Travelling securely on the Grid to the origin of the Universe

F-Secure SPECIES 2007 conference

Wolfgang von Rüden Head, IT Department, CERN, Geneva 24 January 2007

CERN stands for over 50 years of

- fundamental research and discoveries
- technological innovation
- training and education
- bringing the world together

1954 Rebuilding Europe First meeting of the CERN Council

2004 Global Collaboration The Large Hadron Collider involves over 80 countries

1980 East meets West Visit of a delegation from Beijing

CERN's mission in Science

- Understand the fundamental laws of nature
 - We accelerate elementary particles and make them collide.
 - We observe the results and compare them with the theory.
 - We try to understand the origin of the Universe.
- Provide a world-class laboratory to researchers in Europe and beyond
- New: Support world-wide computing using Grid technologies
- A few numbers ...
 - 2500 employees: physicists, engineers, technicians, craftsmen, administrators, secretaries, ...
 - 8000 visiting scientists (half of the world's particle physicists), representing 500 universities and over 80 nationalities
 - Budget: ~1 Billion Swiss Francs per year
 - Additional contributions by participating institutes

What is the Grid?

The **Grid** is a service built on top of the Internet, just like the Web. But the Grid goes one step futher...

What is the Grid?

Computers and instruments connected to the Grid share not **only** information ...

What is the Grid?

... but also **computing power** and resources like **disk storage**, **databases** and **software applications.**

How does the Grid work?

- It relies on advanced software, called middleware.
- Middleware automatically finds the data the scientist needs, and the computing power to analyse it.
- Middleware balances the load on different resources. It also handles security, accounting, monitoring and much more.

Why does CERN need the Grid?

 χ Zurich – January 2007

CĔRՒ

The LHC accelerator and the four experiments

View of the LHC tunnel

View of the ATLAS detector (under construction)

~ 300.000 MB/s from all sub-detectors

Trigger and data acquisition

Event filter computer farm

~ 300MB/s

Raw Data

Today's installation at CERN:

8500 CPUs (Linux) in 3500 boxes

4000 TB on 14'000 drives (NAS Disk Storage)

45'000 Tape Slots installed and 170 high speed drives (10 PB capacity)

Zurich – January 2007

CÉRN

Massive ramp-up during 2006-08

CÉRN

Massive ramp-up during 2006-08

Massive ramp-up during 2006-08

ERI

Summary of Computing Resource Requirements

All experiments - 2008

From LCG TDR - June 2005

	CERN	All Tier-1s	All Tier-2s	Total
CPU (MSPECint2000s)	25	56	61	142
Disk (PetaBytes)	7	31	19	57
Tape (PetaBytes)	18	35		53

WLCG Collaboration

The Collaboration

- 4 LHC experiments
- ~120 computing centres
- 12 large centres (Tier-0, Tier-1)
- 38 *federations* of smaller "Tier-2" centres
- Growing to ~40 countries

Memorandum of Understanding

- Agreed in October 2005, now being signed
- Resources
 - Commitment made each October for the coming year
 - 5-year forward look

•

Worldwide Grid for science ~200 sites – some very big, some very small 60 Virtual Organisations

with >25 000 CPUs

Submitted:	628
Waiting:	99
Ready:	871
Scheduled:	9464
Running:	12198
Done:	7319
Aborted:	3468
Cancelled:	93
Active Sites:	156 352

Statistics:

Developed by e-Science, HEP Imperial College

The EGEE project

• EGEE

- Started in April 2004
- Now in 2nd phase with 91 partners in 32 countries

Objectives

- Large-scale, production-quality grid infrastructure for e-Science
- Attracting new resources and users from industry as well as science
- Maintain and further improve "gLite" Grid middleware
- Improve Grid security

Entering the Grid

CERN – January 2007

CERN – January 2007

Entering the Grid

CERN – January 2007

Security Collaboration in the LHC Grid

(Initial picture by Ake Edlund)

CÉRN

Security Collaboration in the LHC Grid

(Initial picture by Ake Edlund)

Security Collaboration in the LHC Grid

(Initial picture by Ake Edlund)

(Initial picture by Ake Edlund)

Applications on EGEE

- More than 25 applications from an increasing number of domains
 - Astrophysics
 - Computational Chemistry
 - Earth Sciences
 - Financial Simulation
 - Fusion
 - Geophysics
 - High Energy Physics
 - Life Sciences
 - Multimedia
 - Material Sciences

····

- EGEE used to analyse 300,000 possible potential drug compounds against bird flu virus, H5N1.
- 2000 computers at 60 computer centres in Europe, Russia, Asia and Middle East ran during four weeks in April - the equivalent of 100 years on a single computer.
- Potential drug compounds now being identified and ranked.

Neuraminidase, one of the two major surface proteins of influenza viruses, facilitating the release of virions from infected cells. Image Courtesy Ying-Ta Wu, AcademiaSinica.

Enabling Grids for E-sciencE

- International Telecommunication Union
 - ITU/BR: Radio-communication Sector
 - management of the radio-frequency spectrum and satellite orbits for fixed, mobile, broadcasting and other communication services
- RRC-06 (15 May-16 June 2006)
 - 120 countries negotiate the new frequency plan
 - introduction of digital broadcasting
 - UHF (470-862 Mhz) & VHF (174-230 Mhz)
 - Demanding computing problem with shortdeadlines
 - Using EGEE grid were able to complete a cycle in less than 1 hour

Figure 1 The extent of the planning area for the RRC-06

eGee

Businesses @ EGEE06 Conference (Sep '06)

TOTAL

Enabling Grids for E-sciencE

Sustainability

- Need to prepare for permanent Grid infrastructure
 - Ensure a high quality of service for all user communities
 - Independent of short project funding cycles
 - Infrastructure managed in collaboration with National Grid Initiatives (NGIs)

CERN openlab

- Industry partners provide state of the art technology, manpower
- CERN does test and validation in demanding Grid environment
- Platform competence centre
- Grid interoperability centre
- Security activities
- Joint events

www.cern.ch/openlab

ORACLE

CERN and F-Secure partnership (1/2)

- The partnership brings together
 - F-Secure's computer security know-how, tools and products
 - CERN's expertise and complex infrastructure as a test bed
- Collaboration on desktop client security and malware detection within electronic mail transport. Focus on desktop and portable computers protection, email gateways (incoming and outgoing), email message stores
 - Antivirus, anti-spyware, anti-spam, anti-flood, anti-phishing
- Current areas of investigation
 - Automated installation of Antivirus client software to large number of computers (> 6000) with high reliability > 99.9 %
 - Detecting and stripping back-listed file extensions even when contained in compressed files on mail gateways
 - Regular expressions content filtering in mail gateways
 - Viewers and tools to analyze security log files

CERN and F-Secure partnership (2/2)

- Technical contact between F-Secure specialists and CERN mail and desktop security teams established with good and competent communication
 - All level of skills directly accessible: support, developers, product management, executives
- F-Secure products are excellent and we are collaborating to improve them further
- We aim to standardize CERN's infrastructure on F-Secure products

For more information about the Grid:

Thank you for your kind attention!

