
CERN openlab Summer 2006:
Compiler Overview

Martin Swany, Ph.D.
Assistant Professor, Computer and

Information Sciences, U. Delaware, USA

Visiting Helsinki Institute of Physics (HIP) at
CERN

swany@cis.udel.edu, Martin.Swany@cern.ch

What is a Compiler?
• A compiler is a program that translates a

program written in one computer language (called
the source code) into a resulting output in another
computer language (often called the object or
target code)
– Generally, the source code is a high-level language

and the object code is machine language
• Compilation entails semantic understanding of

what is being processed
– pre-processing does not

• Understanding compilers can help one write
better code

Goals and Overview
Goals:
• Cover basic terminology and key ideas (without

going into too much depth)
• Set the stage for details of optimization in later

lectures

Talk Outline:
• Basic functional overview
• Optimization
• Current Topics

Basic Functional Overview
Scanner

Parser

Semantic Analysis

Target Code Generation

Target-Dependent
Optimization

Target-Independent
Optimization

Program text

Tokens

Parse Tree

Abstract Syntax Tree

Intermediate Representation

Assembly, assembly-like IR,
or machine code

Optimized Output

Functional Overview: Scanning
• Scanning:

– divides the program into "tokens", which are the
smallest meaningful units; this saves time, since
character-by-character processing is slow

– we can tune the scanner better if its job is simple; it
also saves complexity (lots of it) for later stages

– scanning is recognition of a regular language, e.g., via
deterministic finite automaton (DFA)

• Scanning is lexical analysis
– Lexical - of or relating to the words or vocabulary of a

language

Functional Overview: Parsing
• Parsing is recognition of a context-free

language, e.g., via push-down automaton
(PDA)
– Parsing discovers the "context free" structure

of the program
– Informally, it finds the structure you can

describe with syntax diagrams (the "circles and
arrows” of a state machine)

• Parsing looks at the syntax
– syntax - the arrangement of words and phrases to

create well-formed sentences in a language

Functional Overview: Semantic
Analysis

• Semantic analysis is the discovery of meaning
in the program
– The compiler does what is called static semantic

analysis. That's the meaning that can be figured out
at compile time

– Some things (e.g., array subscript bounds errors)
can't be figured out until run time. Things like that are
part of the program's dynamic semantics

• semantic - related to meaning in language

Functional Overview: Symbol Table
• Symbol table: all phases rely on a symbol

table that keeps track of all the identifiers in
the program and what the compiler knows
about them
– This symbol table may be retained (in some

form) for use by a debugger, even after
compilation has completed

Functional Overview: Intermediate
Representation

• Intermediate representation (IR) is the output of
semantic analysis (if the program passes all checks)
– IRs are often chosen for machine independence, ease of

optimization, or compactness (these can be at odds)
• Many compilers actually move the code through more

than one IR
• Different sorts of IRs have different properties and

strengths
– Structural

• Graph oriented
– Linear

• Pseudo-code for an abstract machine
• Easier to rearrange

– Hybrid
• Combination of graphs and linear code

Abstract Syntax Tree
An abstract syntax tree is the procedure’s parse tree

with the nodes for most non-terminal nodes removed

x - 2 * y

• Can use linearized form of the tree
– Easier to manipulate than pointers
x 2 y * - in postfix form
- * 2 y x in prefix form

-

x

2 y

*

Directed Acyclic Graph
A directed acyclic graph (DAG) is an AST with a unique
 node for each value

• Makes sharing explicit
• Encodes redundancy

x

2 y

*

-

←

z /

←

w

z ← x - 2 * y
w ← x / 2

Same expression twice means that
the compiler might arrange to
evaluate it just once!

Three Address Code
Several different representations of three address code
• In general, three address code has statements of the

form:
x ← y op z

With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ← x - 2 * y becomes

Advantages:
• Resembles many machines
• Introduces a new set of names
• Compact form

t ← 2 * y
z ← x - t

*

Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

245sub
X4load

123mult
22loadi
Y1loadload r1, y

loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”

Three Address Code: Triples
• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

(3)(4)sub
xload

(2)(1)mult
2loadI
yload(1)

(2)

(3)

(4)

(5)

Implicit names take no space

Static Single Assignment Form
• The main idea: each name defined exactly once
• This requires the introduction of φ-functions, a conceptual tool to

represent the various possible values of a variable

Strengths of SSA-form
• Sharper analysis
• Hints about placement of invariant code
• (sometimes) faster algorithms

 Original

x ← …
y ← …
while (x < k)
 x ← x + 1
 y ← y + x

SSA-form

 x0 ← …
 y0 ← …

 if (x0 > k) goto next
loop: x1 ← φ(x0,x2)

 y1 ← φ(y0,y2)
 x2 ← x1 + 1
 y2 ← y1 + x2

 if (x2 < k) goto loop
next: …

Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

– Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ← 2
b ← 5

a ← 3
b ← 4

c ← a * b

Basic blocks —
Maximal length
sequences of
straight-line code.
No in/out arcs
except at the
beginning and end

Using Multiple Representations

• Repeatedly lower the level of the intermediate
representation
– Each intermediate representation is suited towards

certain optimizations
• Example: the Open64 compiler

– WHIRL intermediate format
• Consists of 5 different IRs that are progressively more detailed

Front
End

Middle
End

Back
End

IR 1 IR 3Source
Code

Target
Code

Middle
End

IR 2

WHIRL Example

Optimization Overview
• Simple target code generation gives us correct

but highly suboptimal code
– redundant computations
– inefficient use of the registers, multiple functional

units, and cache
• Next we turn to optimization (really code

improvement): the phases of compilation devoted
to generating good code
– Here we interpret “good” to mean fast
– Some also consider program transformations to

decrease memory requirements

Optimization Overview
• What makes code run faster?
• Make the code shorter

– Shorter sequences of instructions with the same effect take less
time to run

– Reduce redundant operations
• Hide latency

– Begin operations that take time as soon as possible and perform
other independent tasks in the meantime

• Loads and stores
• Branches
• Expensive operations

• Threaded through both is efficient use of machine
resources
– Registers in particular

Peephole Optimization
• A relatively simple way to significantly improve

the quality of naive code is to run a peephole
optimizer over the target code
– Slide over the target code considering a several

instruction window (a peephole), looking for suboptimal
patterns of instructions

– the patterns to look for are heuristic
• patterns to match common suboptimal idioms produced by a

particular front end
• patterns to exploit special instructions available on a given

machine
• These techniques are extended to wider scopes

for more advanced optimizations

Peephole Optimization
• Elimination of redundant loads and stores

– The peephole optimizer can often recognize that
the value produced by a load instruction is already
available in a register
r2 ← r1 + 5
i ← r2
r3 ← i
r3 ← r3 × 3

becomes
r2 ← r1 + 5
i ← r2
r3 ← r2 × 3

Peephole Optimization
• Constant folding
• A code generator may produce code

that performs calculations at run time
that could actually be performed at
compile time
– A peephole optimizer can often recognize

such code
r2 ← 3 × 2

becomes
r2 ← 6

Peephole Optimization
• Constant propagation

– Sometimes we can tell that a variable will have a constant value at a
particular point in a program

– We can then replace occurrences of the variable with occurrences of
the constant
r2 ← 4

r3 ← r1 + r2

r2 ←. . .

becomes
r2 ← 4

r3 ← r1 + 4

r2 ←. . .

and then
r3 ← r1 + 4

r2 ←. . .

Peephole Optimization
• Common subexpression elimination

– When the same calculation occurs twice within the
peephole of the optimizer, we can often eliminate
the second calculation:
r2 ← r1 × 5
r2 ← r2 + r3
r3 ← r1 × 5

becomes
r4 ← r1 × 5
r2 ← r4 + r3
r3 ← r4

– Often, as shown here, an extra register will be
needed to hold the common value

Peephole Optimization
• Copy propagation

– Even when we cannot tell that the contents of register b will be
constant, we may sometimes be able to tell that register b will
contain the same value as register a

• replace uses of b with uses of a, so long as neither a nor b is
modified

r2 ← r1
r3 ← r1 + r2
r2 ← 5

becomes
r2 ← r1
r3 ← r1 + r1
r2 ← 5

and then
r3 ← r1 + r1
r2 ← 5

Peephole Optimization
• Strength reduction

– Numeric identities can sometimes be used to replace a
comparatively expensive instruction with a cheaper one

• In particular, multiplication or division by powers of two can be
replaced with adds or shifts:

r1 ← r2 × 2
becomes

r1 ← r2 + r2 or r1 ← r2 << 1

r1 ← r2 / 2

becomes
r1 ← r2 >> 1

Peephole Optimization
• Elimination of useless instructions

– Instructions like the following can be dropped entirely:
r1 ← r1 + 0
r1 ← r1 × 1

• Filling of load and branch delays
– Loads and branches take a few instructions to

complete and they can be started earlier while
unconditional instructions execute

• Exploitation of the instruction set
– Particularly on CISC machines, sequences of simple

instructions can often be replaced by a smaller
number of more complex instructions

• Many codes spend much of their time in
loops so those are a key focus of optimization

• Consider two classes of loop improvements:
– those that move invariant computations out of the

body of a loop and into its header, and
– those that reduce the amount of time spent

maintaining induction variables

Loop Improvement

• A loop invariant is an instruction (i.e., a load
or calculation) in a loop whose result is
guaranteed to be the same in every iteration
– If a loop is executed n times and we are able to

move an invariant instruction out of the body and
into the header (saving its result in a register for
use within the body), then we will eliminate n -1
calculations from the program
• a potentially significant savings

• In order to tell whether an instruction is
invariant, we need to identify the bodies of
loops, and we need to track the locations at
which operand values are defined

Loop Improvement

• An induction variable (or register) is one that takes on
a simple progression of values in successive iterations
of a loop.
– We confine our attention to arithmetic progressions
– Induction variables appear as loop indices, subscript

computations, or variables incremented or decremented
explicitly within the body of the loop

• Induction variables are important for two reasons:
– They commonly provide opportunities for strength reduction,

replacing multiplication with addition
– They are commonly redundant: instead of keeping several

induction variables in registers, we can often keep a smaller
number and calculate the remainder
from those when needed

Loop Improvement

• pipelining is probably the most important
performance critical feature
– It works like this: TIME →

Compiling for Modern Processors

execute

store
data

fetch
data

decode
inst

fetch
inst

executefetch
data

decode
inst

fetch
inst

store
dataexecutefetch

data
decode

inst
fetch
inst

store
dataexecutefetch

data
decode

inst
fetch
inst

• The processor has to be careful not to
execute an instruction that depends on a
previous instruction that hasn't finished yet
– The compiler can improve the achievable

performance by generating code in which the
number of dependencies that would stall the
pipeline is minimized

• This is called instruction scheduling; it is
one of the most important optimizations for
modern compilers

Compiling for Modern Processors

• Loads and load delays are influenced by
– Dependences

• Flow dependence (read after write)
• Anti-dependence (write after read)
• Output dependence (write after write)

• Branches (control dependencies)
– since control can go both ways, branches

create delays

Compiling for Modern Processors

Compiling for Modern Processors
• Goal for performance: minimize pipeline stalls
• Loads and branches take longer than ordinary

instructions
• The instruction scheduler tries to find instructions that

can executed during the delay
• Loads have to go to memory, which is slow

– the instruction in a load delay slot can't use the loaded value
• Branches disrupt the pipeline
• A branch instruction generally takes 2 cycles to evaluate

the branch decision
– the instruction in a “branch delay slot” gets executed whether

the branch occurs or not
– A final “store” is a good candidate
– Alternatively, an instruction can be run and nullified

Register Rotation
• Some modern processors feature rotating registers, which “rotate” or

are renumbered with each iteration of a loop
• If the load instruction has a 4 cycle latency, then the store cannot

begin until 4 cycles after the load begins

• Consider this pseudo-code
DO I = 1,N

load X(I) into register 1
store register into Y(I)

ENDDO

Register Rotation
• If the registers rotate, then that example can be implemented as:

load X(1) into register 5
load X(2) into register 4
load X(3) into register 3
load X(4) into register 2
DO I = 1, N-4
 load X(1+4) into register 1
 store register 5 to Y(i)
ENDDO
store register 4 to y(n-3)
store register 4 to y(n-2)
store register 4 to y(n-1)
store register 4 to y(n)

Predicate Registers
• Predicate registers are single-bit registers that

allow the conditional execution of instructions
• Y = 2.0 -> (p1) Y = 2.0

– If p1 is “1”, then the operation is performed, otherwise
it is treated as a nop

• This allows some control dependencies to turn
into data dependencies

Predicate and Rotating Registers
DO I = 1, N+4
If (I <= N) set p1=true; else p1=false;
If (I >= 4) set p2=true; else p2=false;
(p1) load X(I) into register 1
(p2) store register 5 to Y(I-4)
ENDDO

Conversion of if statements
• Replace conditional branches with predicated operations.
• For example, the code generated for:
 if (a < b)

 c = a;
else
 c = b;
if (d < e)
 f = d;
else
 f = e;

might be these two EPIC instructions:

P1 = CMPP.< a,b P2 = CMPP.>= a,b P3 = CMPP.< d,e P4 = CMPP.>= d,e

 c = a if p1 c = b if p2 f = d if p3 f = e if p4

Hyperblocks
• In hyperblock formation, if-conversion is used to form

larger blocks of operations than the usual basic blocks
– tail duplication used to remove some incoming edges in middle of

block
– if-conversion applied after tail duplication
– larger blocks provide a greater opportunity for code motion to

increase instruction-level parallelism

Basic Blocks
Tail Duplication If-conversion to

form hyperblock

}Predicated Operations

Loop Unrolling and Software Pipelining
• Loop unrolling is a transformation that embeds two or

more iterations of a source-level loop in a single
iteration of a new, longer loop, and allowing the
instruction scheduler to intermingle the instructions of
the original iterations

• Loop unrolling gives more instructions between
branches (increases the size of the basic block)
– This provides more opportunities for instruction scheduling

improvements

Loop Improvement II

Software Pipelining

for (i = 0; i < N; i++) {

 a: x ← y{1} + …;

 b: y ← …;

 c: … ← x;

}

a
b

c

a
b

c

a
b

c

a
b

c

II=2

Modulo scheduling: overlaps the execution of successive
iterations in a fixed Initiation Interval (II).

…

Software pipelining is a loop scheduling
technique that overlaps the execution of
successive loop iterations.

Current Topics
• Inter-procedural optimization (IPO)

– We’ve talked about optimization within basic blocks
– With dataflow analysis, these sorts of optimizations can

be extended to an entire function
– Given that object files center around functions, there is

traditionally no good time to perform whole-program or
inter-procedural optimizations

– One way to proceed is to carry the IR in the object file
and look for optimization opportunities when objects
are linked

– Function inlining is a good example of what can be
done

• That can also expose more opportunities for instruction
scheduling

Current Topics
• Profile-guided Optimization (PGO)
• We talked about branches from the perspective of basic

block scheduling
• Another important topic is branch prediction
• To attempt to keep the pipeline filled, the compiler can

predict whether a branch will be taken or not and continue
to fetch instructions and data

• There is not much information available at compile time to
make this an informed guess

• With PGO, the compiler can insert instrumentation to
record branch behavior

• Subsequent profile-guided compilation can improve the
predictions and thus, the performance

Current Topics
• Modern processors sometimes execute instructions out of

order
– Think of it as dynamic instruction scheduling

• Due to this, there are many cases where determining the
best code and data layout is extremely difficult (if not
intractable)

• There is growing tendency toward “empirical optimization”
– Propelled by the Automatic Tuning of Linear Algebra Software

(ATLAS) work by Whaley and Dongarra
• Simply allow the compiler (or compiler harness) to try

variants of code structure and data layout and choose the
one that works best

Current Topics
• ASPhALT - Automatic System for Parallel

AppLication Transformation
– Work in my group at U. Delaware

• Using the Open64 compiler infrastructure, we
transform MPI codes to optimize communication
performance
– Source to source by un-parsing the WHIRL after

transformation
• Goals:

– Take advantage of data dependence in the compiler
– Implement an “empirical optimization” harness

Sources
• Scott, Programming Language Pragmatics
• Kennedy, Allen, Optimizing Compilers for Modern

Architectures
• Cooper, Torczon, Engineering a Compiler
• Muchnick, Advanced Compiler Design
• Text and slides from

– Texts above
– Amaral

• http://www.cs.ualberta.ca/~amaral/
– Rong and Gao

• http://www.capsl.udel.edu
– Goldberg, NYU

• http://cs.nyu.edu/goldberg/

