite follows the model described in section 2, AliEn is based
on job agents.

25

Definition 22. Job Agent: Web Service allowing users to interact with the
running job, send a signal or inspect the output. Prior to job execution, the
Job Agent can automatically install the software packages required by the job
[BPSGO04].

With AliEn, jobs wait in Alice central queue until they are requested by job
agents on grid sites where they can be processed: Local batch systems receive
jobs only for consecutive processing. General-purpose grids have not managed
to integrate this mechanism with the management of multiple VOs: grid sites
receive jobs without having requested them and thus let them queue again until
a node is available.

DIRAC: improving throughput

DIRAC, Distributed Infrastructure with Remote Agent Control, started in 2003
for LHCb, another CERN detector and collaboration [vHCF+03, TGSR04]. It
implemented the model of AliEn in Python. In 2004, DIRAC made explicit
the benefits of direct submission for performance by infiltrating grid nodes with
pilots agents while complying with the security rules of European grids [PSP06].

Definition 23. Pilot agent: process submitted to a grid site that initiates an
outgoing connection to a central allocation system and requests a job whenever
the corresponding resource is free (adapted from [PT06]).

Instead of submitting jobs to the local batch system, pilot agents are submit-
ted themselves and advertise the node where they land for direct submissions.
By doing so DIRAC improves the throughput at the VO level without altering
the competition between VOs at the grid level [PT06]. AliEn’s job agents also
integrated this mechanism.

In late 2005, the US Department of Energy funded a project, Panda, based
on DIRAC to manage Atlas jobs on OSG [WLrW06, Nil07].

Allocation mechanism

In AliEn or DIRAC, jobs are stored in a central server in a number of queues.
When a monitor (Job agent for AliEn or Pilot agent for DIRAC) requests a job,
the whole job list may be scanned to select the most appropriate job according
to the monitor’s information on the node. In practice a queue is selected, known
to contain the most appropriate class of jobs, and one of the first jobs found on
that queue is sent.

4.7 Specific constraints

As opposed to the use of dedicated clusters, the infiltration strategy presents
specific constraints for the deployment of systems like AliEn, DIRAC, Condor
and glideCAF.

26

Convoluted communication. A connection can be instantiated only from
the inside of a grid site: by monitors connecting to the infiltration system.
The infiltration system cannot instantiate a connection with a monitor,
nor a monitor with another monitor on another site.

In practice however, each grid site provides a dedicated machine, the VO
box, for direct access to VO administrators. The VO box may be used as
a proxy (e.g. Condor GCB: section 4.5). But the VO box is considered a
hack that grids and sites temporarily accept to bypass a number of their
known limitations until a better solution is found.

In general the remaining possible communication is asynchronous, via mes-
sages passing and polling by monitors.

Limited node control. Monitors are simple jobs from the viewpoint of the
grid site. At the moment they are unprivileged though they are owned
by VO administrators. Virtual machine deployments (See for example
[GPJ+07, KDF04]) is a possible solution to give VOs more control on
their environments from the operating system flavor to the software, but
is not used on grid execution nodes at the time of writing [FPC+02].

Infiltration systems project the model of a local cluster to the wide area, with
a few differences: new constraints also apply to their allocation algorithms as
opposed to allocation on a local cluster.

Transient node availability. Nodes leave the pool when their maximum
lease period expires. Jobs (and hence monitors) are notified before. Other
nodes come in the pool when a newly submitted monitor starts execution.
Infiltrated resource is a pool of blinking nodes.

Latency. Both data access and communication between peers of a distributed
allocation system are affected. Problems arise that were not present in
the local area context: data-driven allocation and local knowledge of the
system state (figure 4.2).

Scientific grids used through infiltration convert the cross-organization barrier
into these few constraints. Research in resource allocation that did not take this
barrier into account may still be readily adapted, e.g. [HSLL00].

27

Figure 4.2: Latency constraint on wide area.

28

Chapter 5

Conclusion

In this survey we gave an overview of practical resource allocation in scientific
grids. We considered a grid as a world-wide collection of resources located across
a variety of computing sites under independent administrative domains. Grids
route computations from a variety of applications to these resources according
to capabilities and contracts while trying to limit obtrusiveness to local policies
and impact on security.

Large federations of users generate enough liquidity to graft efficient allo-
cation mechanisms based on their own needs and workflows. They do so by
submitting monitors to grids which, once running on end nodes, report to a
central allocation system. Grids are thus partitioned into dynamic pools con-
trolled at the user level by these federations. Direct submission to end nodes
and runtime control enables fine-grained, dynamic foreign resource allocation.
This mechanism realizes the move from local resource allocation across different
applications, to usage-specific allocation without a priori knowledge of resource
topology.

Since allocation is centralized and direct, throughput optimization does not
need to wait for more grid standards. Boundaries between resources from dif-
ferent institutions are overpassed.

29

Chapter 6

Acknowledgments

This work was supported by HP Labs. Thanks to Peter Toft (HP) for his su-
pervision.

Thanks to Sanjay Padhi (UoW, Atlas), Predrag Buncic (CERN, Alice),
Maarten Litmaath (CERN, EGEE), Jakub Moscicki (CERN, LHCb, Atlas) and
Stuart Paterson (CERN, LHCb) for sharing their expertise and showing that
resource allocation in grids is emerging as a fascinating research aera.

30

Bibliography

[ABD+04] P. Andreetto, Valentina Borgia, A. Dorigo, A. Gianelle, M. Mor-
dacchini, M. Sgaravatto, L. Zangrando, S. Andreozzi, V. Ciaschini,
C. Di Giusto, F. Giacomini, V. Medici, E. Ronchieri, V. Venturi,
G. Avellino, S. Beco, A. Maraschini, F. Pacini, A. Guarise, and
G. Patania. Practical approaches to grid workload and resource
management in the egee project. In CHEP ’04: Proceedings of the
Conference on Computing in High Energy and Nuclear Physics,
volume 2, pages 899–902, Interlaken, Switzerland, 09 2004.

[ABD+07] Sergio Andreozzi, Stephen Burke, Flavia Donno, Laurence Field,
Steve Fisher, Jens Jensen, Balazs Konya, Maarten Litmaath,
Marco Mambelli, Jennifer M. Schopf, Matt Viljoen, Antony Wil-
son, and Riccardo Zappi. Glue schema specification version 1.3.
glueschema.forge.cnaf.infn.it/Spec/V13, 16 Jan 2007.

[ABGL00] K. M. Anstreicher, N. W. Brixius, J.-P. Goux, and J. Linderoth.
Solving large quadratic assignment problems on computational
grids. Technical report, MetaNEOS project, Iowa City, Iowa 52242,
2000.

[ABK+04] Parvin Asadzadeh, Rajkumar Buyya, Chun Ling Kei, Deepa Na-
yar, and Srikumar Venugopal. Global grids and software toolkits:
A study of four grid middleware technologies. Technical Report
GRIDS-TR-2004-5, Grid Computing and Distributed Systems Lab-
oratory, University of Melbourne, Australia, July 1 2004.

[And03] David P. Anderson. Public computing: Reconnecting people to
science. In Proceedings of the Conference on Shared Knowledge
and the Web, Residencia de Estudiantes, Madrid, Spain, Nov. 17-
19 2003.

[And06] P. Andreetto. Cream: A simple, grid-accessible, job manage-
ment system for local computational resources. In Proceedings of
CHEP’06, Mumbay, India, February 2006.

[Ave07] Paul Avery. Open science grid: Building and sustaining general
cyberinfrastructure using a collaborative approach. In Cyberin-

31

frastructure for Collaboration and Innovation, number CSD5052,
June 2007.

[BBB+05] I. Bird, K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster,
B. Gibbard, C. Grandi, F. Grey, J. Harvey, A. Heiss, F. Hem-
mer, S. Jarp, R. Jones, D. Kelsey, J. Knobloch, M. Lamanna,
H. Marten, P. Mato Vila, F. Ould-Saada, B. Panzer-Steindel,
L. Perini, L. Robertson, Y. Schutz, U. Schwickerath, J. Shiers, and
T. Wenaus. Lcg technical design report. Technical report, CERN,
06 2005.

[BBH+06] R. Barbera, V. Breton, F. Harris, M. Lamanna, C. Loomis, and
J. Montagnat. Second revision of EGEE Application Migration
Progress Report. EGEE, 04 2006.

[BDG+07] Goncalo Borges, Mario David, J Gomes, Carlos Fernandez, Javier
Lopez Cacheiro, Pablo Rey Mayo, Alvaro Simon Garcia, Dave
Kant, and Keith Sephton. Sun Grid Engine, a new scheduler for
EGEE middleware. In IBERGRID - Iberian Grid Infrastructure
Conference, May 2007.

[BDM99] Jacek BaImageewicz, Maciej Drozdowski, and Mariusz Markiewicz.
Divisible task scheduling concept and verification. Parallel Com-
puting, 25(1):87–98, January 1999.

[BFH03] Fran Berman, Geoffrey Fox, and Tony Hey. The grid: past, present,
future. In Fran Berman, Geoffrey Fox, and Tony Hey, editors, Grid
Computing Making the Global Infrastructure a Reality. John Wiley
& Sons, 2003.

[BGK+03] A. Baranovski, G. Garzoglio, A. Kreymer, L. Lueking, V. Murthi,
P. Mhashikar, F. Ratnikov, A. Roy, T. Rockwell, S. Stonjek T. Tan-
nenbaum, I. Terekhov, R. Walker, and F. Wuerthwein. Manage-
ment of grid jobs and information within samgrid. In Proceedings of
UK e-Science All Hands Conference, Nottingham, UK, September
2003.

[BHK+00] Brett Bode, David M. Halstead, Ricky Kendall, Zhou Lei, and
David Jackson. The portable batch scheduler and the maui sched-
uler on linux clusters. In Proceedings of the 4th Annual Showcase
& Conference (LINUX-00), pages 217–224, Berkeley, CA, October
10–14 2000. The USENIX Association.

[BHL+06] Stefano Belforte, Shih-Chieh Hsu, Elliot Lipeles, Matthew Norman,
Frank Wu thwein, Donatella Lucchesi, Subir Sarkar, and Igor Sfil-
igoi. Glidecaf: A late binding approach to the grid. In Proceedings
of CHEP’06, 2006.

32

[BLT03] V. Berten, L.Goossens, and Chun L. Tan. Atlas commander: an
atlas production tool. In Proceedings of Computing in High Energy
and Nuclear Physics, La Jolla, California, 24-28 March 2003.

[BPS03] Predrag Buncic, Andreas J. Peters, and Pablo Saiz. The alien
system, status and perspectives. In Proceedings of Computing in
High-Energy Physics, 2003.

[BPSGO04] Predrag Buncic, A. J. Peters, P. Saiz, and J.F. Grosse-Oetringhaus.
The architecture of the alien system. In Proceedings of CHEP’2004,
Interlaken, Switzerland, 09 2004.

[BSK05] Bruce Beckles, Sechang Son, and John Kewley. Current methods
for negotiating firewalls for the condor system. In Proceedings of
the 4th UK e-Science All Hands Meeting 2005, Nottingham, UK,
September 2005.

[CCF+94] K. Castagnera, D. Cheng, R. Fatoohi, E. Hook, B. Kramer,
C. Manning, J. Musch, C. Niggley, W. Saphir, D. Sheppard,
M. Smith, I. Stockdale, S. Welch, R. Williams, and D. Yip. Nas
experiences with a prototype cluster of workstations. In Super-
computing ’94: Proceedings of the 1994 ACM/IEEE conference on
Supercomputing, pages 410–419, New York, NY, USA, 1994. ACM
Press.

[CCHJ05] Peter V. Coveney, Jonathan Chin, Matthew J. Harvey, and
Shantenu Jha. Scientific grid computing: The first generation.
Computing in Science and Engg., 7(5):24–32, 2005.

[Cer94] Paul E. Ceruzzi. From batch to interactive: The evolution of com-
puting systems, 1957-1969. In IFIP Congress (2), pages 279–284,
1994.

[CFK99] Karl Czajkowski, Ian T. Foster, and Carl Kesselman. Resource
co-allocation in computational grids. In Proceedings Eighth IEEE
International Symposium on High Performance Distributed Com-
puting (8th HPDC’99), Redondo Beach, California, USA, March 22
1999. IEEE Computer Society.

[CFK04] Karl Czaijkowski, Ian Foster, and Carl Kesselman. The Grid 2. Re-
source and Service Management, chapter 18, pages 259–283. Mor-
gan Kaufman, 2nd edition, 2004.

[CGR+06] L. Cherkasova, D. Gupta, E. Ryabinkin, R. Kurakin, V. Dobretsov,
and A. Vahdat. Optimizing grid site manager performance with
virtual machines. In Proc. of the 3rd USENIX Workshop on Real
Large Distributed Systems (WORLDS ’06), Seattle, 11 2006.

[Chi04] Andrew A. Chien. The Grid 2. Computing Elements, chapter 28,
pages 567–591. Morgan Kaufman, 2nd edition, 2004.

33

[Con96] Condor. High throughput computing.
www.cs.wisc.edu/condor/htc.html, 1996.

[EGK+07] M. Ellert, M. Gronager, A. Konstantinov, B. Kónya, J. Linde-
mann, I. Livenson, J. L. Nielsen, M. Niinimäki, O. Smirnova,
and A. Wäänänen. Advanced resource connector middleware for
lightweight computational grids. Future Gener. Comput. Syst.,
23(2):219–240, 2007.

[Fiu06] Marc E. Fiuczynski. Planetlab: overview, history, and future di-
rections. Operating Systems Review, 40(1):6–10, 2006.

[FK97] Ian Foster and Carl Kesselman. Globus: A metacomputing infras-
tructure toolkit. Intl J. Supercomputer Applications, 11(2):115–
128, 1997.

[FKNT02] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of
the grid: An open grid services architecture for distributed systems
integration, 2002.

[Fos01] Ian T. Foster. The anatomy of the grid: Enabling scalable vir-
tual organizations. In Euro-Par ’01: Proceedings of the 7th Inter-
national Euro-Par Conference Manchester on Parallel Processing,
pages 1–4, London, UK, 2001. Springer-Verlag.

[Fos05] Ian T. Foster. Service oriented science. Science, 308(5723):214–217,
05 2005.

[Fos06] Ian T. Foster. Globus toolkit version 4: Software for service-
oriented systems. In Proceedings of FIP International Conference
on Network and Parallel Computing, volume LNCS 3779, pages
2–13. Springer-Verlag, 2006.

[FPC+02] F.Carminati, P.Cerello, C.Grandi, E.Van Herwijnen, O.Smirnova,
and J.Templon. Lhc grid computing project: Common use cases
for a hep common application layer. Technical report, HEPCAL,
11 2002.

[FTF+02] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve
Tuecke. Condor-G: A computation management agent for multi-
institutional grids. Cluster Computing, 5:237–246, 2002.

[GCC+04] Greg Graham, Richard Cavanaugh, Peter Couvares, Alan De Smet,
and Miron Livny. The Grid 2. Distributed Data Analysis: Federated
Computing for High-Energy Physics, chapter 10, pages 136–145.
Morgan Kaufman, 2nd edition, 2004.

[GLMR07] Tristan Glatard, Diane Lingrand, Johan Montagnat, and Michel
Riveill. Impact of the execution context on Grid job performances.
In International Workshop on Context-Awareness and Mobility in

34

Grid Computing (WCAMG’07), pages 713–718, Rio de Janeiro,
May 2007. IEEE.

[GLY00] Jean-Pierre Goux, Jeff Linderoth, and Michael Yoder. Metacom-
puting and the master-worker paradigm. Technical report, Argonne
National Labs, October 17 2000.

[GMP06] Tristan Glatard, Johan Montagnat, and Xavier Pennec. Probabilis-
tic and dynamic optimization of job partitioning on a grid infras-
tructure. In 14th euromicro conference on Parallel, Distributed and
network-based Processing (PDP06), pages 231–238, Montbéliard-
Sochaux, France, February 2006.

[GMP07] Tristan Glatard, Johan Montagnat, and Xavier Pennec. Opti-
mizing jobs timeouts on clusters and production grids. In In-
ternational Symposium on Cluster Computing and the Grid (CC-
Grid’07), pages 100–107, Rio de Janeiro, May 2007. IEEE.

[GPJ+07] Xavier Grehant, Olivier Pernet, Sverre Jarp, Isabelle Demeure, and
Peter Toft. Automatic xen management with smartfrog to supply
on-demand computing resource. In VHPC ’07: Proceedings of the
Workshop on Virtualization in High-Performance Cluster and Grid
Computing, LNCS. Springer, 08 2007.

[Gra] Globus Resource Allocation Manager (GRAM) 1.6 documentation.

[GSM+07] Tristan Glatard, Gergely Sipos, Johan Montagnat, Zoltán Farkas,
and Péter Kacsuk. Workflow Level Parametric Study Support by
MOTEUR and the P-GRADE Portal, chapter 18, pages 279–299.
Springer-Verlag, 2007.

[Har03] Aaron Harwood. Networks and Parallel Processing Complexity.
Melbourne School of Engineering, Department of Computer Sci-
ence and Software Engineering, 2003.

[HGLS86] W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms.
Communications of the ACM, 29(12):1170–1183, 1986.

[HSLL00] Elisa Heymann, Miquel A. Senar, Emilio Luque, and Miron Livny.
Adaptive scheduling for master-worker applications on the com-
putational grid. In Rajkumar Buyya and Mark Baker, editors,
Proceedings of Grid Computing - GRID 2000, First IEEE/ACM
International Workshop, volume 1971 of Lecture Notes in Com-
puter Science, pages 214–227, Bangalore, India, December 2000.
Springer.

[Hum06] Michael Humphrey. Altair’s PBS - altair’s PBS professional update.
In SC, page 28. ACM Press, 2006.

35

[J.T06] J.T.Moscicki. Efficient job handling in the grid: short deadline,
interactivity, fault tolerance and parallelism. In EGEE User Forum,
Geneva, Switzerland, March 2006. CERN.

[KDF04] Katarzyna Keahey, Karl Doering, and Ian Foster. From sandbox to
playground: Dynamic virtual environments in the grid. In GRID
’04: Proceedings of the Fifth IEEE/ACM International Workshop
on Grid Computing (GRID’04), pages 34–42, Washington, DC,
USA, 2004. IEEE Computer Society.

[LHA+04] E. Laure, F. Hemmer, A. Aimar, M. Barroso, P. Buncic, A. Di
Meglio, L. Guy, P. Kunszt, S. Beco, F. Pacini, F. Prelz, M. Sgara-
vatto, A. Edlund, O. Mulmo, D. Groep, S.M. Fisher, and M. Livny.
Middleware for the next generation grid infrastructure. In Proceed-
ings of Computing in High Energy Physics, Interlaken, Switzerland,
09 2004.

[LHC+04] L.Maigne, D. Hill, P. Calvat, V. Breton, R. Reuillon, D.Lazaro,
Y. Legr, and D. Donnarieix. Parallelization of monte carlo simu-
lations and submission to a grid environment. Parallel Processing
Letters journal, 14(2):177–196, June 2004.

[LHC+06] Hurng-Chun Lee, Li-Yung Ho, Hsin-Yen Chen, Ying-Ta Wu, and
Simon C. Lin. Efficient handling of large scale in-silico screening
using diane. In Poster in EGEE’06 Conference, Enabling Grids for
E-Science, Geneva, Switzerland, 2006.

[Lit07] Maarten Litmaath. glite job submission chain v.1.2. lit-
maath.home.cern.ch/ litmaath/UI-WMS-CE-WN, June 2007.

[LSJ+06] Hurng-Chun Lee, Jean Salzemann, Nicolas Jacq, Hsin-Yen Chen,
Li-Yung Ho, Ivan Merelli, Luciano Milanesi, Vincent Breton, Si-
mon C. Lin, and Ying-Ta Wu. Grid-enabled high-throughput in
silico screening against influenza a neuraminidase. In Proceedings
of NETTAB 2006, Santa Margherita di Pula, July 10-13 2006.

[LSV06] Arnaud Legrand, Alan Su, and Frederic Vivien. Minimizing the
stretch when scheduling flows of biological requests. In SPAA ’06:
Proceedings of the eighteenth annual ACM symposium on Paral-
lelism in algorithms and architectures, pages 103–112, New York,
NY, USA, 2006. ACM Press.

[Mac04] Marlon Machado. Enable existing applications for grid: Batch any-
where, independent concurrent batch, and parallel batch. Technical
report, IBM, June 2004.

[MB03] Jeremiah Mans and David Bengali. Blueox: A java framework for
distributed data analysis. In Proceedings of Computing in High
Energy Physics, La Jolla, Ca, USA, March 2003.

36

[MDP+00] Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard
Wheeler, and Songnian Zhou. Process migration. ACM Computing
Surveys, 32(3):241–299, 2000.

[MFRW06] Grzegorz Malewicz, Ian Foster, Arnold L. Rosenberg, and Michael
Wilde. Tool for prioritizing dagman jobs and its evaluation. In
Proceedings of the 15th IEEE Intl. Symp. on High-Performance
Distributed Computing (HPDC ’06), pages 156–167, 2006.

[MHS+04] J.T. Moscicki, H.C.Lee, S.Guatelli, S.C. Lin, and M.G.Pia.
Biomedical applications on the grid: Efficient management of par-
allel jobs. In NSS, Rome, Italy, October 2004. IEEE.

[Miu06] Kenichi Miura. Overview of japanese science grid project naregi.
Progress in Informatic, 3(1349-8614):67–75, 2006.

[Mos03] J.T. Moscicki. Diane - distributed analysis environment for grid-
enabled simulation and analysis of physics data. In NSS, Portland,
Oregon, USA, October 2003. IEEE.

[Nil07] P. Nilsson. Experience from a pilot based system for atlas. In Pro-
ceedings of Computing in High Energy Physics (CHEP’07), Victo-
ria, Canada, 2007.

[NLJ+05] A. Nishandar, D. Levine, S. Jain, G. Garzoglio, and I. Terekhov.
Extending the cluster-grid interface using batch system abstraction
and idealization. In Proceedings of Cluster Computing and Grid
2005 (CCGrid05), Cardiff, UK, May 2005.

[NYI+05] Hidemoto Nakada, Motohiro Yamada, Yasuyoshi Itou, Satoshi
Matsuoka, Jaime Frey, and Yasumasa Nakano. Design and imple-
mentation of condor-unicore bridge. In HPCASIA ’05: Proceedings
of the Eighth International Conference on High-Performance Com-
puting in Asia-Pacific Region, page 307, Washington, DC, USA,
2005. IEEE Computer Society.

[PDD05] James Padgett, Karim Djemame, and Peter Dew. Grid service level
agreements combining resource reservation and predictive run-time
adaptation. In Proceedings of the UK e-Science All Hands Meeting,
Nottingham UK, September 19th - 22nd 2005.

[Pen02] Rob Pennington. Terascale clusters and the teragrid. In Proceedings
for High Performance Computing Asia, pages 407–413, Dec 16-19
2002.

[PSP06] Stuart Paterson, P. Soler, and C. Parkes. LHCb Distributed Data
Analysis on the Computing Grid. PhD thesis, University of Glas-
gow, 2006.

37

[PT06] S. Paterson and A. Tsaregorodtsev. Dirac infrastructure for dis-
tributed analysis. In Proceedings of Computing in High Energy
Physics, Mumbai, India, February 2006.

[PW07] Sanjay Padhi and Rodney Walker. Cronus: A condor glide-in based
atlas production executor. In Proceedings of CHEP’07, September
2007.

[Reb05] David Rebatto. Egee batch local ascii helper (blahp). In HEPiX
Meeting, Karlsruhe, Germany, May 2005.

[RLS98] Rajesh Raman, Miron Livny, and Marvin Solomon. Matchmaking:
Distributed resource management for high throughput computing.
In Proceedings of the Seventh IEEE International Symposium on
High Performance Distributed Computing, Chicago, IL, July 28-31
1998.

[RMdL04] Daniel A. Reed, Celso L. Mendes, and Charng da Lu. The Grid
2. Application Tuning and Adaptation, chapter 26, pages 513–532.
Morgan Kaufman, 2nd edition, 2004.

[RSZ+06] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakellariou,
and K. Vahi. Scheduling data-intensive workflows onto storage-
constrained distributed resources. In Proceedings of the Seventh
IEEE International Symposium on Cluster Computing and the
Grid (CCGrid 2007), April 2006.

[Rud01] M. Ruda. Integrating grid tools to build a computing resource
broker: activities of datagrid wp1. In Proceedings of Computing in
High Energy Physics (CHEP 2001), Beijing, September 3-7 2001.

[SAB+03] P. Saiz, L. Aphecetcheb, P. BunImageiImagea, R. PiskaImaged,
J. E. Revsbeche, and V. Imageegod. Alien - alice environment on
the grid. Nucl. Instrum. Meth., A502:437–440, 2003.

[SAB+05] Andreas Savva, Ali Anjomshoaa, Fred Brisard, Michel Drescher,
Donal Fellows, An Ly, Stephen McGough, and Darren Pul-
sipher. Job submission description language (jsdl) specifica-
tion. http://forge.gridforum.org/projects/jsdl-wg, November 2005.
GFD-R.056.

[SBP03] Pablo Saiz, Predrag Buncic, and Andreas J. Peters. Alien resource
brokers. In Proceedings of CHEP’03, June 2003.

[Sfi07] Igor Sfiligoi. glideinwms - a generic pilot-based workload manage-
ment system. In Proceedings of Computing in High Energy Physics
(CHEP’07), 2007.

[Sto07] Heinz Stockinger. Defining the grid: a snapshot on the current
view. J. Supercomput., 42(1):3–17, 2007.

38

[Ter02] I. Terekhov. Meta-computing at d0. Nuclear Instru-
ments and Methods in Physics Research (ACAT-02), 502/2-
3(NIMA14225):402–406, June 2002.

[tGC06] the GridPP Collaboration. Gridpp: development of the uk com-
puting grid for particle physics. Journal of Physics G: Nuclear and
Particle Physics, 32:N1–N20, 2006.

[TGSR04] Andrei Tsaregorodtsev, Vincent Garonne, and Ian Stokes-Rees.
Dirac: A scalable lightweight architecture for high throughput com-
puting. In GRID ’04: Proceedings of the Fifth IEEE/ACM Inter-
national Workshop on Grid Computing, pages 19–25, Washington,
DC, USA, 2004. IEEE Computer Society.

[TTL02] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and
the grid. In Fran Berman, Geoffrey Fox, and Tony Hey, editors,
Grid Computing: Making the Global Infrastructure a Reality. John
Wiley & Sons Inc., December 2002.

[vHCF+03] Eric van Herwijnen, Joel Closier, Markus Frank, Clara Gas-
par, Francoise Loverre, Sebastien Ponce, Roberto Graciani Diaz,
Domenico Galli, Umberto Marconi, Vincenzo Vagnoni, Nicholas
Brook, K. Buckley, A.and Harrison, Michael Schmelling, Ul-
rik Egede, Andrei Tsaregorotsev, V. Garonne, B. Bogdanchikov,
Ivan Korolko, Juan P. Washbrook, A.and Palacios, Sander Klous,
Juan J. Saborido, Akram Khan, A. Pickford, A. Soroko, V. Ro-
manovski, G.N. Patrick, Genady Kuznetsov, and Miriam Gandel-
man. Dirac - distributed infrastructure with remote agent control.
In Proceedings of Computing in High Energy Physics, 2003.

[WDRT97] Philip M. Williams, Martyn C. Davies, Clive J. Roberts, and Saul
J. B. Tendler. Data analysis using the internet: the world wide
web scanning probe microscopy data analysis system. Analyst,
122:1001–1006, October 1997.

[Wei98] Jon B. Weissman. Metascheduling: A scheduling model for meta-
computing systems. In Proceedings of High Performance Dis-
tributed Computing (HPDC’98), pages 348–349, 1998.

[WLrW06] Torre Wenaus, Miron Livny, and rank Wrthwein. Preliminary plans
for just-in-time workload management in the osg extensions pro-
gram. Technical report, US Atlas, October 2006. based on SAP
proposal of March 2006.

[XLT+05] Wei Xiaohui, Wilfred W. Li, Osamu Tatebe, Xu Gaochao,
Hu Liang, and Ju Jiubin. Parallel and Distributed Processing and
Applications - Integrating Local Job Scheduler - LSF with Gfarm,
high-performance computing and architecture i 2A, pages 196–204.

39

Number 3758 in Lecture Notes In Computer Science. Springer,
2005.

[XZQ00] Xiao, Zhang, and Qu. Effective load sharing on heterogeneous net-
works of workstations. In IPPS: 14th International Parallel Pro-
cessing Symposium, pages 431–438, Los Alamitos, May 1–5 2000.
IEEE Computer Society Press.

[Zha02] Yong Zhao. Virtual galaxy clusters: An application of the griphyn
virtual data toolkit to sloan digital sky survey data. Technical
Report TR-2002-6, GriPhyN, 2002.

[ZZWD93] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a load shar-
ing facility for large, heterogenous distributed computer systems.
Software: Practice And Experience, 23(12):1305–1336, December
1993.

40

Dépôt légal : 2008 – 1
er

 trimestre
Imprimé à l’Ecole Nationale Supérieure des Télécommunications – Paris

ISSN 0751-1345 ENST D (Paris) (France 1983-9999)

Ecole Nationale Supérieure des Télécommunications

Groupe des Ecoles des Télécommunications - membre de ParisTech

46, rue Barrault - 75634 Paris Cedex 13 - Tél. + 33 (0)1 45 81 77 77 - www.enst.fr

Département INFRES

©

G
E

T
-T

é
lé

c
o

m
 P

a
ri

s
T

e
c
h
 2

0
0

8

