
Strategies employed for
LHC software performance
studies

Andrzej Nowak, CERN openlab
February 2010

Executive Summary
The objective of this work is to collect and assess the software performance
related strategies employed by the major players in the LHC software arena: the
four main experiments (ALICE, ATLAS, CMS and LHCb) and the two main software
frameworks (Geant4 and ROOT). As the software used differs between the parties,
so do the directions and methods in optimization, and their intensity. The
common feeling shared by nearly all interviewed parties is that performance is not
one of their top priorities and that maintaining it at a constant level is a
satisfactory solution, given the resources at hand. In principle, despite some
organized efforts, a less structured approach seems to be the dominant one, and
opportunistic optimization prevails. Four out of six surveyed groups are
investigating memory management related effects, deemed to be the primary
cause of their performance issues. The most commonly used tools include
Valgrind and homegrown software. All questioned groups expressed the desire for
advanced tools, suitable for use by individual non-expert users, thus indirectly
indicating limited will to spawn concentrated activities by experts. This paper
outlines several recommendations, which (if implemented) might allow
optimization efforts to be more effective.

Table of Contents

Executive Summary ... 1
Introduction and motivation.. 2
Current situation .. 4

General remarks .. 4
Significant bottlenecks .. 4
Performance optimization priorities ... 4
Performance monitoring processes and strategies .. 5

Tools and requirements... 6
Currently used tools... 6
Basic functional requirements.. 6
Additional functional requirements .. 6
Non-technical guidelines for tools .. 7

Recommendations and directions.. 7
General remarks .. 7
Analysis... 7
Recommendations... 9

Conclusions .. 10
Acknowledgements.. 11

Introduction and motivation
Recent progress in microprocessor and system board technologies vastly differs
in character from the advancements made several years ago. Due to certain
effects in silicon and manufacturers’ choices, we are no longer the beneficiaries
of architectures effortlessly scaling up with the clock frequency. Due to these
changes in the computing landscape, openlab is actively monitoring solutions and
activities which might lead to improved performance in place of hardware
upgrades, once taken for granted.

Performance optimizations can result in significant savings in hardware, and can
lead to results being delivered with better latency. If the software running in the
CERN computing center had been improved by about 1%, the resulting saving
would reach hundreds of thousands of Swiss Francs in hardware. Thus it is not
hard to understand why the Organization and its members are recommended and
motivated to look favorably upon optimization.

The objective of this work is to collect and assess the software performance
related strategies employed by the major players in the LHC software arena:

 The ALICE experiment,
 The ATLAS experiment,
 The CMS experiment,
 The Geant4 collaboration,
 The LHCb experiment,
 The ROOT collaboration.

This analysis involves performance monitoring and optimization habits and
strategies as well as a high-level overview of the type of related efforts
undertaken by the software teams behind the entities mentioned above. This
paper is not a comprehensive in-depth study meant to examine each individual
aspect of software optimization or the work done, but rather a general summary.
As the software used differs between the parties, so do the directions and
methods in optimization and so does the intensity of those efforts. The goal,
however, is common: better overall software performance, yielding lower cost,
higher throughput and optimized latency. Thus, a secondary objective of this work
is to help to reach this goal and to possibly spawn additional or unified
performance optimization efforts on behalf of the interested parties.

While openlab acts mainly as an observer and a provider of competence in certain
areas, it also has the capacity to provide tools and hardware meant to facilitate
studies. This work is meant to reinforce this effort, and provide input to future
decisions concerning activities and directions, especially considering the shifts in
the mainstream perception of performance monitoring.

The survey approaches two major areas: the process and the tools. It has been
split into several parts dealing with particular aspects of the aforementioned
issues. In order to establish a clear and – more importantly – up to date image of
techniques and requirements for performance studies, interviews have been
conducted with all major LHC software providers. These include the
representatives of four major experiments – ATLAS, CMS, LHCb and ALICE, as well
as the representatives of the two major software frameworks: Geant4 and ROOT.
In addition, one needs to take into account the generic operations and
requirements imposed by High Energy Physics (HEP) and CERN, as well as those
imposed by openlab for internal studies.

Current situation
General remarks
This section is split into four parts which describe in general terms the combined
approach from all parties.

The prevalent feeling shared by many is that software performance is not a top
priority, and that maintaining it at a constant level is a satisfactory solution, given
the resources at hand. Many frameworks haven’t yet fully transitioned to modern
compilers and 64-bit architecture, and the performance gain from such a
transition might in some cases be equivalent to optimizations introduced by hand
in the code. It should be explained that in certain cases a constant level of
performance comes with the benefits of improved detail or accuracy, and then the
performance is considered as improved.

Significant bottlenecks
There are situations in which even a complex application has a clearly defined
bottleneck. One case is that of “low hanging fruit”, which is perceived as a clear
motivator for better performance. In another case, a well visible obstacle can
often be complex and impossible to deal with using simple methods, but it can
commonly be easily quantified with sufficient detail to start working on it.

All of the parties surveyed have indicated poor memory characteristics (such as
inflated size and low usage efficiency) as their main performance worry. This is
indicative of memory management issues such as suboptimal allocation and
deallocation, which lead to growing memory pools and memory fragmentation.
Memory bandwidth was mentioned as a current or possible future bottleneck in
two cases. Memory latency was not typically perceived as a problem.

Processor and architecture related bottlenecks were said to be appearing mostly
as a side effect of other issues, but have sometimes prompted the owners of the
code to direct investigations in that direction.

Finally, many I/O related bottlenecks have recently been tackled with good results
by developers from ROOT and the experiments. These changes introduced
through cooperation have benefited all experiments. However, several groups
indicated that even further optimizations in this area still might be possible.

Performance optimization priorities
In most cases, memory layout and usage patterns were mentioned as the top
items currently investigated or marked for investigation. Thus, while optimization
priorities differ vastly across camps, there is one common group of activities that
stands out, with the common objective of mitigating the various side effects of
memory usage.

Memory fragmentation, leaks, allocation and abuse are leading to pressure and
non-locality, and have been widely cited as the cause of many performance issues.
While in some situations these problems were a result of coding errors, it should

be noted that such symptoms are not always caused by mistakes in code and in
some cases have a lot to do with the environment – the compiler and relevant
libraries, including those managing memory. These effects are currently being
investigated in detail by 4 out of 6 surveyed groups – this includes both initial and
perpetual investigations. ALICE has claimed to have already finished such a phase
and has declared the code stable in that respect, and LHCb is preparing to
investigate.

Difficulties with memory management have naturally paved the way for the
evaluation of multi-core and multi-processing technologies, which give the
promise of improving locality by running a single code base and of saving memory
through the involvement of shared structures. However, given that multi-threaded
development is often considered to be an order of magnitude more difficult and
time consuming than developing single-threaded applications, memory issues
alone are not typically considered to be a sufficient justification for more
widespread and systematic activities on this front. In practice, multi-threading
activities are scarce, often unadvanced and are considered to be even less
important than the efforts directly related to performance. In particular, it is often
the case that for good threading scalability a fundamental review of the codebase
is needed, and due to various reasons such efforts are very limited or inexistent.

CMS and LHCb are also investigating microarchitecture-related optimization
directions as a secondary activity. These include microarchitectural investigations,
platform investigations and the usage of advanced hardware-level analysis of the
software. CMS has already had interesting results, and a more general
framework is being built to aid with this kind of investigations, as well as to
facilitate the interpretation and dissemination of PMU-based performance
monitoring results. In addition, ATLAS and the Geant4 PH/SFT team are working
on reviewing the ATLAS simulation with focus on processor efficiency, following a
joint recent assessment paper.

Performance monitoring processes and strategies
The survey has shown that the approach to performance optimization differs a lot
from case to case. In general, despite some organized efforts, a less structured
approach seems to be the dominant one, and opportunistic optimization prevails.

ATLAS, CMS, Geant4, ROOT have a regular performance regression check in place,
while LHCb and ALICE are currently working on implementing similar measures.
Not surprisingly, in some cases the focus is shifted towards maintaining a
constant level of performance rather than improving it. CMS and LHCb have
designated people whose time is dedicated mainly to optimization, not only in the
domain of memory issues. ROOT performance seems to be actively managed by a
group of senior programmers, however some potential areas of improvement
identified earlier may not be approached without additional manpower. Geant4
conducts periodic code profiling and reviews which proceed in cycles, and allow
the recovery of CPU time allocated for improved physics modeling – such
activities are reported to have yielded significant improvements. In the case of
ATLAS, occasional centralized code reviews are reported to allow for sizeable
gains in performance. In addition, ATLAS, Geant4 and ALICE also depend on best
efforts from their numerous programmers for everyday optimization.

The two mentioned activities started by CMS and LHCb are aimed at developing
ways of improving the software through a combined and comprehensive approach.
Thus, processor usage efficiency and platform related factors are also considered
in addition to memory related issues. One of the expected results of these efforts
is a higher-level strategy for performance optimization, as well as general
guidelines and principles at some point in time. In the case of LHCb, this effort is
especially important, as the group concerned seems to lack a current strategy for
efficiency improvement.

Tools and requirements
Currently used tools
There are several tools actively and commonly used by the groups surveyed:

 The Valgrind suite (valgrind, callgrind, cachegrind, etc) – 6 groups
 Own tools (depending on the project) – 4 groups
 Google performance tools (i.e. tcmalloc) – 2 groups + 1 experimenting
 Perfmon2 (pfmon) – 2 groups
 Intel tools (VTune/PTU) – 1 group experimenting

There is a trend of heavy reliance on the Valgrind suite and on in-house developed
tools. While the former stems from the memory management issues described
earlier, the latter might be indicative of the lack of proper tools in the environment.
Usage of tools offered by openlab, such as perfmon2 and the Intel tools, is not
widespread.

Basic functional requirements
Current typical functional requirements for tools include:

 Memory related statistics
o Allocations and deallocations (usage patterns, allocation patterns,

pressure, layout)
o Categorize by calling stack
o Tracking down leaks

 Call graph building
 Event based sampling

o Per-function
o Per-module

Additional functional requirements
All of the surveyed groups indicated some additional functionality would be
welcome. These wishes could be summarized in the following way:

 Being able to track I/O bottlenecks easily
 Being able to specify how much processing time is attributed to specific

segments of code
 Enhanced memory statistics and memory allocation effects; in particular:

o Object layout on the heap
o Page sharing amongst processes
o Usage histogram

 Event based sampling with stack traces

It should be noted that some of these requirements are fulfilled by existing tools
(for example memory locality tools in the Intel Performance Tuning Utility) or are
being addressed in current developments, such as for example I/O tracking in
ROOT.

Non-technical guidelines for tools
In addition, the following non-technical guidelines have crystallized:

 It is rather important that the tools are intuitive to use and produce easily
understandable results when needed, preferably supplemented by
graphics

 The tools should work in a stable and reliable fashion even with
complicated software frameworks

 It is better that the tools are open source, but this is not a strict
requirement

 The tools should not be proprietary, but this is not a strict requirement
 Portability is a concern, but it’s not a strict requirement
 The tools should be made available free of charge
 It is important that the tools are accessible without superuser privileges

past the installation phase
 The tools should be easy and convenient to use by non-expert physicists

and programmers

It should also be noted that in some groups there is opposition to external tools,
and a strong preference exists for developing in-house solutions. These often
prove effective and tailored to the specific needs of the group, however their
development and maintenance requires additional resource expenditure.

Recommendations and directions
General remarks
It has already been mentioned that optimization is rarely seen as a key activity.
This might be attributed to several factors. One is the chronic shortage of funds
and manpower, which forces the assignment of manpower to other tasks. Another
reason might be the indirect benefit from optimizations, and the lack of certainty
of achieving good results. Finally, optimization is seen as a difficult and tedious
task. That is not only due to the lack of adequate tools, but also due to the
frequent need of deep understanding of the software and the underlying
hardware.

Analysis
The global image obtained suggests that there is not much organized, regular and
concentrated performance optimization work going on. In certain cases finding
appropriate representatives to interview or extracting accurate information proved
to be challenging. In some groups the activities already performed would benefit
greatly from better organization and additional communication with entities from
different projects.

CMS and ROOT have a conscious effort focused on performance, the LHCb one
just started, and a similar new project is being founded within Geant4, in addition
to code reviews held to date. However, these efforts are not always high-profile,
as in the case of LHCb for example. Out of the surveyed six, ATLAS maintains low
involvement in performance oriented community work due to focus on issues that
are different from the ones typically discussed.

The results obtained from this survey suggest strongly that any tools employed
should provide output which is comprehensible for a non-expert user and hassle-
free to set up. Unfortunately, this particular requirement conflicts with the
complex nature of computers and the software which is driving them. On the other
hand, there certainly are improvements that could be made to currently used
tools, so that the data gathered is analyzed more thoroughly than the current
standard might suggest, and displayed using less technical content. Another issue
mentioned in this context was the stability of tools – many of them seem unfit for
the type of software used at CERN.

There have been numerous concerns about the viability and usefulness of
hardware-level analysis. This is understandable, given the level of obscurity and
steep learning curve often associated with the topic. However, being blessed with
a relatively homogenous platform (the PC) as the major vehicle for LHC-era
software, one should not ignore the rich built-in performance monitoring
capabilities of the platform, even if the learning curve is steep.

Several groups have used an approach in which every user is responsible for their
own code, and in such a case automated facilities typically exist, which are
designed to minimize performance regression. In this kind of scenario the best
performance one can achieve without additional efforts could be described as
“adequate”. This strategy maximizes productivity at a low cost, but at the same
time it minimizes the potential benefits and often isolates expertise. It is not
unreasonable to expect that a more combined effort would be required to get
better results. Such is the case of ATLAS, where the notion of code ownership is
very strong, but concentrated efforts yield good results and lasting improvements.

Teams which have chosen to take a managed and regular approach to the subject
were in control of their software’s performance and have succeeded in moving
optimization efforts forward despite manpower problems.

Recommendations
Based on the data and opinions gathered, the recommendations are as follows:

 Strategies
o Experience shows that a unified and coordinated performance

optimization strategy will always yield better results than
uncoordinated efforts. This process works best if there is an entity
driving the effort.

o Several projects (i.e. ATLAS, Geant4, ROOT) have either split
optimization efforts into “waves” of code examination and cleanups,
or have executed periodic consolidated activities. Such a tactic will
yield good results and will allow for changes to be introduced
without the fear of disrupting functionality.

o Deep in-house knowledge of the code, tools and the platform is
indispensable for achieving optimal results.

o It is important that code owners have an up to date image of the
performance of their code in real, production environments.
Performance data can often be easily gathered without noticeable
penalties in terms of throughput.

o Focusing on hotspots is often a good tactic as well. However, a
combined and fundamental approach to performance will always
allow for a frame of reference, which in turn might help to define
expected improvements.

 Cooperation
o Numerous joint efforts in the HEP community have shown that

excellent results are produced when software providers (such as
Geant4 or ROOT) have the opportunity to cooperate closely with
software users (such as the experiments).

o Educational efforts and community events allow knowledge
exchange, efficient dissemination of good coding and optimization
techniques, and, less importantly, help increase the awareness of
the importance of performance studies. Such efforts also allow
addressing common problems (i.e. inoptimal practices) before they
even arise.

 Tools
o In some groups, select members have embraced tools which are

non-standard or experimental, and are not developed by the local
community. While it is true that the properties of some of those
tools might bring little or no direct benefit to the projects in
question, there certainly is expertise outside of HEP which could be
brought in.

o The Intel Performance Tuning Utility is a piece of software which
runs with the standard Scientific Linux kernel, and allows for some
of the activities put on the current wish lists. Other tools which after
some work might be able to help with the problems mentioned, are
PIN, SystemTap and utrace. Good knowledge of the “market” will
certainly aid in conducting an efficient optimization process.

As far as the activities of openlab are concerned, there are some areas which
might benefit from a minor re-alignment:

 One is active work on closing the gap between the programmer and the
hardware. Knowledge dissemination and the regular computing courses
organized every 3 months are definitely a step in the right direction.

o Action taken: In addition to regular openlab workshops, a new type
of irregular workshop for experts has been founded in cooperation
with Intel.

o Action taken: openlab will also work towards other ways of
disseminating knowledge related to combining high and low level
performance tuning data.

 Another commonly mentioned problem was that of the stability and
reliability of the tools. Openlab has brought several performance
optimization tools to the table, Perfmon2 and the Intel Performance Tuning
Utility amongst them. However, even though the mentioned tools often
provide functionality sought by developers, they might lack reliability when
working with HEP software. In addition, they would benefit from more
credibility and proven success stories.

o Action taken: this feedback has been carefully considered and will
impact future openlab activities in this domain. A special program
starting soon in cooperation with Intel will bring better tools.

Conclusions
Obviously, HEP communities seem to focus heavily on code feature sets and
correctness, but, disappointingly, not very much on performance. This, amongst
other factors, could be attributed to decades of hardware improvements and
clock scaling taken for granted. Times have changed, and so has the hardware
development model. A continued journey along the current path of single
threaded, non-optimized processing will incur unnecessary costs both in terms of
resources and time. Thus, in order to achieve good results with the limited
resources at hand, it is important that:

 efficiency and performance optimization come back to the table as regular
topics for discussion,

 optimization efforts are concentrated and well organized,
 multi-threading is explored as a solution to many of the described

problems,
 expertise reaches involved parties and is shared and disseminated in a

timely fashion.

In conclusion of the tool survey, it appears that performance related tools should
be made more accessible and more reliable. At the same time additional efforts
are needed to close the gap between the programmer and the hardware.

Acknowledgements
I would like to thank Sverre Jarp from openlab and Jeff Arnold from Intel for their
valuable comments and insight.

I would also like to thank the following people for their input:
John Apostolakis (Geant 4), Gerhard Brandt (ATLAS), Rene Brun (ROOT), Paolo
Calafiura (ATLAS), Gabriele Cosmo (Geant 4), Peter Elmer (CMS), Vincenzo
Innocente (CMS), Daniele Francesco Kruse (CMS), Karol Krużelecki (LHCb), Stefan
Lohn (ALICE), Zachary Marshall (ATLAS), Fons Rademakers (ROOT), David
Rousseau (ATLAS), Matevz Tadel (ALICE) and others.

	Executive Summary
	Introduction and motivation
	Current situation
	General remarks
	Significant bottlenecks
	Performance optimization priorities
	Performance monitoring processes and strategies

	Tools and requirements
	Currently used tools
	Basic functional requirements
	Additional functional requirements
	Non-technical guidelines for tools

	Recommendations and directions
	General remarks
	Analysis
	Recommendations

	Conclusions
	Acknowledgements

