
1 August 2006 Summer Student Lecture - SJ 1

An approach to
Performance and

Bottleneck Analysis
Sverre Jarp

CERN openlab

Summer student lecture 2006
1 August 2006

1 August 2006 Summer Student Lecture - SJ 2

AGENDA

Based on talks given at
HEPix and Gelato/Itanium
Solutions Alliance in 1H06

- Introduction
- Path to Optimization
- Basics
- Hardware Review
- More on compilers
- Conclusion

1 August 2006 Summer Student Lecture - SJ 3

INTRODUCTION

1 August 2006 Summer Student Lecture - SJ 4

Initial Question

• How come we (too) often end up in the
following situation?

Why the heck
doesn’t it

perform as it
should!!!

1 August 2006 Summer Student Lecture - SJ 5

Before we start

• This is an effort to pass in review a somewhat
“systematic approach” to tuning and bottleneck
analysis
– Main focus is on understanding the “spiral to success”

• The introduction of the elements is done “top-
down”

• But, it is important to understand that in real-life,
this is rarely the case

1 August 2006 Summer Student Lecture - SJ 6

PATH TO OPTIMIZATION

1 August 2006 Summer Student Lecture - SJ 7

Path to optimization
Source

Execution
ResultsSoftware

Design
Compiler

Platform Run

1 August 2006 Summer Student Lecture - SJ 8

Step 0: Correctness
• Before undertaking any tuning effort

– Excellent regression/correctness tests
• For all critical algorithms, all important use cases

– Otherwise,
• Too many tuning efforts get left by the wayside

• Which options will work ?
– “IPF_fp_relax”
– “ansi_alias”
– “ffast-math”

In an case, needed for the basic development/maintenance effort

No point in speeding up an incorrect program!

1 August 2006 Summer Student Lecture - SJ 9

Step 1: Application design

• Regular reviews of the design (globally or
partially)
– Data structures

• Arrays; structs; data members
– Choice of algorithms

• Accuracy, robustness, rapidity
– Design of classes

• Domain decomposition
• Hierarchy
• Interrelationship

• Is there a time gap?
– Design Today’s microprocessor (tomorrow’s ?)

• Did we design for low ILP, small caches, single core,…. ?

The arrival of multi-/many-core may force partial redesign of many applications

1 August 2006 Summer Student Lecture - SJ 10

Step 2: Implementation aspects
• Review all aspects of implementation

– Choice of language (Fortran, C, C++, Java, …)
– Use of language features

• Templates (STL with maps, lists, etc.)
– Precision of data (FLP)

• Single, double, double extended
– Intermediate calculations
– Stored results

– Code split between .cpp and .h files
– Aggregation or decomposition ?
– Reliance on preprocessor
– Platform dependencies

• Such as endianness
– Reliance on external libraries

• Smartheap, Math kernel/vector libraries, etc.

Correct organization of source can greatly impact the application’s efficiency

1 August 2006 Summer Student Lecture - SJ 11

Step 3: Compiler/compilation
• Access to the best compiler

– On many platforms we have a limited choice
• IA-64/Linus or x86/MacOS: Intel or GNU (others coming?)

– But, it is worth trying both (or all):
• Mix and match (thanks to common ABI) ?
• Inform the other camp when they are behind

– Upgrade to latest versions regularly
– Choose from hundreds of flags

• Build procedure
– One class at a time ?
– Archive/shared libraries ?
– Monolithic executable or dynamic loading ?

• And (to a large extent)
– Machine code is chosen for you

Note that x86-64 is a very healthy clean-up of the too-often extended x86 architecture

1 August 2006 Summer Student Lecture - SJ 12

Step 4: Platform

• The best hardware for the job
– Manufacturer
– Server type

• Entry, mid-range, large SMP, NUMA, etc.

– Processor characteristics
• Single core, Dual core, Quad core (coming)
• Frequency, cache sizes and levels

– Further (important) factors
• Bus speed
• Memory speed

– Price/performance ratio

Richest choice is found inside the x86 eco-system.

1 August 2006 Summer Student Lecture - SJ 13

In the end: Execution Results

Source Code

Design of
Data

Structures
and

Algorithms

CompilerExecution
Results Machine

Code

Platform

1 August 2006 Summer Student Lecture - SJ 14

Back to our cartoon

• As already said, first of all,
we must guarantee
correctness

• If we are unhappy with the
performance
– … and by the way, how do we

know when to be happy?

• We need to look around
– Since the culprit can be

anywhere

Why the heck
doesn’t it
perform!!!

1 August 2006 Summer Student Lecture - SJ 15

Where to look ?

Source Code

Design of
Data

Structures
and

Algorithms

CompilerExecution
Results Machine

Code

Platform

1 August 2006 Summer Student Lecture - SJ 16

THE BASICS

1 August 2006 Summer Student Lecture - SJ 17

Need a good tool set
• My recommendation

– Integrated Development Environment
(IDE) w/ integrated Performance
Analyzer

• Visual Studio + VTUNE (Windows)
• Eclipse + VTUNE (Linux)
• XCODE + Shark (MacOS)
• …..

• Also, other packages
– Valgrind (Linux x86, x86-64)
– Qtools (IPF)
– Pfmon, perfsuite, caliper, oprofile, TAU

Too many different tools may be counterproductive!

1 August 2006 Summer Student Lecture - SJ 18

Price_out_impl (mcf)

• VTUNE screenshot:

1 August 2006 Summer Student Lecture - SJ 19

Assembly language literacy

• The language spoken by the processor is
– MACHINE CODE !!

• To understand it, we need what I call “Assembler
awareness”:

– Looking into compiler-generated code, there may be a need to:
• Modify (repeatedly) the HLL code (or compiler options) and inspect

the result
• When available, add inline assembly or intrinsics for localized

impact

– Today, we are not dealing with the case of writing Assembly
code
• But the issues are the same

1 August 2006 Summer Student Lecture - SJ 20

Machine code

• It may be necessary to read the machine code
directly

Bool_t TGeoCone::Contains(Double_t *point) const
{
// test if point is inside this cone

if (TMath::Abs(point[2]) > fDz) return kFALSE;

Double_t r2 = point[0]*point[0] + point[1]*point[1];
Double_t rl = 0.5*(fRmin2*(point[2] + fDz) + fRmin1*(fDz-point[2]))/fDz;
Double_t rh = 0.5*(fRmax2*(point[2] + fDz) + fRmax1*(fDz-point[2]))/fDz;
if ((r2<rl*rl) || (r2>rh*rh)) return kFALSE;
return kTRUE;

}

_ZNK8TGeoCone8ContainsEPd:
[.LFB1785:]

.prologue

.body

.mmi
adds r14 = 16, r33
adds r15 = 16, r32
adds r16 = 32, r32
.mmi
adds r17 = 24, r32
adds r18 = 40, r32
adds r32 = 8, r32 ;;
.mmi
ldfd f11 = [r14]
ldfd f15 = [r32]
mov r8 = r0 ;;
.mfb
fcmp.ge p6, p7 = f11, f0

.mfi
mov f6 = f11 ;;
.mmf
(p7) fneg f6 = f11 ;;
.mmf
fcmp.gt p6, p7 = f6, f15;;
.bbb
(p6) br.ret.dptk.many rp
(snip)

1 August 2006 Summer Student Lecture - SJ 21

Amdahl’s Law

• The incompressible part ends up
dominating:

100%

20% 30%

Great job,
Sverre: 3x !

20%20%10%

Total speedup is “only”: (100/80): 1.25

1 August 2006 Summer Student Lecture - SJ 22

Profiling with q-tools
• Test40: Physics simulation job
Command: ./test40icc80O2fz
Flat profile of CPU_CYCLES in test40icc80O2fz-pid24686-cpu0.hist#0: Each histogram sample counts as 1.00034m seconds
% time self cumul calls self/call tot/call name
14.28 7.23 7.23 1.72M 4.21u 4.90u G4VoxelNavigation::LevelLocate(G4NavigationHistory&, G4VPhysicalVolume const*, int,

Hep3Vector const&, Hep3Vector const*, bool, Hep3Vector&)
5.63 2.85 10.08 35.4M 80.5n 80.5n RanecuEngine::flat()
3.57 1.81 11.89 3.80M 476n 2.94u G4Navigator::LocateGlobalPointAndSetup(Hep3Vector const&, Hep3Vector const*,

bool,…)
3.46 1.75 13.64 5.12M 343n 2.54u G4SteppingManager::DefinePhysicalStepLength()
2.30 1.16 14.80 898k 1.30u 2.84u G4VEnergyLoss::GetLossWithFluct(G4DynamicParticle const*, G4Material*, double, …..)
2.29 1.16 15.96 28.1M 41.2n 41.2n G4Tubs::Inside(Hep3Vector const&) const
2.27 1.15 17.11 7.50M 153n 2.27u G4SteppingManager::InvokePSDIP(unsigned long)
2.23 1.13 18.24 5.17M 219n 7.53u G4SteppingManager::Stepping()
2.17 1.10 19.34 4.92M 223n 2.03u G4Transportation::PostStepDoIt(G4Track const&, G4Step const&)
2.12 1.08 20.41 15.8M 67.9n 67.9n G4PhysicsLogVector::FindBinLocation(double) const
1.93 0.98 21.39 5.23M 186n 901n G4Transportation::AlongStepGetPhysicalInteractionLength(G4Track const&, double,

double, double&, G4GPILSelection*)
1.90 0.96 22.35 1.11M 864n 864n G4MuPairProduction::ComputeDDMicroscopicCrossSection(G4ParticleDefinition const*,…

)
1.80 0.91 23.26 1.01M 897n 1.50u G4MultipleScattering::PostStepDoIt(G4Track const&, G4Step const&)
1.78 0.90 24.16 19.1M 47.3n 47.3n G4Track::GetVelocity() const
1.62 0.82 24.98 4.48M 182n 720n G4Navigator::ComputeStep(Hep3Vector const&, Hep3Vector const&, double, double&)
1.51 0.77 25.75 1.89M 405n 863n G4MultipleScattering::GetContinuousStepLimit(G4Track const&, double, double, double&)
1.41 0.71 26.46 4.62M 155n 503n G4ReplicaNavigation::ComputeStep(Hep3Vector const&, Hep3Vector const&, Hep3Vector

const&, Hep3Vector const&, double, double&, G4NavigationHistory&, bool&, Hep3Vector&, bool&, bool&, G4VPhysicalVolume**, int&)
1.27 0.64 27.10 3.27M 196n 196n G4Tubs::DistanceToOut(Hep3Vector const&, Hep3Vector const&, bool, bool*,

Hep3Vector*) const
1.08 0.55 27.65 550k 999n 2.28u G4eBremsstrahlung::PostStepDoIt(G4Track const&, G4Step const&)
1.07 0.54 28.20 5.01M 109n 170n G4Transportation::AlongStepDoIt(G4Track const&, G4Step const&)
0.98 0.50 28.69 7.00M 70.7n 70.7n _int_malloc
0.96 0.49 29.18 4.80M 102n 3.65u G4SteppingManager::InvokePostStepDoItProcs()
0.93 0.47 29.65 25.8k 18.2u 18.6u G4MultipleScattering::ComputeTransportCrossSection(G4ParticleDefinition const&, ……..)
0.92 0.47 30.12 4.97M 93.8n 146n Em2SteppingAction::UserSteppingAction(G4Step const*)
0.91 0.46 30.58 4.95M 93.4n 1.04u G4SteppingManager::InvokeAlongStepDoItProcs()
0.91 0.46 31.04 9.64M 47.5n 230n G4VDiscreteProcess::PostStepGetPhysicalInteractionLength(G4Track const&, double,

G4ForceCondition*)

1 August 2006 Summer Student Lecture - SJ 23

HARDWARE REVIEW

1 August 2006 Summer Student Lecture - SJ 24

CPU performance vector

• Defined in 3 dimensions

Density of work (cycles)

Instructions (per cycle)

Determined by a combination of
architecture and microarchitecture

Calculation width (per inst)

1 August 2006 Summer Student Lecture - SJ 25

Memory Hierarchy

• From CPU
to main
memory
on
Madison
– With

multicore,
memory
bandwidth
is shared
between
cores on
the same
bus

CPU
(Registers)

L1D
(16 KB)

L2
(256 KB)

memory
(large)

32B/c, 5 - 7 c latency

~4 B/c, ~200 c. latency

L1I
(16 KB)

L3
(9 MB)

32B/c, 12 - 15 c latency

1 August 2006 Summer Student Lecture - SJ 26

Cache lines

• Madison L3 cache lines are
128B (16 * double)
– Minimum amount of data

transferred between cache and
memory.

– Imagine what happens if your
stride is 16 (or more)!

use

Programming the memory hierarchy is an art in itself.

1 August 2006 Summer Student Lecture - SJ 27

Back to Compilers

1 August 2006 Summer Student Lecture - SJ 28

“All created equal ?”

Courtesy: René Brun/CERN

1 August 2006 Summer Student Lecture - SJ 29

“Low- hanging fruit”

• Typically one starts with a given compiler, and
moves to:

• More aggressive compiler options
– For instance:
– -O2 -O3,-funroll-loops, -ffast-math (g++)
– -O2 -O3, -ipo (icc)

• More recent compiler versions
– g++ version 3 g++ version 4
– icc version 8 icc version 9

• Different compilers
– GNU Intel (or reverse?)

May be a burden
because of potential
source code issues

Some options
can compromise

accuracy or
correctness

1 August 2006 Summer Student Lecture - SJ 30

Interprocedural optimization

• Let the compiler worry about
interprocedural relationship
– “icc –ipo”

• Valid also when building
libraries
– Archive
– Shared

• Cons:
– Can lead to code bloat
– Longer compile times
Probably most useful when combined with heavy
optimization for “production” binaries or libraries!

1 August 2006 Summer Student Lecture - SJ 31

Feedback Optimization

• Many compilers allow further optimization
through training runs
– Compile once (to instrument binary)

• g++ -fprofile-generate
• icc -prof_gen

– Run one (or several test cases)
• ./test40 < test40.in (will run slowly)

– Recompile w/feedback
• g++ -fprofile-use
• icc -prof_use (best results when combined with -O3,-ipo

With icc 9.0 we get ~20% on root stress tests
on Itanium, but only ~5% on x86-64

1 August 2006 Summer Student Lecture - SJ 32

CONCLUSION

1 August 2006 Summer Student Lecture - SJ 33

Conclusions
• Understand which parts of the

“spiral” you control
• Understand the platform hardware
• Equip yourself with good tools

– Get access to hw performance counters
– Exploit the power of performance tools

• Check how key algorithms map on to
your hardware platform
– Are you at 5% or 95% efficiency?
– Where do you want to be?

• Cycle around the spiral frequently
– It is hard to get to “peak” performance (and

stay there!)

1 August 2006 Summer Student Lecture - SJ 34

QUESTIONS?

1 August 2006 Summer Student Lecture - SJ 35

Backup

1 August 2006 Summer Student Lecture - SJ 36

In comes the PMU
(Performance
Monitoring Unit)

Quickly summarized:
4 counters (12 on Montecito)
~200 monitored events
Some very advanced features!

1 August 2006 Summer Student Lecture - SJ 37

Itanium-2 cache hierarchy
BUS

L3_MISSES

L3
L3_REFERENCES

L3_WRITE_REFERENCES L3_READ_REFERENCES

L2_MISSES

L2

L3_STORE_
REFERENCES

L3_INST_
REFERENCES

L3_DATA_READ_
REFERENCES

L2_WB_REFERENCES

L2_REFERENCES

L2_INST_
DEMAND_READS

L1I

L2_INST_
PREFETCHES

L2_INST_REFERENCESES

L1D

L1D_READ_MISSES_ALL

L2_DATA_REFERENCES_L2_ALL

DATA_REFERENCES_SET0

ISB
ISB_BUNPAIRS_IN

L1I_FILLS

Store BufferL1I_READS

L1I_PREFETCHES

1 August 2006 Summer Student Lecture - SJ 38

Geant 4 – Test40

• Overall counters in 10^9

Counter Counts

IA64_INST_RETIRED 108.43

39.73

74.98

NOPS_RETIRED

CPU_CYCLES (CC)

43.10BACK_END_BUBBLE_ALL

Useful instructions (UI) 68.70

31.88Non-stalled cycles (NSC)

UI/CC ~ 1

~ 2UI/NSC

1 August 2006 Summer Student Lecture - SJ 39

Geant 4 – Test40

• Stall counters

Counter Counts (10^9)

BACK_END_BUBBLE_ALL 43.10

BE_EXE_BUBBLE_ALL 27.96

BACK_END_BUBBLE_FE 7.38

BE_L1D_FPU_BUBBLE_ALL 3.86

2.72

BE_RSE_BUBBLE_ALL 1.38

BE_FLUSH_BUBBLE_ALL

65
%

Why so many EXE bubbles?

Keep drilling down!

1 August 2006 Summer Student Lecture - SJ 40

Geant 4 – Test40

• EXE stall counters
ldf,ldf
bubble
bubble
bubble
bubble
bubble
fma
bubble
bubble
bubble
stf

Counter Counts

BE_EXE_BUBBLE_ALL 27.96

BE_BUBBLE_GRALL 10.29

BE_BUBBLE_GRGR ~zero

BE_EXE_BUBBLE_FRALL 17.21

Counter Counts

L2_REFERENCES 19.39

L2_DATA_REFERENCES_L2_ALL 13.16

1 August 2006 Summer Student Lecture - SJ 41

Test40 - Cache counters
BUS

L3_MISSES (93K)

L3
L3_REFERENCES (1.18)

L3_WRITE_REFERENCES L3_READ_REFERENCES

L2_MISSES (1.12)

L2

L3_STORE_
REFERENCES

L3_INST_
REFERENCES

L3_DATA_READ_
REFERENCES

L2_WB_REFERENCES

L2_REFERENCES (19.39)

L2_INST_
DEMAND_READS

(2.08)

L1I

L2_INST_
PREFETCHES

(5.31)

L2_INST_REFERENCESES

ISB

L1I_FILLS (11.46)

ISB_BUNPAIRS_IN (23.8)

L1D

L1D_READ_MISSES_ALL (2.20)

L2_DATA_REFERENCES_L2_ALL (13.16)

Store BufferL1I_READS

DATA_REFERENCES_SET0 (20.08)L1I_PREFETCHES

1 August 2006 Summer Student Lecture - SJ 42

Software Pipelining

1 August 2006 Summer Student Lecture - SJ 43

Mersenne Twister

• A couple of words on machine code density
Double_t TRandom3::Rndm(Int_t){

UInt_t y;
const Int_t kM = 397; const Int_t kN = 624; const UInt_t kTemperingMaskB = 0x9
const UInt_t kTemperingMaskC = 0xefc60000; const UInt_t kUpperMask = 0x800
const UInt_t kLowerMask = 0x7fffffff; const UInt_t kMatrixA = 0x990

if (fCount624 >= kN) {
register Int_t i;
for (i=0; i < kN-kM; i++) { /* THE LOOPS */
y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask);
fMt[i] = fMt[i+kM] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0);

}
for (; i < kN-1 ; i++) {
y = (fMt[i] & kUpperMask) | (fMt[i+1] & kLowerMask);
fMt[i] = fMt[i+kM-kN] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0);

}
y = (fMt[kN-1] & kUpperMask) | (fMt[0] & kLowerMask);
fMt[kN-1] = fMt[kM-1] ^ (y >> 1) ^ ((y & 0x1) ? kMatrixA : 0x0);
fCount624 = 0;

}
y = fMt[fCount624++]; /*THE STRAIGHT-LINE PART*/
y ^= (y >> 11); y ^= ((y << 7) & kTemperingMaskB);
y ^= ((y << 15) & kTemperingMaskC); y ^= (y >> 18);
if (y) return ((Double_t) y * 2.3283064365386963e-10); // * Power(2,-32)
return Rndm();

}

1 August 2006 Summer Student Lecture - SJ 44

The “MT” loop is full

• Highly optimized
– Here depicted in 3 Itanium cycles

• But similarly dense on other platforms

0 Load Test Bit XOR Load Add No-op

1 AND AND Shift Add Load Move

2 Store OR XOR Add Add Branch

1 August 2006 Summer Student Lecture - SJ 45

The sequential part is not!

The tempering and FLP conversion are costly (on all
platforms)

0 Add Mov long No-op No-op No-op No-op

1 Load Mov long Mov long No-op No-op No-op

2 Shift,11 Set float No-op No-op No-op No-op

3 XOR Move No-op No-op No-op No-op

4 Shift,7 No-op No-op No-op No-op No-op

5 AND No-op No-op No-op No-op No-op

6 XOR No-op No-op No-op No-op No-op

7 SHL,15 No-op No-op No-op No-op No-op

8 AND No-op No-op No-op No-op No-op

9 XOR No-op No-op No-op No-op No-op

10 SHL,18 No-op No-op No-op No-op No-op

11 XOR No-op No-op No-op No-op No-op

12 Set float Compare Branch No-op No-op No-op

13 Bubble (no work dispatched, because of FP latency)

14 Bubble (no work dispatched, because of FP latency)

15 Bubble (no work dispatched, because of FP latency)

16 Bubble (no work dispatched, because of FP latency)

17 Bubble (no work dispatched, because of FP latency)

18 Mult FP No-op No-op No-op No-op No-op

19 Bubble (no work dispatched, because of FP latency)

20 Bubble (no work dispatched, because of FP latency)

21 Bubble (no work dispatched, because of FP latency)

22 Mult FP Branch No-op No-op No-op No-op

y = fMt[fCount624++]; /*THE STRAIGHT-LINE PART*/
y ^= (y >> 11); y ^= ((y << 7) & kTemperingMaskB);
y ^= ((y << 15) & kTemperingMaskC); y ^= (y >> 18);
if (y) return ((Double_t) y * 2.3283064365386963e-10);

	AGENDA
	INTRODUCTION
	Initial Question
	Before we start
	PATH TO OPTIMIZATION
	Path to optimization
	Step 0: Correctness
	Step 1: Application design
	Step 2: Implementation aspects
	Step 3: Compiler/compilation
	Step 4: Platform
	In the end: Execution Results
	Back to our cartoon
	Where to look ?
	THE BASICS
	Need a good tool set
	Price_out_impl (mcf)
	Assembly language literacy
	Machine code
	Amdahl’s Law
	Profiling with q-tools
	HARDWARE REVIEW
	CPU performance vector
	Memory Hierarchy
	Cache lines
	Back to Compilers
	“All created equal ?”
	“Low- hanging fruit”
	Interprocedural optimization
	Feedback Optimization
	CONCLUSION
	Conclusions
	QUESTIONS?
	Backup
	In comes the PMU(Performance Monitoring Unit)
	Itanium-2 cache hierarchy
	Geant 4 – Test40
	Geant 4 – Test40
	Geant 4 – Test40
	Test40 - Cache counters
	Software Pipelining
	Mersenne Twister
	The “MT” loop is full
	The sequential part is not!

