
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

(some of the)
Linux performance tool
research at HP Labs

David Mosberger
HP Labs, Palo Alto
CERN, Oct. 20, 2004

October 21, 2004 2

Outline

• Background
• Vision & approach
• Recent work
−perfmon
−Qprof
−q-syscollect & q-view

• statistical call-count collection
• blind-spot-free profiling

• Summary
• Q & A

October 21, 2004 3

Background

• Goal is to give an overview of some of the
performance tool research going on at HP Labs

• Material presented here covers work by:
−Hans Boehm <Hans.Boehm@hp.com>

−Stéphane Eranian <eranian@hpl.hp.com>

−David Mosberger <davidm@hpl.hp.com>

• Some of this work is in support of GELATO:
 http://www.gelato.org/

− a great resource for institutions interested in the
advancement of Itanium Linux, including UCB,
CERN, CSCS, INRIA, UNSW, and many others

Our vision

“radically simplify the development of
efficient software...”

October 21, 2004 5

Why is this important?

• More efficient software lets you do more on the
same machine
−great for servers

• More efficient software lets you do the same with
less memory, less power, or with less waiting
−great for workstations/desktops

• Many programmers spend a great deal of time
tuning their programs; making this more efficient
can greatly reduce software-development costs

October 21, 2004 6

Why is it hard?

• Scope for radical simplification is huge:
−HPC- (think Fortran) or UNIX-applications (C & C++)
−managed runtime-environments (MREs; Java, Mono, ...)
− single machine (small/large) and clustered environments
−on-line vs. off-line optimization, etc.

• We focus on a manageable subset of this scope
and use a bottom-up approach:
− single machine (not clusters, yet)
−C & C++ apps
−MREs & on-line optimization in the not too distant future

October 21, 2004 7

IA-64 Linux
kernel

Some of what we have so far...

perfmon
x86 Linux

kernel

atomic-
ops

libunwind

pfmon

Qprofq-syscollect

q-view

The perfmon
kernel sub-system

October 21, 2004 9

What is perfmon?

• An architecture-independent kernel-interface for
performance-monitoring:
−one interface that can support all performance-tools

int perfmonctl (int fd, int cmd, void *arg, int nargs)

−minimalistic: user-level libraries for complicated stuff
− support per-process and system-wide monitoring
− support sampling, not just event-counting
−built-in, efficient, robust, secure, & documented

• A complete implementation for IA-64 Linux kernel:
− supports all features of Itanium, Itanium 2, and future CPUs

PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART

October 21, 2004 10

Who is/could be using perfmon?

• pfmon (is)
−gives raw access to all perfmon features

• PAPI (is)
−gives abstract access to event-counters

• Oprofile (is)
− can use event-counters as profiling-sources

• Qprof (is)
− likewise

• q-syscollect (is)
− uses perfmon to obtain code profile & call-counts

• Vtune (could)

October 21, 2004 11

Perfmon: a simple example

$ pfmon --follow-all –-us-c \
 -ecpu_cycles,ia64_inst_retired -- \
 cc hello.c

15,642,024 CPU_CYCLES /usr/lib/.../cc1
27,346,418 IA64_INST_RETIRED /usr/lib/.../cc1
 4,411,048 CPU_CYCLES as
 5,484,922 IA64_INST_RETIRED as
27,172,698 CPU_CYCLES /usr/bin/ld
33,930,949 IA64_INST_RETIRED /usr/bin/ld
 415,230 CPU_CYCLES /usr/.../collect2
 507,735 IA64_INST_RETIRED /usr/.../collect2
 814,656 CPU_CYCLES cc
 1,150,182 IA64_INST_RETIRED cc

Qprof

October 21, 2004 13

Qprof:
removing the excuse not to profile

• Portable to IA-64, x86, Alpha Linux

• Supports threads & shared libraries

• More functionality if installed with
− perfmon: profile on cache-misses, ...
− libunwind: call-stack profiling

• Use by itself or with q-view

• No recompilation
• No relinking
• No kernel-modules
• User-installable

Implementation techniques:
• Relies on dynamic linking
• Preloaded library sets up timer, signal-handler looks at IP
• Intercepts some library-routines (e.g., pthread_create())

Research interest:
•demands interesting & practical lock-free data-structures

October 21, 2004 14

Qprof installation & use

$ wget hpl.hp.com/.../linux/qprof-0.4.tar.gz
$ tar xzvf q-prof-0.4.tar.gz
$ cd qprof-0.4
$ make install
$ export QPROF_GRANULARITY=function
$ export QPROF_COLOR=red QPROF_INTERVAL=1000
$. alias.sh
$ qprof_start
$ du -h -s $HOME
...
du(__strtol_internal) 1 (3%)
libc.so.6(strlen) 3 (9%)
libc.so.6(__lxstat64) 17 (49%)
libc.so.6(__libc_open64) 2 (6%)
...

q-syscollect + q-view =
 gprof without the pain

October 21, 2004 16

q-syscollect + q-view

• 100% safe

• Supports threads & shared libraries

• Can monitor kernel-level exection
(even at lowest-level, such as TLB-
miss handler)

• Separates data-collection (q-
syscollect) from data visualization (q-
view)

• No recompilation
• No relinking
• No kernel-modules
• No dyn. loader tricks
• Itanium 2-specific

Implementation techniques:
• Relies on perfmon to collect data on all processes and kernel

Research interest:
• exploits Itanium 2 BTB to collect call-counts statistically

October 21, 2004 17

q-syscollect + q-view in action
$ cc -O2 tst.c -o tst
$ q-syscollect tst
$ ls .q
 tst-pid19.edge tst-pid19.hist tst-pid19.info
xterm-pid34.edge xterm-pid34.hist xterm-pid34.info
$ q-view .q/tst-pid19.info
% time self cumul calls self/call tot/call name
 36.75 7.33 7.33 120M 61.2n 61.2n cos
 10.46 2.08 9.41 29.3M 71.2n 71.2n tan
 8.91 1.78 11.19 - - - main
 5.88 1.17 13.67 29.6M 39.7n 163n f08
 ...
Call-graph table:
index %time self children called name
 3.61 0.00 59.1M f08 [25]
 1.84 0.00 30.0M f07 [26]
 1.88 0.00 30.7M f06 [27]
[30] 39.0 7.33 0.00 120M cos

October 21, 2004 18

q-syscollect: How does it work?

• Flat profile:
−Obtained in standard fashion

• sample instruction-pointer (IP) every N ticks
• “tick” can be any PMU event (CPU--cycles, stalls, TLB-misses, etc.)

• Call-graph:
− Take advantage of advanced PMU features:

• Branch-Trace-Buffer (BTB) configured to record return-branches only
• Every M-th return-branch:
− stop the BTB
− read out the branch-address and target of 4 most recent returns
− record info in a 2-dimensional histogram
− resume normal execution

• Randomize on M to avoid (serious) bias

October 21, 2004 19

Are statistical call-counts accurate?

• They appear to be
− empirically, found to be accurate even for relatively short

runs (20-30 sec) and complex call-graphs
− error analysis for loop calling 10 functions:

10 20 30 40 50 60 300 600 3,000
0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

max error

avg. error

Measurement duration [sec]

Er
ro

r

October 21, 2004 20

New feature in q-syscollect v0.2:
blind-spot-free profiling
• The challenge:
−When interrupts are masked/disabled, the PMU interrupt

can't get through  blind spots
− Example:

• kernel-profile for signal-delivery benchmark:

% time self calls self/call name
 25.05 12.44 88.8M 140n _spin_unlock_irq
 17.00 8.44 59.8M 141n _spin_unlock_irqrestore
 8.54 4.24 231M 18.4n __copy_user
 8.36 4.15 - - break_fault
 7.52 3.73 89.0M 42.0n __do_clear_user
 3.84 1.91 29.3M 65.1n setup_sigcontext
 2.85 1.42 29.8M 47.6n setup_frame

October 21, 2004 21

Blind-spot-free profiling (cont.)

• Possible solutions:
−Non-Maskable Interrupt:

• can be dangerous; doesn't help with blind-spots created by low-
level handlers such as software TLB-miss-handlers

• on Itanium, it can be masked via PSR.I
− INIT events:

• Itanium-specific, truly non-maskable event, but expensive:
− goes through PAL & SAL firmware layers and executes in

physical mode
−q-syscollect approach:

• Take advantage of avanced PMU features:
− sample branches in the BTB and use the sampled info to

determine most recently executing basic-block

October 21, 2004 22

Blind-spot-free profiling:
some caveats
• Due to the BTB-based collection of IP-samples:
− Profiling granularity limited to basic-block level

• Not a problem for function-level profiling
−Qualitatively accurate results with standard kernel,

quantitative accurate results need a small kernel patch
−BTB can sample at most one location per sampling period

 sampling period must be greater than the longest
period for which interrupts are disabled
−Same hardware (BTB) is used for call-count collection and

blind-spot-free profiling  can only do one at a time
• future perfmon supports multiplexing to avoid this limitation

October 21, 2004 23

Blind-spot-free profiling:
result for signal-delivery benchmark
• Collected with:
−q-syscollect -k -i -C 100, with kernel-patch applied:

−without kernel-patch:
• highest-ranked 6 functions remain the same, but time spent in
__copy_user & break_fault drops significantly

% time self calls self/call name
 7.17 4.05 - - __copy_user
 6.63 3.75 - - break_fault
 6.31 3.57 - - __do_clear_user
 5.80 3.28 - - recalc_sigpending_tsk
 4.75 2.69 - - rse_clear_invalid
 3.89 2.20 - - __dequeue_signal
 3.23 1.83 - - ia64_leave_kernel

October 21, 2004 24

Summary

• We are using a bottom-up approach to build up a
suite of performance tools and related infrastructure
(e.g., atomic-ops and libunwind)

• We use perfmon and the Itanium 2 performance
monitoring unit to push the boundaries of what can
be measured in a non-intrusive manner

• Along the way we have built some handy and
powerful performance-tools, though we're not
claiming production-quality (with the exception of
perfmon)

• Watch out for future developments in this area...

For further info...

http://www.hpl.hp.com/research/linux/

