
Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Technology
Selected Practical Software Development Lessons

From A Large Digital Library System

Tibor Šimko
<tibor.simko@cern.ch>

Department of Information Technology
CERN

August 2010 / openlab talk

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Outline

1 Introduction
Digital Library
Invenio

2 Case Studies
Episode 1: Python
Episode 2: Git
Episode 3: Test Suite
Episode 4: Building Efficient Indexes
Episode 5: Load-balancing

3 Conclusions

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

What is Digital Library?

“library in which collections are stored in digital formats
(as opposed to print, microform, or other media) and
accessible by computers”
(1) institutional document repositories
(2) world-wide subject-based information systems

Example: CERN Document Server

managing CERN and selected non-CERN high-energy
physics and related documents since ∼1993
more than 1,000,000 records
articles, books, theses, photos, videos, and more
powered by Invenio, free digital library software
http://cdsweb.cern.ch/

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Collection Tree

http://cdsweb.cern.ch/

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Search for Books

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Search for Photos

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS Features: Commenting

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Features: Reviewing

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Create Personal Alert

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Add to Personal Basket

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Display Personal Basket

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Organize and Share Your Baskets

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

CDS: Journals and Bulletins

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Key Features

navigable collection tree (regular, virtual)
powerful search engine

Google-like speed for up to 5M records
combined metadata, reference and fulltext search

flexible metadata (MARC, OA)
handling any kind of document (multimedia)
customizable input, formatting and linking

personalization and collaborative features:
alerts, baskets, groups, reviews, comments
internationalization (26 languages)

open source, GNU General Public License
co-developed by CERN (2002–), EPFL (2004–),
DESY/FNAL/SLAC (2008–), CfA (2009–)
installed at ∼30 institutions world-wide

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Architecture: Overview

Author

Ingestion

Database

Sources

Processing

Dissemination User

Curation

Librarian

Overview

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Modules: Ingestion

Author

WebSubmit

WebSession, WebAccess

Metadata Full-text

full-text document
metadata

BibUpload

BibSched

BibConvert

metadata

MARCXML

BibHarvest

OAI Data Source

ElmSubmit

Non-OAI Data Source

Ingestion

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Modules: Processing

Metadata Full-textRefExtract

BibClassify

Clusters BibIndex

WebColl

BibRank

BibFormat

Processing

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Modules: Dissemination

Metadata Full-textClusters

WebSearch

User

WebBasketWebTag WebAlert BibHarvest

OAI HarvesterWebComment

WebMessageWebJournal BibCirculation

WebStat WebHelpDissemination

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Modules: Curation

Metadata Librarian Full-textBibEdit

MultiEdit

BatchUploader

BibCheck

BibCirculation

BibDocFile

BibClassify

RefExtract

Tasks

BibCatalog

Knowledge Bases

BibKnowledge

BibExportBibMatch

BibMerge

Curation

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Invenio Modules: Summary

∼33 modules
codebase

∼250,000 lines of Python code
∼10,000 lines of JavaScript code
∼6,000 lines of XSL code
∼5,000 lines of autotools code

∼40 authors
many short-term students
importance of informal coding standards

∼10 years of development
started at CERN, first release in 2002
now co-developed world-wide (EU, US)

lego programming... but no silver bullet

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Why Python?

easy to read and understand
(good for many temporary developers)
suitable for rapid prototyping
(good for organic-growth software development model)
write code to throw it away

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Art of Ikebana

Japanese art of flower
arrangement
“way of flowers”
natural shapes, graceful
lines
minimalism
“disciplined art form in
which nature and
humanity are brought
together”

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Art of Ikebana Programming

Java?

new Callable() {
public Object call(Object x) {

return x.times(k)
}

}

Python!

lambda x: k * x

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Speeding Up Python

bytecode interpreted language
but Cython permits to write C extensions easily
combining efficiency of C with high-levelness of Python

Example: intbitset.pyx

ctypedef unsigned long long int word_t

ctypedef struct IntBitSet:
int size
int allocated
word_t trailing_bits
int tot
word_t *bitset

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Why Git?

good for distributed teams
offline development possible
“pull on demand” collaboration model
(as opposed to “shared push” collaboration model)

inherent,natural code review process

commit early, commit often (to private repositories)
rebase and clean (before pushing for public
consumption)
interplay with SVN

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Git Branches

C1 masterC2 C3

v1.0.0

C4

M1 maintenanceM2

C5

M3

v1.0.1
M4

N1 next

C6

N2

C7

v1.1.0

M5

v1.0.2

maint — release maintenance branch

master — new feature branch

next — things not yet release-ready

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Git Development

C1

M1

N1

master

maint

next

B1 some-bugfix

C2

M2

N2

B2

M3

merge

C3

merge

F1 some-new-featureF2

C4

merge

N3

merge

E1 some-experimental-featureE2

N4

merge

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Git collaboration model

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Unit testing

test-driven development when appropriate
e.g. before/while developing strip_accents(), write:

Example: search_engine_tests.py

class TestStripAccents(unittest.TestCase):
"""Test for handling of UTF-8 accents."""

def test_strip_accents(self):
"""search engine - stripping of accented letters"""
self.assertEqual("memememe",

search_engine.strip_accents('mémêmëmè'))
self.assertEqual("MEMEMEME",

search_engine.strip_accents('MÉMÊMËMÈ'))

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Functional testing

functional/acceptance/regression testing
testbed site (Atlantis of Institute Fictive Science)
e.g. Python mechanize module to emulate browser

Example: websearch_regression_tests.py

class WebSearchSearchEnginePythonAPITest(unittest.TestCase):

"Check typical search engine Python API calls on the demo data."

def test_search_engine_python_api_for_failed_query(self):

"websearch - search engine Python API for failed query"

self.assertEqual([],

perform_request_search(p='aoeuidhtns'))

def test_search_engine_python_api_for_successful_query(self):

"websearch - search engine Python API for successful query"

self.assertEqual([8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 47],

perform_request_search(p='ellis'))

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Web testing

sometimes we need to run tests in real browser
e.g. pages with heavy JavaScript

using Selenium IDE extension for Firefox
record and replay browser actions
test for text existence or non-existence on pages
test for link labels and targets

Example: test_search_ellis.html

<tr><td>open</td>
<td>http://localhost</td>
<td></td> </tr>

<tr><td>type</td>
<td>p</td>
<td>ellis</td> </tr>

<tr><td>clickAndWait</td>
<td>action_search</td>
<td></td> </tr>

<tr><td>verifyTextPresent</td>
<td>1. Thermal conductivity of dense quark matter and cooling of stars</td>
<td></td> </tr>

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Designing A Search Engine

performance-driven design assumptions:
high number of selects, low number of updates
fast searching, slow indexation
cache everything cacheable

search functionality:
search for words, phrases, regular expressions
search in any field, authors, titles, etc

index design:
forward indexes: word1 −→ [rec1, rec2, . . .]

word2 −→ [rec2, rec7, . . .]
reverse indexes: rec1 −→ [word1, word8, . . .]

rec2 −→ [word1, word2, . . .]
Zipf’s law on word frequency:

few words occur very often (e.g. the)
most words are infrequent (even e.g. boson)

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Search Engine Under Cover

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Measuring the Performance

three important speed factors to consider:
speed of finding sets (DB Server)
speed of demarshaling sets (DB↔Web App Server)
speed of intersecting sets (Web App Server)

Example: speed of various parts (2002, before optimization)

action / query: "CERN 2002" "of the this"

fetching 0.28 sec 0.34 sec

demarshaling 0.78 sec 1.10 sec

adding colls 0.37 sec 0.63 sec

intersecting 0.64 sec 1.19 sec

total search time 2.07 sec 3.22 sec

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Optimizing Data Structures

data structures tested:
‘sorted’ (lists, Patricia trees)
‘unsorted’ (hashed sets, binary vectors)

fast prototyping: (Python, Lisp in 2002)
throw-away coding to test ideas

Example: lists vs dicts, 350K sets in 800K universe

marshaling lists 532616+532571 bytes in 1.33 sec

demarshaling lists ... 350000+350000 items in 0.10 sec

merging lists 546965 items in 0.34 sec

intersecting lists ... 153035 items in 0.35 sec

marshaling dicts 576491+576450 bytes in 0.87 sec

demarshaling dicts ... 350000+350000 items in 0.36 sec

merging dicts 546965 items in 0.09 sec

intersecting dicts ... 153035 items in 0.15 sec

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

. . . and the winner is:

binary vectors found the best compromise!
using Numeric Python module (in 2002)
typical search time gain: 4.0 sec→ 0.2 sec (in 2002)
typical indexing time loss: 7 hours→ 4 days (in 2002)
mostly spare data modelled via mostly dense data
structure?
free your mind, think critically

further optimization:
Numeric module not addressing real bits, only bytes
so home-made intbitset C extension in 2007

addressing real bits (factor of 8 already)
saving space, saving (indexing) time

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Splitting Web App Server and DB Server

load of CDS Web and DB servers at the split time:

web + db→ web idle→ db
split leads to efficient use of OS resources by lone,
non-competing Web and DB daemon processes

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Load-Balanced Setup

useful for “LHC First Beam Day” rush situations with
many concurrent visitors
Apache mod_proxy_balancer

User Load Balancer App Worker 2

App Worker 1

App Worker 3

DB Server

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Measuring Scalability

using siege to simulate concurrent users and to
measure throughput on a sample of typical URLs

Example: inspirebeta.net under gentle siege

$ siege -d 1 -c 20 -t 1m -f inspirebeta_urls.txt
Transactions: 1329 hits
Availability: 100.00 %
Elapsed time: 60.23 secs
Data transferred: 37.12 MB
Response time: 0.41 secs
Transaction rate: 22.07 trans/sec
Throughput: 0.62 MB/sec
Concurrency: 8.96
Successful transactions: 1329
Failed transactions: 0
Longest transaction: 3.05
Shortest transaction: 0.01

Invenio
Technology

Tibor Šimko

Introduction
Digital Library

Invenio

Case Studies
Episode 1: Python

Episode 2: Git

Episode 3: Test Suite

Episode 4: Building
Efficient Indexes

Episode 5:
Load-balancing

Conclusions

Conclusions

building Invenio digital library system
∼250,000 LOCs from ∼40 authors over ∼10 years

value of rapid prototyping
value of organic-growth software development model
value of coding aesthetics and minimalism
morale from selected anecdotes?

“Never Lose A Holy Curiosity” (A. Einstein)

	Introduction
	Digital Library
	Invenio

	Case Studies
	Episode 1: Python
	Episode 2: Git
	Episode 3: Test Suite
	Episode 4: Building Efficient Indexes
	Episode 5: Load-balancing

	Conclusions

