
Performance Monitoring
of

Production Batch Servers

Gyorgy Balazs
gyorgy.balazs@cern.ch

Supervisor:
Dr. Andreas Hirstius

andreas.hirstius@cern.ch

December 2008

mailto:gyorgy.balazs@cern.ch
mailto:andreas.hirstius@cern.ch


Table of Contents
1. Motivations.......................................................................................................................................3
2. The batch farm..................................................................................................................................3
3. Performance monitoring...................................................................................................................4
4. Hardware setup.................................................................................................................................5
5. Software setup..................................................................................................................................6
6. Performing the monitoring...............................................................................................................6

6.1 Monitored events.......................................................................................................................6
6.2 Derived information...................................................................................................................6

7. Transforming the results...................................................................................................................9
7.1 Hourly results from raw data.....................................................................................................9
7.2 Merging hourly results with LSF logs.......................................................................................9
7.3 Generating Reports....................................................................................................................9

7.3.1 Hourly report....................................................................................................................10
7.3.2 Daily report......................................................................................................................10
7.3.3 Summary report................................................................................................................10
7.3.4 Experiments report...........................................................................................................10
7.3.5 Profile files of the main user groups ...............................................................................10

8. Analysis of the results.....................................................................................................................11
8.1 Distribution of experiments.....................................................................................................11
8.2 Overview of the summary........................................................................................................13
8.3 Average values.........................................................................................................................14
8.4 CPU utilisation.........................................................................................................................15
8.5 The number of running jobs.....................................................................................................15
8.6 Cycles per instruction (CPI)....................................................................................................17
8.7 Load and Store instructions.....................................................................................................18
8.8 Branch instructions..................................................................................................................19
8.9 Mispredicted branches.............................................................................................................20
8.10 L2 cache misses.....................................................................................................................21
8.11 Bus and Data bus utilisation..................................................................................................22

8.11.1 Bus and Data bus utilisation figures (not validated)......................................................22
8.11.2 Extreme bus utilisation values........................................................................................23

8.12 Bus not ready.........................................................................................................................24
8.13 x87 and SIMD instructions....................................................................................................25

8.13.1 32bit and 64bit applications at the experiments.............................................................26
8.13.2 SIMD and X87 instructions vs. CPU utilisation and the number of jobs......................27

9. Conclusion......................................................................................................................................28

2



1. Motivations

A large  cluster  of  computing  nodes  is  available  at  CERN to  provide  batch  type  data 
processing  for  all  users.  There  is  a  high  demand  for  examining  how  efficiently  the 
hardware  is  utilised  under  the batch  service.  The monitoring  tools  provide information 
about  utilization,  and  information  can  be  gathered  about  the  running  jobs  from  the 
scheduler,  but  the  detailed  performance  figures  are  not  available  from  the  current 
monitoring infrastructure. 

The subject of our investigation is to get very detailed, low level information about the 
production batch servers to analyse their performance and reveal  possible bottlenecks 
which are hidden from the high level monitoring tools. Another goal of the project is to 
profile the software of the CERN experiments by examining what type of workload  they 
do  generate  on  the  production  nodes.  This  profile  helps  us  setting  up  a  benchmark 
process   which  generates  similar  load  to  the  actual  HEP  (High  Energy  Physics) 
applications, and therefore provides an appropriate basis for both performance and power 
measurements during the acquisition process for new computing nodes. 

2. The batch farm

The  CERN  Computer  Centre  is  part of  the  LHC  grid  but  also  provides  enormous 
computing facilities to satisfy all demands for computing power at CERN. The production 
batch farm, which serves the computational needs on site, consists of more than 4500 
nodes. A large part of the computing power is dedicated to experiments, but the rest of the 
computing power is available for everyone at CERN. The main users of the batch farm are 
the experiments which run numerous types of jobs such as data analysis, simulation and 
reconstruction.

The batch services offer different queues for scheduling the jobs depending on the 
required CPU time.

Offered job queues by length:
● 8nm 8 normalised minutes
● 1nh 1 normalised hour
● 8nh 8 normalised hours
● 1nd 1 normalised day
● 1nw 1 normalised week

Queue  definitions  are  empirically  defined  to  match  users  requirements  for  turnaround 
times where a user could expect many short jobs per day and a few long jobs overnight. 
The normalization changes as machines get faster. 
There  is  a  grid  queue  for  each  virtual  organization  (VO)  but  without  any  CPU-time 
granularity. They use mapped team accounts and allow at most 1nw CPU time. Production 
queues are for low priority work where a specific turnaround is not an issue, they allow a 
higher number of concurrent jobs. There are also local queues funded by the experiments 
for fast turnaround of analysis jobs.
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The dispatched jobs are scheduled by LSF. Platform LSF  (Load Sharing Facility) is a job 
scheduler,  that  is  used for  managing the batch  farm at  CERN Computer  Centre.  LSF 
provides batch execution and balanced workload management in HPC (High Performance 
Computing) environments. The logs from LSF can be used to get information about the 
jobs running on the nodes within a specified time frame. 

3. Performance monitoring

Monitoring CPU performance allows us to access low level information concerning the 
actual workload on the system.

All  modern CPUs offer  real  time statistics on executed instructions via a Performance 
Monitoring Unit (PMU). The PMU provides both specific and programmable counters to 
monitor  different  events  inside  the  CPU.   Among  many  others,  information  can  be 
extracted about  the amount  of  different  type of  executed instructions,  consumed CPU 
cycles, ratios of different operations and cache misses.

Perfmon2 – pfmon

Perfmon2  and  pfmon  provide  a  robust 
framework  in  the  Linux/Unix  environment  to 
access  PMU  counters  with  only  a  minimal 
overhead on the monitored system. 

Perfmon2 provides a kernel-side interface to 
access  PMU counters  on  a  large  variety  of 
processors. Currently it is available as a kernel 
patch, but there are efforts to integrate it into 
the main Linux kernel line.

This interface is accessible through the libpfm 
library from a simple command line tool called 
pfmon, but also from other toolkits.
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The functionality of pfmon is rather broad [2]:

● Counting events 
● Sampling in regular intervals 
● Flat profile 
● Multiplexing
● System wide  monitoring mode 
● Triggers 
● Different data readout “plug-ins” (modules) available 

To  gain  an  extensive  overview on  the  performance of  the  entire  system,  we  need to 
monitor numerous events throughout all running applications. 

Due to the limited number of counters, only a few events can be monitored at the same 
time,  but  pfmon  allows  us  to  monitor  a  larger  set  of  events  by  using  time  based 
multiplexing.  The program switches between smaller  sets  of  monitored  counters  on  a 
regular basis, in our case each 12 milliseconds. Multiplexing introduces some uncertainty, 
but it has only a minor impact in a long term monitoring.

The system wide monitoring mode allows for monitoring all running applications including 
the operating system, thus it is possible to gain information on overall performance.

4. Hardware setup

The CERN batch  farm consists  of  more than 4500 nodes of  various hardware types, 
mostly of  dual  and quad-core Intel  Xeon based servers.  Most  of  the production batch 
systems are  dedicated  for  special  tasks,  but  a  large  amount  of  computing  nodes are 
available for general purposes. 

The performance monitoring was started on 60 nodes of the public batch services.
All monitored nodes are of the same hardware configuration:

● CPU : 2 x Quad-Core Intel(R) Xeon(R) CPU E5410 @ 2.33GHz 
● Memory (swap) : 16052 MB (4095 MB) 
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5. Software setup

All 60 nodes are installed with the standard 64bit Scientific Linux CERN (SLC) release 4.7 
that is based on the Red Hat Enterprise 4 distribution and also compatible with most 32bit 
applications. The original software configuration was not modified, only the performance 
monitoring program (pfmon) and the patched kernel that includes perfmon2 were installed.

6. Performing the monitoring

Perfmon was executed on the 60 nodes in system wide mode with multiplexing, and the 
results  were  sampled  each  hour.  The  produced  data  was  collected  for  50  days. 
Unfortunately not all the machines “survived” until the last day, the monitoring was stopped 
on some of  the nodes due to  various failures that  were not  related to  the monitoring 
process. On the last day, 43 nodes were running perfmon without any failure.

6.1 Monitored events

The following performance events were monitored:

• UNHALTED_CORE_CYCLES
• INSTRUCTIONS_RETIRED
• BRANCH_INSTRUCTIONS_RETIRED
• MISPREDICTED_BRANCH_RETIRED
• INST_RETIRED:LOADS
• LAST_LEVEL_CACHE_MISSES
• LAST_LEVEL_CACHE_REFERENCES
• INST_RETIRED:STORES
• X87_OPS_RETIRED:ANY
• RESOURCE_STALLS:ANY
• BUS_TRANS_ANY:ALL_AGENTS
• BUS_DRDY_CLOCKS:ALL_AGENTS
• BUS_BNR_DRV:ALL_AGENTS
• SIMD_COMP_INST_RETIRED:PACKED_SINGLE:SCALAR_SINGLE:PACKED_D

OUBLE: SCALAR_DOUBLE
• CPU_CLK_UNHALTED:BUS

For further details, please refer to Intel's reference manual [1]

6.2 Derived information [1],[4]

● Cycles per Instructions ( CPI )
A ratio of executed instructions and core cycles that shows the efficiency of the 
executed code. A greater value indicates more opportunity for code tuning to 
improve performance. Intel Core2 based CPUs can have CPI values as low as 0.25
○ Calculation: 

UNHALTED_CORE_CYCLES / INSTRUCTIONS_RETIRED
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● Load and store instructions (LDST)
The percentage of memory operations compared to all executed instructions
○ Calculation: 

(INST_RETIRED:STORES +INST_RETIRED:LOADS) / 
INSTRUCTIONS_RETIRED * 100

● Resource stalls (RESST)
The percentage of core cycles when the CPU was stalled due to waiting for 
resources. Resource stalls can occur during memory operations, after mispredicted 
branches and in several other cases when the CPU has to wait for busy resources.
○ Calculation:

RESOURCE_STALLS:ANY / UNHALTED_CORE_CYCLES * 100

● Branch instructions (BRANCH)
The percentage of branch instructions among all executed instructions.
○ Calculation: 

BRANCH_INSTRUCTIONS_RETIRED/ INSTRUCTIONS_RETIRED * 100
● Mispredicted branches (BRMISS)

The percentage of branch instructions that were mispredicted. A wrongly predicted 
branch can result in a very high penalty on execution time.
○ Calculation: MISPREDICTED_BRANCH_RETIRED/ 

BRANCH_INSTRUCTIONS_RETIRED*100
● Last level cache misses (L2)

The percentage of cache references when the data was not found in the L2 cache. 
A cache miss normally results in memory access, which has a large negative impact 
on performance.
○ Calculation: 

LAST_LEVEL_CACHE_MISSES / LAST_LEVEL_CACHE_REFERENCES * 100
● Bus utilisation (BUS)

Percentage of bus cycles consumed by bus transactions of any type.
○ Calculation ( NOT VALIDATED ):

BUS_TRANS_ANY:ALL_AGENTS*2 / CPU_CLK_UNHALTED:BUS* 100
● Data bus utilisation (DATA)

The percentage of bus cycles used for data transfers among all bus agents 
including the CPU and the memory.
○ Calculation ( NOT VALIDATED ):

BUS_DRDY_CLOCKS:ALL_AGENTS / CPU_CLK_UNHALTED:BUS * 100
● Bus not ready (BNR)

The percentage of bus cycles when bus transactions could not be executed, often 
because of the high load on the bus.
○ Calculation:

BUS_BNR_DRV:ALL_AGENTS * 2 / CPU_CLK_UNHALTED:BUS * 100
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● Computational SIMD instructions (SIMD)
The percentage of SIMD (Single Instruction Multiple Data) instructions among all 
executed instructions. A good indicator of 64bit programs, since in 64bit mode the 
compile generates code that uses the SSE (SIMD) instructions almost exclusively 
for floating point operations.
○ Calculation:

SIMD_COMP_INST_RETIRED:PACKED_SINGLE:SCALAR_SINGLE:
PACKED_DOUBLE:SCALAR_DOUBLE / INSTRUCTIONS_RETIRED* 100

● Computational x87 instructions (x87)
The percentage of 'traditional' floating point instructions among all executed 
instructions. A good indicator of 32bit programs, since in 32bit mode the compiler 
generates code that uses exclusively x87 instructions for floating point operations.
○ Calculation: 

X87_OPS_RETIRED:ANY /INSTRUCTIONS_RETIRED* 100
● CPU utilisation (CPU)

The load on the CPU indicated by the ratio between the theoretical speed of the 
CPU and the actually consumed core cycles.

Calculation:
UNHALTED_CORE_CYCLES  / (CPU_frequency * Number_of_cores * 3600 
(seconds)) * 100
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7. Transforming the results

7.1 Hourly results from raw data
The monitoring process generated one performance data file for each node for each hour 
throughout the whole monitoring period. To make this large amount of data processable, 
the data was extracted and merged together from all files from all machines, thus giving a 
single file for each machine containing all the data from all monitored hours.

7.2 Merging hourly results with LSF logs
To  know  what  type  of  workload  is  investigated,  it  was  necessary  to  find  out  what 
applications were running on the nodes during the monitored time period. The logs from 
the  scheduler  (LSF)  provide,  among many others,  the  following  information  about  the 
executed jobs:

● Time of execution
● Time finished
● Queue
● User's Login ID

Using the time information, the jobs for each monitored hour can be extracted. The type of 
the job can be derived from the queue information, while the Login ID can be used to 
associate the job to a group or experiment.

The user's Login ID is first translated to the Group ID of the user's main group with the 
help of  the passwd file from the interactive linux logon service (lxPlus).  After  that,  the 
Group ID is translated to an experiment or department name, using the group overview of 
CERN's Xwho service, which is accessible on the following link:

http://consult.cern.ch/xwho/help/group_overview

That way, the performance monitoring results can be extended with the information of the 
running jobs. To each hour of performance data, the following information of all running 
jobs has been added: username, experiment, queue.

7.3 Generating Reports
The hourly results contain all collected data in a very detailed format, which makes it very 
complicated to read it. To convert the results to a human-readable format, different reports 
are generated:

● hourly report for each node
● daily report for each node
● summarized report for all time, all nodes
● summarized report of experiments
● profile report for each dominant group/experiment
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7.3.1 Hourly report
The hourly report for each node contains an abstract from the corresponding hourly results 
file. Only the most relevant information from each hour was kept in an easily readable 
format, but also new information has been added. 

The report contains the above described set of derived values extended with the following 
additional information:

JOB_COUNT – The number of jobs that were running in the actual time frame.
EXPERIMENT – The list of experiments that were running the jobs.
QUEUE – The list of job queues that the jobs were executed from.

7.3.2 Daily report
The daily report for each node consists of the accumulated results for each monitored day.
The contents are the same as in  the daily results,  only the job information has been 
changed to counters to keep the file easily readable. A counter has been introduced for 
each experiment, that indicates how many “jobhours”  the given experiment consumed.

The performance figures are collected on an hourly basis, so in each hour, the number of 
running jobs have been summarized for each of the groups and experiments, indicating 
their activity. The jobhours counter is generated by summarizing the parallel jobs in each 
hour run by the actual experiment. If an experiment runs 2 jobs for 3 hours, it is counted 
as 6 consumed jobhours.

7.3.3 Summary report
The report summarizes all information gained from the whole set of monitored machines. 
Each line corresponds to the summary of one day's result, keeping a similar structure to 
the daily reports. The last line contains a total summary of all values.

7.3.4 Experiments report
The experiments report shows the activity of the experiments throughout all days on all 
monitored nodes. Each column corresponds to  one experiment,  which are ordered by 
activity. The last line is a total summary of all values.

7.3.5 Profile files of the main user groups 
A very important goal of the current investigation is to examine the activity of the main 
users of the batch nodes. Unfortunately this is extremely complicated to do so as it almost 
never happens that only one single user runs applications on a node at a given time.  To 
get the best assessment, records are collected from the hourly reports separately for each 
of the dominant experiments and groups. Each data file consists of lines (hours) from the 
hourly report files when the actual experiment is dominant on the node, meaning that most 
of the running jobs are run by the actual experiment or group. The files are organised by 
relevance of the records, starting with the most relevant (more jobs), and the continuous 
time periods are separated out to make manual processing easier. When enough data is 
collected, these reports can be used to profile the usual workload that is generated by the 
different groups and experiments.
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8. Analysis of the results

8.1 Distribution of experiments

The following diagram shows the accumulated activity of the user groups (experiments). 
The  values  are  gained  by  summing  up  all  jobhours  that  the  actual  experiment  has 
consumed during the monitored time period.

As it can be seen on the plot, the activity of the four most active experiments is much 
higher than the rest of the groups. CMS, ALICE, ATLAS and NA58 consumed more than 
80% of the entire runtime, the other 17 groups were running jobs only in the 20% of the 
available CPU time, which perfectly matches the Pareto's principle (80/20 rule) [5]. As a 
consequence, the gained performance figures describe mostly the behaviour of the four 
most active experiments.
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Total consumed jobhours/experiment:

CMS 147156

ALICE 138644

ATLAS 122328

NA58 115586

IT 32094

LHCB 27742

PH-TH 16684

AB 12568

NA48/2 9320

NA49 7836

PS212 6932

AD-5 3773

AT 2421

WA96 1154

PS 487

PS214 460

NA45/2 388

NA61 210

DELPHI 26

Unknown 20

PH-SFT 16
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8.2 Overview of the summary

The following automatically generated plot shows the accumulated results for the whole 
monitored time period from all machines. All data is shown in percentage of the possible 
highest value.

The most remarkable fact on the plot is the large jumps in Bus utilisation and Data bus 
utilisation. The changes are only partly related to the CPU utilisation. Results of further 
investigations to reveal the reasons of this behaviour are presented later in this document.
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8.3 Average values

The following average values could be calculated by accumulating all  results from the 
performance monitoring. These numbers represent the average performance figures of 
standard batch nodes.

CPI: 1.14
Load-Stores %: 49.63
Resource stalls %: 38.85
Branch instructions %: 14.85
Branch misses %: 2.51
L2 cache misses %: 3.55
Bus utilisation % (not validated): 38.95
Data bus utilisation % (not validated): 15.51
Bus not ready %: 1.21
SIMD instructions %: 4.39
x87 instructions %: 6.39
CPU utilisation %: 72.34
Average number of jobs/hour: ~9.5
Average runtime/job (hours): 3.27
Average working hosts: 52.3
Users total: 761
Jobs total: 197500
Consumed jobhours total: 645845
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8.4 CPU utilisation

The plot shows the accumulated CPU utilisation for each day on all monitored nodes. 

The overall CPU utilisation throughout the cluster fits the values gained from LEMON, the 
standard monitoring tool at CERN. The average 72.34% is lower than expected in an HPC 
environment, where the optimal value would be 80-90%. The fact that the utilisation drops 
even below 60% indicates that a better exploitation of the resources could be achieved.

CPU utilisation of the most active experiments and groups:

The summarising extract from the profile files of main user groups is sorted by relevance 
of the sample from each group. The more records are found when an experiment or group 
is dominant on a node, the more accurate the results are.
Apparently the most CPU intensive jobs are run by the LHCB and ALICE experiments, 
while NA58 and CMS are running less CPU intensive applications.
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Experiment Records CPU%
NA58 1414 68.86
LHCB 231 86.48
PH-TH 227 71.25
ALICE 183 87.44
IT 171 83.5
ATLAS 114 81.22
CMS 69 62.19
PS212 55 81.51



8.5 The number of running jobs

The plot shows for each day the accumulated number of jobs that were running on all 
monitored nodes. The values were gained by summarising the number of parallel jobs in 
each hour.

Apparently the CPU utilisation and the number of jobs are only partly related, but in most 
cases more jobs generate more CPU utilisation. The graph shows quite large changes in 
the  number  of  running  jobs,  although  the  number  of  execution  slots  is  constant.  An 
explanation  could  be  the  changes  in  execution  times,  since  shorter  jobs  raise  the 
counters. Another explanation is discussed in the “SIMD and X87 instructions vs. CPU 
utilisation and the number of jobs” (8.13.3) section of the document.
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8.6 Cycles per instruction (CPI)

The plot shows the accumulated CPI values for each day from all monitored nodes. 

The values are visibly related to the CPU utilisation figures. The more loaded the CPU is, 
the more cycles have to be spent on each instruction. The 1.14 average CPI could be 
reduced by effective optimisation of the source codes. Modern CPUs can reach even 0.25 
CPI by running optimised codes.

Average CPI values of the most active experiments and groups:

There is more than 40% of difference between the experiments. PH-TH executed the most 
efficient code (0.87), while the IT group had an unimpressive 1.6 CPI.
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Experiment Records CPI
NA58 1414 0.96
LHCB 231 1.16
PH-TH 227 0.87
ALICE 183 1.28
IT 171 1.6
ATLAS 114 1.28
CMS 69 1
PS212 55 1.36



8.7 Load and Store instructions

The percentage of memory handling instructions can be seen on the following graph:

Apparently,  the amount of memory load and store instructions is constantly around 50 
percent regardless to the type of the running applications.

The experiments that are using 64bit applications (IT, ALICE, PH-TH) are performing less 
Loads/Stores. About the relation of the experiments to 32 and 64 bit codes, please refer to 
the x87-SIMD instructions (8.13) session of the document.
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Experiment LDST  (%)
NA58 50.04
LHCB 51.23
PH-TH 46.42
ALICE 46.78
IT 45.4
ATLAS 52.07
CMS 52.54
PS212 51.05



8.8 Branch instructions

The  following  plot  shows  the  percentage  of  branch  instructions  among  all  executed 
instructions.

The amount of branch instructions does not have large changes throughout the whole 
time period, which means that the average ~15% of branches can be applied to most type 
of jobs running on the batch nodes.

The averages from the experiments are seemingly confirm this too:
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Experiment BRANCHES (%)
NA58 14.45
LHCB 16.49
PH-TH 11.96
ALICE 17.47
IT 12.51
ATLAS 15.22
CMS 15.95
PS212 14.07



8.9 Mispredicted branches

The percentage of wrongly predicted branch instructions can be seen on the following 
plot:

The amount of mispredicted branches is quite constant over time, the average is 2.51%, 
which is higher than it would be optimal.

The high branchmiss ratio (3.22 % at NA58) reveals a possibility for performance tuning in 
the  source  codes.  Each  mispredicted  branch  instruction  may  result  in  a  very  large 
performance penalty during execution.
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Experiment BRMISS (%)
NA58 3.22
LHCB 2.31
PH-TH 2.98
ALICE 1.93
IT 2.27
ATLAS 2.55
CMS 2.57
PS212 2.63



8.10 L2 cache misses

As shown on the plot, the ratio of the L2 cache misses increases suddenly from 28/07, the 
average of L2 misses for all machines reaches 12.5% on 29/07. The reason for such a 
large jump was investigated, and the following was found:
The cache miss ratio on many machines exceeded for shorter times even 30% in the last 
monitored days, while no change could be noticed on some machines compared to the 
preceding period.  By examining the activity of the experiments, it was also found that the 
activity of the PS212 (DIRAC) experiment became multiple times higher than before. The 
examination of the detailed hourly results only strengthened the assumption that the jobs 
of this particular experiment can be related to the high amount of last level cache misses.

This can be proved by looking at the average L2 cache miss ratios of the experiments:
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Experiment L2 (%)
NA58 3.08
LHCB 2.04
PH-TH 1.72
ALICE 4.29
IT 6.25
ATLAS 2.49
CMS 4.67
PS212 10.86



Besides the 10.86% of PH-TH, which is a very high rate that causes serious impact on 
performance, the 6.25 % cache miss ratio of the IT department is remarkable.
Reducing the last level cache ratio may result in noticeable performance improvement, 
since almost  all  occurrence of  a  cache miss results  in  memory access,  which  means 
longer execution time.

8.11 Bus and Data bus utilisation

8.11.1 Bus and Data bus utilisation figures (not validated)
The following diagram shows the overall Bus utilisation and the amount of Data transfers 
performed on the Front Side Bus.

The diversity of the accumulated bus utilisation is extremely high, and even larger jumps 
can be seen on some particular  nodes.   The amount  of  data transactions follows the 
overall bus utilisation figures, and apparently makes up a constant 40% of the consumed 
bus cycles. 

22



8.11.2 Extreme bus utilisation values

To find out  the reason for such a large diversity, the bus utilisation was examined in the 
detailed hourly reports.

The hourly reports on some of the machines showed extremely high bus utilisation that 
exceeds even 100% for shorter times.  Values can be seen up to 300% for bus utilisation 
and 110% for data bus utilisation at the high peaks. 

Since 300% is not an expected value, the raw perfmon output files were also examined. 
Using the equation to calculate the utilisation, the calculated values were the same as in 
the report files. The definition for calculating bus utilisation comes    from the Intel 64 and 
IA-32 Architectures  Manual  [1].  The manual  gives  three  definitions  for  calculating  bus 
utilisation:

1. Bus utilisation percentage calculated using ratios and FSB:
FSB DATA READY * Bus Ratio * 100 / Non-sleep clock ticks

2. Bus utilisation percentage:
BUS transaction any performed by all agents * 2 / Cpu clk unhalted bus*100

3. Data bus utilisation percentage:
BUS data ready clocks by all agents / cpu clk unhalted bus*100

The first definition is seemingly equal to definition 3, indicating data bus utilisation instead 
of bus utilisation (a discussion is already open on the topic with Intel). The actual results 
were  calculated  using  definitions  2  and  3.  The  reason  for  such  extreme  values  is 
unidentified,  and  a  further  investigation  is  necessary  to  understand  and  validate  the 
calculation methods for the bus and data bus utilisation figures. The currently calculated 
values may be appropriate on a different scale, but it is also possible, that they are not 
even related to the real utilisation figures.

The  extreme  bus  utilisation  values  could  be  reproduced  artificially  on  a  dual-socket 
Woodcrest based server, by running a benchmark program (lapack), that heavily stresses 
the memory subsystem.  The test program had to be started as more processes than the 
number of  CPU cores in  the system in  order  to  gain  bus utilisation values exceeding 
100%. Another starting point for a further investigation could be, that the bus and data bus 
utilisation figures were apparently related to the amount of executed SIMD instructions. At 
the high peaks of  bus utilisation, most  of  the executed floating point  instructions were 
SIMD  instructions,  indicating  64bit  mode.  An  inquiry  has  already  been  sent  to  Intel 
regarding the issue.
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8.12 Bus not ready

The percentage of bus cycles when bus transactions could not be executed:

The amount of unsuccessful bus transactions varies over time, and increases when the 
load is most likely higher on the bus. The average is 1.21%.

Bus not ready average at the experiments:

The  experiments  with  higher  bus  utilisation  suffered  from  more  unsuccessful  bus 
transactions.
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Experiment BNR (%)
NA58 0.14
LHCB 1.31
PH-TH 0.7
ALICE 2.65
IT 4
ATLAS 1.05
CMS 0.13
PS212 0.84



8.13 x87 and SIMD instructions

The following chart represents the executed x87 instructions as the amount of traditional 
SISD  (Single  Instruction  Single  Data)  floating  point  instructions,  and  also  shows  the 
executed SIMD (Single Instruction Multiple Data) operations.
 

The amounts of executed x87 and SIMD instructions are good indicators to examine the 
composition of  32 and 64 bit  applications. Today's  compilers are using exclusively the 
traditional x87 instructions when compiling in 32 bit mode to maximise compatibility, while 
64 bit applications are compiled to exploit the SIMD capabilities of the SSE instruction set. 
Thus the amount of x87 instruction represents 32 bit applications, while the amount of 
SIMD instruction represents the share of 64 bit applications.

The percentage of all  floating point instructions can be calculated as a sum of the two 
averages (x87+SIMD), which is 10.78%. The graphs of the two instructions are apparently 
mirrored to each other, and the sum of the two values makes up almost constantly 10% of 
all instructions. This indicates that the amount of floating point instructions (X87+SIMD) is 
more or less constant when sampled over a large number of applications and a longer 
period of time.

About 60% of all applications were run in 32 bit mode, while the 64 bit applications made 
up the remaining 40%.
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8.13.1 32bit and 64bit applications at the experiments

One major goal of this investigation was to identify which experiments are using 32bit and 
which are running 64bit applications. This could be derived from the x87-SIMD usage of 
the experiments:

It is already clear from the averages, that NA58 and CMS are running mostly 32bit code, 
while  ALICE runs  mainly  64bit  applications.  To  conclude  what  type  of  code  the  other 
experiments are running, it was necessary to analyse the jobmix in the collected data from 
each experiment manually, using the profile report of each user group. For example, if jobs 
from a given experiment run together with jobs from another experiment which is already 
identified, it is easily decidable whether the experiment uses 32bit or 64bit code.

The experiment profile reports contain records when the jobs from the actual experiment 
make up the majority of the running jobs over a time period, or at most when there is only 
one other experiment running at the same time. After examining the collected records for 
each experiment, it was clear that, at least in the recorded time periods, all experiments 
could be bound to either 32 or 64 bit  usage by using almost exclusively x87 or SIMD 
instructions.

32bit vs. 64bit usage of the experiments:
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Experiment SIMD (%) X87 (%)
NA58 0.4 10.43
LHCB 3.32 4.66
PH-TH 9.27 4.45
ALICE 5.74 0.86
IT 11.4 2.98
ATLAS 3.46 5.94
CMS 0.34 9.05
PS212 2.18 8.6

Experiment Principal instr. Mode

Dominant users

ATLAS x87 32bit
ALICE SIMD 64bit
CMS x87 32bit
NA58 x87 32bit

Minor users

AT x87 32bit
IT-GEANT4 SIMD 64bit
IT-GEAR SIMD 64bit
IT-DTEAM x87 32bit
LHCB x87 32bit
NA45/2 x87 32bit
PH-TH SIMD 64bit
PS212 x87 32bit



8.13.2 SIMD and X87 instructions vs. CPU utilisation and the number of jobs

The following plot shows the percentage of SIMD, x87 instructions, CPU utilisation and the 
running jobs which is shown as a percentage of the highest number of jobs. The graph 
allows to compare differences in load caused by 32 or 64 bit applications.

The most interesting fact on the graph is that when mostly 32bit applications are running 
(x87 is high), both the CPU utilisation and the number of jobs drops down.

The detailed hourly report files showed, that during the peaks of x87 utilisation (32bit jobs), 
the maximum number of parallel jobs was reduced to 5 or 6 from the average 8-9 on many 
nodes. Almost all of the remaining jobs were run by the NA58 (COMPASS)  experiment, 
which  mainly uses 32bit applications.

As it was explained, the jobs of the NA58 experiment that caused the reduction in the 
number of parallel jobs and lowered the CPU utilisation were using up all the swapspace 
on the nodes from time to time. This behaviour inhibited the scheduler from starting new 
processes, so the number of parallel  jobs dropped down, and the CPU utilisation also 
remarkably decreased.
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9. Conclusion

The performance of a large cluster in CERN batch farm was monitored for several weeks 
in order to get low level, detailed information about the HEP batch computing environment. 
A low level performance monitoring tool (perfmon) was collecting data for 52 days from 60 
standard production batch nodes in the CERN Computer Centre. The main subject of the 
investigation  was  to  analyse  the  performance  of  production  batch  nodes  and   reveal 
possible performance bottlenecks in the infrastructure. 

The second goal of the investigation was to analyse the workload that is generated by the 
different experiments and work groups at CERN. The jobs that were running on the nodes 
were successfully coupled with the corresponding experiments and groups using the group 
identifier  of  the users.  The detailed results  were  then summarised in  several  different 
human readable reports to facilitate the analysis.   

The monitoring was successful, although some of the nodes were shut down during the 
data collection due to different errors that were not related to the performance monitoring.

However one issue was found during the data analysis regarding to the bus and data bus 
utilisation figures. Large jumps, and suspiciously high utilisation values (exceeding 300%) 
were  found.  At  the  moment,  the  origin  of  such  events  is  not  identified  yet.  A further 
investigation is needed to examine and validate the way the bus and data bus utilisation 
can be accurately calculated.

The overall  CPU utilisation of  the machines does not  reach the optimum 80-90%. An 
average of  72%  utilisation was found,  which is coherent  with  the data from LEMON, 
CERN's standard monitoring tool. The under-utilisation was partially caused by an issue, 
when the number of parallel jobs was several times remarkably diminished, thus causing 
degraded performance.  The  problem was  related  to  jobs  from the  NA58 (COMPASS) 
experiment,  that were using up all  available swapspace preventing the scheduler from 
starting new jobs.

Enough data was collected to profile efficiently the workload generated by the most active 
experiments.  However  it  was  very  challenging  to  clearly  see  the  profile  of  each 
experiment,  since normally the jobs are executed by different  user  groups.   The data 
filtering  was  done  by a  script  that  selected  the  most  adequate  time periods  for  each 
experiment. These time periods showed surprisingly consistent workload from most of the 
user groups, which allowed for profiling. 

The profile files allowed to compare the performance of applications run by the different 
user groups. The distribution of 32bit and 64 bit applications, the CPU or data intensive 
applications could all be examined. 
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The  information  about  the  usual  workload  on  batch  nodes  also  helps  us  profiling  a 
benchmarking method that measures the performance under similar load conditions that 
the computing nodes in production are dealing with, helping the procurement process for 
new servers.

The current investigation proves that monitoring performance can be a considerable tool 
for  everyday use,  to  detect  performance  bottlenecks  and  support  the  development  of 
hardware efficient software. For example, if the exceptionally high amount of L2 cache 
miss ratio at the PS212 experiment, causing a noticeable impact on the whole cluster's 
performance,  was reported back to the developers, not only their applications, but the 
performance of the entire batch production service would increase.
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