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Background

• Goal is to give an overview of some of the 
performance tool research going on at HP Labs

• Material presented here covers work by:
−Hans Boehm <Hans.Boehm@hp.com>

−Stéphane Eranian <eranian@hpl.hp.com>

−David Mosberger <davidm@hpl.hp.com>

• Some of this work is in support of GELATO:
                               http://www.gelato.org/

− a great resource for institutions interested in the 
advancement of Itanium Linux, including UCB, 
CERN, CSCS, INRIA, UNSW, and many others



Our vision

“radically simplify the development of 
efficient software...”
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Why is this important?

• More efficient software lets you do more on the 
same machine
−great for servers

• More efficient software lets you do the same with 
less memory, less power, or with less waiting
−great for workstations/desktops

• Many programmers spend a great deal of time 
tuning their programs; making this more efficient 
can greatly reduce software-development costs
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Why is it hard?

• Scope for radical simplification is huge:
−HPC- (think Fortran) or UNIX-applications (C & C++)
−managed runtime-environments (MREs; Java, Mono, ...)
− single machine (small/large) and clustered environments
−on-line vs. off-line optimization, etc.

• We focus on a manageable subset of this scope 
and use a bottom-up approach:
− single machine (not clusters, yet)
−C & C++ apps
−MREs & on-line optimization in the not too distant future
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IA-64 Linux
kernel

Some of what we have so far...

perfmon
x86 Linux

kernel

atomic-
ops

libunwind

pfmon

Qprofq-syscollect

q-view



The perfmon 
kernel sub-system
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What is perfmon?

• An architecture-independent kernel-interface for 
performance-monitoring:
−one interface that can support all performance-tools

int perfmonctl (int fd, int cmd, void *arg, int nargs)

−minimalistic: user-level libraries for complicated stuff
− support per-process and system-wide monitoring
− support sampling, not just event-counting
−built-in, efficient, robust, secure, & documented

• A complete implementation for IA-64 Linux kernel:
− supports all features of Itanium, Itanium 2, and future CPUs

PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
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Who is/could be using perfmon?

• pfmon (is)
−gives raw access to all perfmon features

• PAPI (is)
−gives abstract access to event-counters

• Oprofile (is)
− can use event-counters as profiling-sources

• Qprof (is)
− likewise

• q-syscollect (is)
− uses perfmon to obtain code profile & call-counts

• Vtune (could)
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Perfmon: a simple example

$ pfmon --follow-all –-us-c \
   -ecpu_cycles,ia64_inst_retired -- \
     cc hello.c

15,642,024 CPU_CYCLES        /usr/lib/.../cc1
27,346,418 IA64_INST_RETIRED /usr/lib/.../cc1
 4,411,048 CPU_CYCLES        as
 5,484,922 IA64_INST_RETIRED as
27,172,698 CPU_CYCLES        /usr/bin/ld
33,930,949 IA64_INST_RETIRED /usr/bin/ld
   415,230 CPU_CYCLES        /usr/.../collect2
   507,735 IA64_INST_RETIRED /usr/.../collect2
   814,656 CPU_CYCLES        cc
 1,150,182 IA64_INST_RETIRED cc



Qprof
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Qprof:
removing the excuse not to profile

• Portable to IA-64, x86, Alpha Linux

• Supports threads & shared libraries

• More functionality if installed with
− perfmon: profile on cache-misses, ...
− libunwind: call-stack profiling

• Use by itself or with q-view

• No recompilation
• No relinking
• No kernel-modules
• User-installable

Implementation techniques:
• Relies on dynamic linking
• Preloaded library sets up timer, signal-handler looks at IP
• Intercepts some library-routines (e.g., pthread_create())

Research interest:
•demands interesting & practical lock-free data-structures   
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Qprof installation & use

$ wget hpl.hp.com/.../linux/qprof-0.4.tar.gz
$ tar xzvf q-prof-0.4.tar.gz
$ cd qprof-0.4
$ make install
$ export QPROF_GRANULARITY=function
$ export QPROF_COLOR=red QPROF_INTERVAL=1000
$ . alias.sh
$ qprof_start
$ du -h -s $HOME
...
du(__strtol_internal)             1   (  3%)
libc.so.6(strlen)                 3   (  9%)
libc.so.6(__lxstat64)            17   ( 49%)
libc.so.6(__libc_open64)          2   (  6%)
...



q-syscollect + q-view =      
    gprof without the pain
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q-syscollect + q-view

• 100% safe

• Supports threads & shared libraries

• Can monitor kernel-level exection 
(even at lowest-level, such as TLB-
miss handler)

• Separates data-collection (q-
syscollect) from data visualization (q-
view)

• No recompilation
• No relinking
• No kernel-modules
• No dyn. loader tricks
• Itanium 2-specific

Implementation techniques:
• Relies on perfmon to collect data on all processes and kernel

Research interest:
• exploits Itanium 2 BTB to collect call-counts statistically         
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q-syscollect + q-view in action
$ cc -O2 tst.c -o tst
$ q-syscollect tst
$ ls .q
  tst-pid19.edge   tst-pid19.hist   tst-pid19.info
xterm-pid34.edge xterm-pid34.hist xterm-pid34.info
$ q-view .q/tst-pid19.info
% time  self  cumul  calls self/call tot/call name
 36.75  7.33   7.33   120M     61.2n    61.2n cos
 10.46  2.08   9.41  29.3M     71.2n    71.2n tan
  8.91  1.78  11.19      -         -        - main
  5.88  1.17  13.67  29.6M     39.7n     163n f08
    ...
Call-graph table:
index %time      self  children called name
                 3.61      0.00 59.1M     f08 [25]
                 1.84      0.00 30.0M     f07 [26]
                 1.88      0.00 30.7M     f06 [27]
[30]   39.0      7.33      0.00  120M  cos
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q-syscollect: How does it work?

• Flat profile:
−Obtained in standard fashion

• sample instruction-pointer (IP) every N ticks
• “tick” can be any PMU event (CPU--cycles, stalls, TLB-misses, etc.)

• Call-graph:
− Take advantage of advanced PMU features:

• Branch-Trace-Buffer (BTB) configured to record return-branches only
• Every M-th return-branch:
− stop the BTB
− read out the branch-address and target of 4 most recent returns
− record info in a 2-dimensional histogram
− resume normal execution

• Randomize on M to avoid (serious) bias
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Are statistical call-counts accurate?

• They appear to be
− empirically, found to be accurate even for relatively short 

runs (20-30 sec) and complex call-graphs
− error analysis for loop calling 10 functions:
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New feature in q-syscollect v0.2:
blind-spot-free profiling
• The challenge:
−When interrupts are masked/disabled, the PMU interrupt 

can't get through  blind spots
− Example:

• kernel-profile for signal-delivery benchmark:

% time  self calls self/call name
 25.05 12.44 88.8M      140n _spin_unlock_irq
 17.00  8.44 59.8M      141n _spin_unlock_irqrestore
  8.54  4.24  231M     18.4n __copy_user
  8.36  4.15     -         - break_fault
  7.52  3.73 89.0M     42.0n __do_clear_user
  3.84  1.91 29.3M     65.1n setup_sigcontext
  2.85  1.42 29.8M     47.6n setup_frame
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Blind-spot-free profiling (cont.)

• Possible solutions:
−Non-Maskable Interrupt:

• can be dangerous; doesn't help with blind-spots created by low-
level handlers such as software TLB-miss-handlers

• on Itanium, it can be masked via PSR.I
− INIT events:

• Itanium-specific, truly non-maskable event, but expensive:
− goes through PAL & SAL firmware layers and executes in 

physical mode
−q-syscollect approach:

• Take advantage of avanced PMU features:
− sample branches in the BTB and use the sampled info to 

determine most recently executing basic-block
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Blind-spot-free profiling:
some caveats
• Due to the BTB-based collection of IP-samples:
− Profiling granularity limited to basic-block level

• Not a problem for function-level profiling
−Qualitatively accurate results with standard kernel, 

quantitative accurate results need a small kernel patch
−BTB can sample at most one location per sampling period 

 sampling period must be greater than the longest 
period for which interrupts are disabled
−Same hardware (BTB) is used for call-count collection and 

blind-spot-free profiling  can only do one at a time
• future perfmon supports multiplexing to avoid this limitation
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Blind-spot-free profiling:
result for signal-delivery benchmark
• Collected with:
−q-syscollect -k -i -C 100, with kernel-patch applied:

−without kernel-patch:
• highest-ranked 6 functions remain the same, but time spent in 
__copy_user & break_fault drops significantly

% time self calls self/call name
  7.17 4.05     -         - __copy_user
  6.63 3.75     -         - break_fault
  6.31 3.57     -         - __do_clear_user
  5.80 3.28     -         - recalc_sigpending_tsk
  4.75 2.69     -         - rse_clear_invalid
  3.89 2.20     -         - __dequeue_signal
  3.23 1.83     -         - ia64_leave_kernel
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Summary

• We are using a bottom-up approach to build up a 
suite of performance tools and related infrastructure 
(e.g., atomic-ops and libunwind)

• We use perfmon and the Itanium 2 performance 
monitoring unit to push the boundaries of what can 
be measured in a non-intrusive manner

• Along the way we have built some handy and 
powerful performance-tools, though we're not 
claiming production-quality (with the exception of 
perfmon)

• Watch out for future developments in this area...



For further info...

http://www.hpl.hp.com/research/linux/




