
A Dynamic Web User Interface for HammerCloud

Openlab Summer Student Programme Report

Massimo Paladin

August 7, 2009

Contents

List of Figures ii

1 Introduction 1
1.1 Overview . 1
1.2 Problem: HammerCloud web user interface 1
1.3 Outline . 2

2 A Dynamic Interface for HammerCloud 3
2.1 Design . 3
2.2 Technologies used . 4

2.2.1 Django . 4
2.2.2 Google Charts API . 5
2.2.3 Memcached . 6
2.2.4 Jquery & Jquery UI 6

3 Usage Guides 7
3.1 User Guide . 7

3.1.1 Tests list page . 8
3.1.2 Test page . 8
3.1.3 Usage history page . 9
3.1.4 Cloud and Site page 11

3.2 Operator Guide . 11
3.2.1 Normal Operators . 12
3.2.2 Staff Operators . 12

3.3 Developer Guide . 15
3.3.1 HammerCloud Web User Interface 15
3.3.2 Server Scripts . 19

4 Conclusions and Improvements 21
4.1 Conclusions . 21
4.2 Possible Improvements . 21

Bibliography 22

i

List of Figures

2.1 Google Charts URL example 5
2.2 Google Charts example . 5

3.1 HammerCloud home page . 8
3.2 Tests List page . 9
3.3 Tests page . 10
3.4 Usage History page . 11
3.5 Test modification page . 12
3.6 Administration page . 13
3.7 Add a new test - part 1 . 13
3.8 Add a new test - part 2 . 14
3.9 Add a new test - part 3 . 14
3.10 HammerCloud WUI source code 15
3.11 HammerCloud WUI media 17
3.12 HammerCloud WUI templates 18

ii

Chapter 1

Introduction

1.1 Overview

This report is to explain my work at CERN during the Openlab Summer
Student Programme. During my staying at CERN I’ve been working in
IT/GS/DMA. I have been working on HammerCloud, a stress-testing system
to commission grid sites for distributed analysis activities.

I developed a new web interface for better visualization of the stress test
results and an administration interface for HammerCloud operators. This
interface has generated positive feedback from the users and it is now in
production for the ATLAS experiment.

1.2 Problem: HammerCloud web user interface

HammerCloud is a system that performs stress-testing of distributed anal-
ysis facilities which do LHC physics. It has been in use since Fall 2008, and
was notably quite successful during the STEP’09 tests to run more than 1
million jobs worldwide. However, the HammerCloud web interface was the
weakest point of the system. It was a static interface that couldn’t scale
over large tests.

The weak points include:

• The pages were generated a priori by a scheduled script, requiring the
storage of all the pages. They were generated every 10 minutes for the
running tests, not providing live data.

• The test result page could be unusable for large tests. In table 1.1 you
can see 4 screenshots, all from the same page. Those 4 screenshots
represent only a small part of the page; as you can see for a large test
this page was completely unreadable.

1

1.3 Outline 2

• All the plots were generated a priori from a scheduled script with
the requirement to store all of the files. The consequence was wasted
storage on the server.

Table 1.1: Old test result page

1.3 Outline

A brief explanation about the chapters content:

• Chapter 2: in this chapter we explain the requirements and the tech-
nologies used for the development of the new web interface

• Chapter 3: in this chapter you can find three specific guides for the
different users of the system: normal users, operators and developers

• Chapter 4: in the last chapter are the conclusions and possible im-
provements for the system

Chapter 2

A Dynamic Interface for
HammerCloud

In the previous chapter I explained the problems of the old HammerCloud
web interface. The target of my staying at CERN was the development of
the new interface. In this chapter I am going to explain the requirements of
the new interface and the technologies used for its development.

2.1 Design

Looking at the major shortcomings of the old interface we defined some
goals and requirements for the new interface:

• dynamic interface

• better visualization for test result page

• easier error diagnosis

• better plotting system

• better usage history of the clouds

• administration interface for the operators

The new interface should be dynamic and scale over a large amount of tests
and big tests, it should generate the pages dynamically to avoid the static
pre-generation performed by the old one.

The test page requires a new design, it should be lighter and more usable,
the contents have to be reorganized in a better way to prevent huge pages.
It would be good to have the possibility to compare the metrics over the
sites.

3

2.2 Technologies used 4

One of the causes of huge pages in the old interface was the printing of
all the error codes generated from the tests. These have to be grouped and
reorganized by their type selecting only the useful informations.

The plotting system of the old interface required to store all the plots
in the server, wasting a huge amount of storage. The dynamic generation
of the plots is not computionally possible; we have to generate them with a
scheduled script. Thanks to Google Charts API [1] we don’t need to store
all the charts but only the informations to generate them.

The usage of the clouds chart should be improved keeping long term
history and offering an increased granularity like a per site history with an
adequate way to browse it.

The major requirements is an administration interface to able the Ham-
merCloud operators to create and manage tests without the administrator
support. This feature should be designed carefully looking at the security
threats.

2.2 Technologies used

The reference programming language for the new interface is Python but I
used a framework to speed up the development. The technologies used are:

• Django[2]: web application framework written in Python

• Google Charts API: free server-side plotting system offered by Google

• Memcached[3]: object caching system supported by Django

• Jquery[4] & Jquery UI[5]: Javascript libraries to simplify javascript
code

• MySQL[6]: relational database management system

2.2.1 Django

Django is a web application framework written in Python, it permits rapid
development thanks to helpful features:

• Object-relational mapper: possibility to code the database model with
Python classes. Django provides facilities to insert, update, delete and
read data from the database thanks to the code of the model

• URL pattern system: bind view functions to specific urls using regular
expressions

• Template system: permits to template the html code in files separate
from the source code. The view functions can render this template
files with some data to build the page

2.2 Technologies used 5

• Automatic administration interface: thanks to the coded database
model, Django provide an automatic and customizable administration
interface for the modification of the coded tables

• Cache System: support different caching systems like memcached to
permit caching at different granularity

2.2.2 Google Charts API

Google Charts API is a plotting system, completely server-side offered by
Google. The idea of this system is that to create a new plot you need to
build an ad hoc url looking the API, specifying all the parameters for the
chart. After that you can request the url and Google will return you the
wanted chart in the PNG format.

For instance, if you request the url in figure 2.1 you get the chart in
figure 2.2.

http://chart.apis.google.com/chart?chxt=x,y,x,x&chds=0,2860.0&
chd=t:170.0,1989.0,2593.0,2088.0,1332.0,918.0,652.0,325.0,115.0,
57.0,18.0,1.0,0.0,0.0,0.0&chxp=2,50.0|3,80.0&chxr=0,0,30,0.0|
1,0,2860.0,286.0&chco=4d89f9&chbh=a,1,1&chs=300x300&cht=bvg&

chtt=Overall+Events/s&chxl=2:|Hz|3:|µ=7.1+σ=3.6

Figure 2.1: Google Charts URL example

Figure 2.2: Google Charts example

2.2 Technologies used 6

2.2.3 Memcached

Memcached is an object caching system. It is a daemon that provides high
level caching. Django has a backend for it and permits to use it very easily
improving the performance of the interface.

2.2.4 Jquery & Jquery UI

Jquery is a javascript library that simplifies HTML document traversing,
event handling, animating, and Ajax interactions for rapid web development.
Jquery UI is a library that uses Jquery and provide easy animations and
fancy widgets with a short amount of code.

Chapter 3

Usage Guides

In this chapter guidelines are provided for three types of users: the normal
users, the operators and the developers. These have the aim to give an
overview of the system for the respective points of view.

3.1 User Guide

This section is for the normal user that wants to browse through the test
results. Starting from the home page (figure 3.1) at the address
http://gangarobot.cern.ch/hc
you can access to all the available contents. In the top of the page you can
find a menu with the following entries:

• Clouds: point to a page that shows the list of the Clouds.

• Tests: is a drop down menu that permits to reach the Test list page.
Each entry of this submenu points to a different state of the tests, you
can access to the list of the scheduled tests, of the running tests and
so on for all the test states.

• Last Tests: is a drop down menu with quick links to the last 10 tests

• Time: is a link that points to a page with statistics over the history

• Usage: is a link that points to a page showing the usage history charts
of the running and completed jobs. It is possible to look at the overall
charts or you can pick a specific cloud or site.

• Administration: a link that points to the administration interface,
reserved for the HammerCloud operators.

In the center of the page you can see a chart that shows the usage of the
clouds. Just below that chart there is a table that shows the running tests
and the next 10 scheduled tests, you can click over a row to access to the
result page.

7

3.1 User Guide 8

Figure 3.1: HammerCloud home page

3.1.1 Tests list page

In the tests list page 3.2 you can find the list of the tests with some infor-
mations, you can click over a test to open the result test page.

3.1.2 Test page

In the single test page 3.3 all the information about a test are showed. The
page is divided into 4 tabs:

• Overall: in this tab, figure 3.3, there is an overview of the test, there is
some general information, the output logs of the test and some overall
charts. Below there is an accordion that shows technical information
and error diagnosis about the test.

• Sites: in this tab there is a per site view, you can see the metrics plot
and all the log informations about the test grouped by site, this is
useful to see all the informations relative to one single site.

• Metrics: in this tab there is a per metric view, you can find all the
metric plots grouped by metric type, this is very useful when you want

3.1 User Guide 9

Figure 3.2: Tests List page

to compare the sites over a single metric.

• Other: other links

In the right corner at the top of the tabs there are two links that permit
operators to clone and modify a test. The clone operation can be performed
only by operators. For the modification of a test and his parameters the
test has to be in scheduled or running state and the user has to be enabled
from an operator.

3.1.3 Usage history page

A few words about the Usage History page (figure 3.4). This page shows
two charts showing the number of the running and completed jobs over
the history; these charts are generated with Google Visualization API. By
default the overall charts are displayed but with the two drop down lists you
can pick a single cloud or a single site for specific charts.

3.1 User Guide 10

Figure 3.3: Tests page

3.2 Operator Guide 11

Figure 3.4: Usage History page

3.1.4 Cloud and Site page

In Cloud and Site pages is possible to see the usage history charts relative
to the running and completed tests.

3.2 Operator Guide

This section is for the operators that we distinguished between two types:
the staff and the normal operators. Staff operators are allowed to create,
modify and delete tests and their related associations with the sites, the
dspatterns and the users. Normal Operators have site-oriented permissions,
they can modify the sites properties related to a test.

3.2 Operator Guide 12

Figure 3.5: Test modification page

3.2.1 Normal Operators

The normal operators can modify the sites properties of the tests, to do that
they need an account that can be created from the staff operators and have
to be enabled to modify a test from a staff operator.
The link to access to the test modification page can be found in each single
test page (section 3.1.2, figure 3.3), in the right corner at the top of the
page.

The modification page (figure 3.5) is divided in two parts, in the first
part the operator can change the endtime of the test and can pause it. In
the second part the operator can change all the site properties related to
that test. After the editing click Submit to save the new values.

3.2.2 Staff Operators

The administration interface for the staff operators is accessible to this ad-
dress:
http://gangarobot.cern.ch/hc/admin
To enter in the administration interface the user need a staff account that
can be created by one of the administrator of the system. The home page
of the administration (figure 3.6) give you access to read, modify and create
tests and its related objects like the associations with the sites, the dspat-
terns and the users.

3.2 Operator Guide 13

Create a new test

Figure 3.6: Administration page

To add a new test just click to the add link of the test object, this link
will bring you in a page where you can set all the required parameters for
the test.

In the first part of that page 3.7 you can specify all the general param-
eters for the test.

Figure 3.7: Add a new test - part 1

In the second part (figure 3.8) you can pick the cloud and the site that you
want to add to the test specifying some per site parameters. When you pick
a cloud the system will add one entry to Test Site association for each site
of the selected cloud.

3.2 Operator Guide 14

Figure 3.8: Add a new test - part 2

In the third part (figure 3.9) you can:

• add new dspatterns to the test

• add new user associations, meaning to allow a non staff user to modify
some parameters of the test from the user interface

• give a recurrence to the test; the system will create multiple instance
of the same test changing the starttime and the endtime

Figure 3.9: Add a new test - part 3

When you have finished with the test editing the test will be in a draft
state, to schedule it you have to go in the tests list that you can reach from
the administration interface. From the tests list you can check the checkbox
of the test that you want to schedule and select the action Send selected tests
for approval and press the Go button. The system will send an email to the
administrator informing that there is a new test to approve and schedule.

Clone a test

If you want to create a test similar to an old test you can just go in the tests
list of the administration interface, check the tests that you want to clone,
select the action Clone multiple tests from the drop down list and press the
Go button. That action clones the test. Afterwards you have to change
some parameters like the starttime and the endtime or other parameters
that you want to change and finally you can send it for approval.

3.3 Developer Guide 15

3.3 Developer Guide

3.3.1 HammerCloud Web User Interface

This section is for the developers that want to maintain and add function-
alities to the system. I am going to explain the source code structure of the
interface, with some helpful informations to add contents to the system. You
can see the structure of the source code in figures 3.10 , 3.11 and 3.12). The
first figure contains all the Python files that build the system. In the second
figure there is the media directory; this is the directory where you should
put all the static contents of the interface that are going to be served from
the static web server. In the third image there is the templates directory,
here you can find all the html templates of the interface.

Keep in mind the Django features explained in 2.2.1 that will help you
to understand the meaning of the different files.

Source Code

Figure 3.10: HammerCloud WUI source code

In figure 3.10 you can find an explanation of the source code files.

• settings.py : this file contains the Django settings for the application

3.3 Developer Guide 16

• urls.py : url patterns for the entire website

• ssl.py : middleware for Django to force SSL in selected pages

• manage.py : Django file that permits to use the application locally
with a small server offered from django

• hammercloud/ : this directory contains all the HammerCloud web
interface application files

• hammercloud/urls.py : url patterns for the application

• hammercloud/models.py : this file is one of the most important, it
codes every table of the database into Django objects with methods
that provides all the data that have to be showed

• hammercloud/views.py : this file contains all the view functions, every
page of the interface is a view, and all the views are managed here

• hammercloud/forms.py : this file contains the code of some forms used
in the interface

• hammercloud/admin.py : contains the configurations and the cus-
tomizations for the automatic administration interface provided from
Django

• hammercloud/hcutils/hcadminhelper.py : this file contains some util-
ities used on the test modification page of the user interface

• hammercloud/hcutils/hcdatahelper.py : this file contains some data
configurator and aggregator used from views.py to gather the data to
send to the templates system

• hammercloud/hcutils/hcutils.py : some useful classes of general be-
haviour used in the application

• hammercloud/templatetags/mytags.py : personal filters for the tem-
plate tags system used in Django

Media Files

In this section an explanation about the media files listed in figure 3.11

• admin/ : this directory just point to the admin media directory of
Django directory

• css/ : directory that contains all the stylesheets of the application

• css/smothness/ : theme for the Jquery UI facilities

3.3 Developer Guide 17

Figure 3.11: HammerCloud WUI media

• css/ui-lightness/ : theme for the Jquery UI facilities

• css/style.css : main stylesheet for the application

• images/ : directory for the images

• js/ : directory containing all the javascript used in the application

• js/AC OETags.py : javascript from Adobe to check Flash requirements
on the client browser

• js/hm.js : custom javascript for the application

• js/jquery-1.3.2.min.js : javascript for Jquery

• js/jquery-ui-1.7.2.custom.min.js : javascript for Jquery UI

Template Files

In this section an overview over the templates files listed in figure 3.12

• 404.html : template for the 404 http error

• 500.html : template for the 505 http error

• admin/base site.html : customization of the administration template

• hammercloud/ajaxtestmetrics.html : template for the Metrics tab of
the single test page

• hammercloud/ajaxtestsites.html : template for the Sites tab of the
single test page

• hammercloud/base.html : base template, the one to be extended if
you want to create new pages

3.3 Developer Guide 18

Figure 3.12: HammerCloud WUI templates

• hammercloud/cloud.html : single cloud page template

• hammercloud/cloudslist.html : clouds list page template

• hammercloud/historychart.html : template for the usage history page

• hammercloud/index.html : template for the homepage

• hammercloud/login.html : template for the login page

• hammercloud/menu.html : template for the top menu, included in the
base and index templates

• hammercloud/rank.html : draft of the template for the future rank
page

• hammercloud/search.html : draft of the template for the future search
page

• hammercloud/site.html : template for the single site page

3.3 Developer Guide 19

• hammercloud/test.html : template for the single test page

• hammercloud/testadmin.html : template for the tests modification
page of the users interface, not the one in the automatic administration
interface

• hammercloud/testadminclone.html : template for the test clone con-
firmation page

• hammercloud/testslist.html : template for the page that shows the
tests lists

Add a new page to the interface

To add a new page to the web interface you should follow these step:

• add a new url pattern to hammercloud/urls.py

• create a template file inside the template directory

• add a new function to hammercloud/views.py that manage the new
page. If you need data related to the model and they are not provided,
add a new method to the right class in hammercloud/models.py that
generate the data that you need in the function

3.3.2 Server Scripts

There are 2 server scripts that collect data for the web interface, the first is
related to the plots generation and the second one is the one in charge to
collect the usage of the clouds.

The dynamic plots generation was too expensive computanionally in
terms of database queries to be computed at each page request. The only
option was to generate the plots with a server script. The second script
records the usage of the single sites over the history providing usage history
charts over all the clouds, for a single cloud and for a single site.

Plots generator

The file hcplotgenerator.py is responsible for creating the metric plots for
the tests. This script run every 10 minutes and generate the metric plots for
all the running tests and the test completed from not more than 2 hours.
This script uses the python module hctestplot.py that contains the metric
functions.

3.3 Developer Guide 20

Add a new plot

To add a new plot to the tests you should follow these steps:

• add a new tuple in the table metric type

• add the method that generates the new plot into hctestplot.py module
according to the schema of the existing plots

• add the name of the plot to generate into the module hcplotgenera-
tor.py in one or both the lists that appear in the top of the file. These
lists contain the plots to generate for the normal and the panda tests.

The web interface will automatically print the new plots after the first run
of the scripts.

Usage generator

The module hcusagegenerator.py is the one responsible for logging the num-
ber of the running and complete jobs over the history, this script runs every
10 minutes on the gangarobot server. The script logs the following informa-
tions:

• every ten minutes records the number of running jobs for each site
flagging them as daily

• every ten minutes counts the number of the completed jobs completed
100 minutes before. Because of delays on the data acquirement the
number of completed jobs is updated til 200 minutes later the stop
time of the jobs.

• every hour aggregates the number of the running and completed jobs
of the 25th hour in the past keeping only one point for each hour and
flagging these points as weekly

• every 7 days aggregates the number of the running and completed
jobs of the 8th day in the past keeping only one point for each day
and flagging these points as monthly

• every 90 days aggregates the number of the running and completed
jobs of the 11th week in the past keeping only one point for each week
and flagging these as yearly

Chapter 4

Conclusions and
Improvements

4.1 Conclusions

Personally, I feel that my experience at CERN was very rewarding. I valued
the importance of being part of a team and learned many new things thanks
to the kind people in my group. I was particularly interested in being
exposed to real problems that I have not previously seen during my studies.

4.2 Possible Improvements

A list of possible improvements that would be useful:

• Sites Rank: study and develop a metric to measure the sites quality
in order to build a rank

• Search Page: build a search page where it is possible to pick multiple
sites and tests and show aggregated plots and reports

• NICE authentication: add NICE authentication to the system to per-
mits the user to login with their account or their certificate

• Usage History: improve usage history page to allow comparison be-
tween sites and clouds

21

Bibliography

[1] Google Chars API - free server-side plotting system
(http://code.google.com/apis/chart/)

[2] Django - Python web application framework
(http://www.djangoproject.com/)

[3] Memcached - object caching system
(http://www.danga.com/memcached/)

[4] Jquery - javascript framework (http://jquery.com/)

[5] Jquery UI - javascript framework for user interface widgets
(http://jqueryui.com/)

[6] MySQL - database management system (http://www.mysql.com/)

22

	List of Figures
	Introduction
	Overview
	Problem: HammerCloud web user interface
	Outline

	A Dynamic Interface for HammerCloud
	Design
	Technologies used
	Django
	Google Charts API
	Memcached
	Jquery & Jquery UI

	Usage Guides
	User Guide
	Tests list page
	Test page
	Usage history page
	Cloud and Site page

	Operator Guide
	Normal Operators
	Staff Operators

	Developer Guide
	HammerCloud Web User Interface
	Server Scripts

	Conclusions and Improvements
	Conclusions
	Possible Improvements

	Bibliography

