nnnnnn

perrmon?2:
a performance

monitoring inferface for
Linux

Stéphane Eranian

HP Labs
January 2005
CERN, Geneva, Switzerland

© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

I Agenda

What is performance monitoring?
What is the PMU?

Overview of the pertmon?2 interface
Current implementations

porting to Xen/ia64

Examples of performance tools for Linux/ia64

January 20, 2005

nnnnnn

I What is pertormance monitoring? e

The action of collecting information related to how an
application/system performs when executing.

Information obtained by instrumenting the code
Extract program-level information
Statically: by compilers (-pg option)
Dynamically: e.g., HP Caliper, Intel PIN tool
example: count basic-block execution

Information obtained from processor/chipsets
Extract micro-architectural level information
Uses hardware performance counters
Example: count TLB misses

January 20, 2005

I What is the PMU? Q]

Piece of CPU HW collecting micro-architectural events:
From pipeline, system bus, caches, ...

All modern processors have a PMU
May even be part of the architecture, e.g., Itanium®

PMU has existed for a long time (think debug)

Not always made public or documented properly

PMU is highly specitic to processor implementation
Large differences even inside same processor family

New trend is to expose PMU to users
Foster developments of good performance tools

Many new PMUs go beyond just collecting counts

January 20, 2005 4

I Pertormance monitoring and |PF p

IPF performance is based mostly on code quality
EPIC: parallelism of the machine is exposed to users

Optimization decisions made at compile time
Must extract as much parallelism as possible from source

Performance feedback needed by compilers
Profile Guided Optimization (PBO) to tweak optimizations
Static optimization

Performance feedback needed by Managed Runtimes (MRE)
Needed to tweak embedded JIT compiler
Dynamic optimization

Must have very good monitoring infrastructure
Need access to low-level performance informatio

January 20, 2005 5

I The ltanium® PMU Q}

IPF architecture specities PMU intertace (framework):
Up to 256 control (PMC) and 256 data (PMD) registers

Minimal contig: 4 counters, 2 events, overtlow intr.
capability

Lots of room for extensions:

ltanium®: 14 PMC, 18 PMD

4 counters (32bits), =230 events
Opcode match, range restrictions, D-EAR, I-EAR, BTB

ltanium® 2: 16 PMC, 18 PMD

4 counters (47bits), =475 events
Opcode match, range restrictions, D-EAR, I-EAR, A-EAR, BTB

Montecito(2005): expect more exciting features

January 20, 2005 6

I Accessing the PMU (A

Some operations require priviledged access
e.g.: processing of PMU interrupts, setup of PMU registers

Some PMUs allow certain operations at user level:
ltanium®: read PMD, start and stop with simple instructions

OS support required: device driver or system call?
System call: makes it a builtin feature
Device driver: makes it more modular and optional
System call: HPUX, Linux,MacOS (per-thread and syswide)
Device driver: Windows (syswide)

January 20, 2005 7

I The pertmon challenge pr

No standard kernel interface exist on Linux

Various patches exist for IA-32, PowerPC, X86_64
Most interesting is perfctr
Other OS may have proprietary interfaces

Slows down developments of modern tools
Unexploited hardware resources to help boost performance

PMU is specitic to each processor implementation
Huge variations make it ditticult to abstract hardware

Challenge:

How to design a generic, yet powerful and extensible, kernel
interface to access the PMU of modern processors which
could support a variety of performance tools?

Januar y 20, 2005 8

I The pertmon?2 intertace p

Provides a interface to access PMU
Not dedicated to one app, avoid fragmentation

Must be portable across all PMU models:

Almost all PMU-specific knowledge in user level libraries

Supports monitoring

Self-monitoring, unmodified binaries, attach/detach
multithreaded and multi-process workloads

Supports system-wide monitoring

Supports counting and sampling
No modification to applications or system

, efficient, robust, secure, simple,documented

January 20, 2005 9

. : D |
Perfmon?2 interface (3
Uses a system call
More fexibility, ties with ctxsw, exit, fork
Kernel compiletime option on Linux

Perfmon?2 context enscapsulates all PMU state
Each context uniquely identitied by file descriptor

int perfmonctl(int fd, int cmd, void *arg, int narg)

PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
PFM_CREATE_EVTSET PFM_DELETE_EVTSET PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS PFM_GETINFO_PMDS PFM_GET_CONFIG
PFM_SET CONFIG

January 20, 2005 10

I Pertmon2 PMU registers (3

Logical PMU registers exposed by intertace:
PMC: contiguration registers
PMD: data registers (counters, butters, ...)

Counters are always exported as 64-bit wide
Mapping to actual registers depends on PMU
Mapping returned by PFM_GETINFO_PM[CD]S

Calls return actual register name and index or address

Example: PMC4 = MSR @ 0x300
Possibility to have virtual PMD registers

Can map to OS or processor resource
Example: PMD356 = amount of free physical memory

January 20, 2005 1

[

Typical selt-monitoring session

pfarg ctx t ctx;
pfarg load t load;
pfarg pmd t pd[l]; pfarg pmc t pc[l];

perfmonctl (0, PFM CREATE CONTEXT, é&ctx,1);
perfmonctl (ctx.ctx fd, PFM WRITE PMCS, pc, 1);
perfmonctl (ctx.ctx fd, PFM WRITE PMDS, pd, 1);
load.load pid = getpid();

perfmonctl (ctx.ctx fd, PFM LOAD CONTEXT, &load, 1);
perfmonctl (ctx.ctx fd, PFM START NULL, O0);

/* run code to measure */

perfmonctl (ctx.ctx fd, PFM STOP, NULL, O0);
perfmonctl (ctx.ctx fd, PFM READ PMDS, pd, 1);

printf (“total cycles %”PRIu64”\n”, pd[0] .reg value);
close (£fd) ;

January 20, 2005 12

I Monitoring an unmoditied binary pf

Can fork/exec binary or attach to a running thread

Ability to follow across fork/pthread_create using
ptrace

M

pf non

file table pf m cont ext

January 20, 2005 13

I System wide monitoring pr

Monitor across processes

Built as union of cpu-wide
sessions

Simplicity of kernel implementation
Better scalability

Better atune to hardware (P4 PEBS)
Use sched_setaftinity() for pinning

Ability to exclude idle task

Cannot run concurrently with
perthread session

Januar y 20, 2005 14

I Perfmon2 event notification g

Can receive a message on:
A counter overflow: when it wraps from 2°* to O
a thread termination

Message channel is a simple queue

Exploit existing file infrastructure:
Extraction via read()
Support tor select/poll to poll on multiple descriptors
Asynchronous notification via signal (SIGIO)

Tuneable behavior on overflow notification

Monitoring is stopped, resumed with PFM_RESTART
Possibility to block monitored thread to limit blind spots

January 20, 2005 15

I Support tor sampling piies

Support time-based sampling from user level

Support tor Event-Based Sampling (EBS) in kernel

Sampling period p expressed as 2°*p occurrences of event
piing p P exp P

As many sampling periods as there are counters
Allows overlapping sampling measurements

Support for randomized sampling period
Very important to avoid avoid biased samples
setup Is per counter

Suport optional kernel level sampling butfer
amortize cost of overtlow notitication
Samples stored in kernel buffer, notitication when butfer tull

January 20, 2005 16

Kernel level sampling butter

Butter remapped into user level address space
Avoid large data copies
Remapped read-only via an mmap() call

support custom sampling formats via kernel modules

t ool

file table pf m_cont ext

January 20, 2005

I Custom sampling butter formats pf

No single format can satisty all needs
Keep complexity very low

Provides interface for plug-in formats:
Easier to port existing tools, e.g., Oprofile or VTUNE
Exploit kernel infrastructure: kernel modules

Each format provides:
A 128-bit UUID for identification

A handler function called on each counter overflow

Each format controls:

\%%
\%%
\%%

nere and how samples are stored
nat gets recorded, how the samples are exported

hen a “buffer full” condition is declared

January 20, 2005 18

-
I Custom sampling format infrastructure 2

Modules may have private interface to export data

Modules do not have to use butter remapping service
private interface

vvv

Custom sampling format
module
validate ()
getsize ()
init ()
erd handler ()
samplin restart ()
forrI:\atg exit ()

January 20, 2005

I Existing sampling formats e

Default format (builtin):
Simple linear butter

Very generic samples: fixed header + PMD in body
Samples stored sequentially

Oprotile format:
10 lines of codes, reuse 100% of existing code

n-way sampling format (released separately):
Implements split buffer (up to 8-way)
Process one part while storing in others: minimize blind spots

Kernel call stack format (experimental):

Combines PMU sampling with kernel stack unwinder
Record kernel call stacks on counter overflow

January 20, 2005

20

Event sets and multiplexing g
What is the problem?

Number of counters is always limited (4 for ltanium®?2)
Some events cannot be measured at the same time
Some measurements require a lot of events:

Example: cycle breakdown on ltanium®2 requires at least 15 events
Solution:

Create sets of up to m events when PMU has m counters
Time share PMU between sets

January 20, 2005 21

I Event sets

nnnnnn

Each set encapsulates the tull PMU state

All PMC and PMD registers

Each set is identitied by user-specitied unique number

Up to 65k sets are supported
setO created by default (cannot be removed)

Only one set can be active at a time

Sets can dynamically be added, modifed, removed

set0

pf m cont ext
Januar y 20, 2005

pf m cont ext

set0

4>

setb

Sets are ordered based on their unique number
order determines the switching order

set0| »set3 P seth

pf m cont ext
22

Event sets (cont'd) pr

Runtime information about a set:
Use PFM_GETINFO_SETS

Infos: number of activations, aggregated duration of
activation

System-wide per-set modes:

Exc
Exc
Exc

UG
UG

UG

January 20, 2005

e idle task execution
e interrupttriggered execution (ltanium® only)
e all but interrupttriggered execution (ltanium® only)

23

Set multiplexing piar
List of sets managed in round-robin fashion

Two modes ot switching: timeout or overtlow
Selected per set, can mix and match

Timeout-based switching:
Timeout specitied per set
granularity depends on OS timer (Linux/ia64 = 1ms)

Overtlow-based switching:
after n overtlows of a “trigger” counter
Multiple simultaneous triggers are supported

Possibility to build cascading counters
Activate a set of counters after a certain threshold is reached

January 20, 2005 24

I Linux/iab64 pertmon implementations

In Linux/ia64 since 2.4.0

In all 2.4-based kernels

. pertmon]

First generation interface
Included in SLES-8, RHAS-2.1, RHEL-3.0 (but broken)

Several limitations : no monitoring across fork()

In all 2.6-based kernels

. perfmon?2

Second generation interface

Included in SLES9 and R
Not backward compatib
Currently includes: samp
Event set support not yet

January 20, 2005

HAS4

e with perfmon-1

ing formats
public

nnnnnn

25

Porting pertmon?2 to Xen/ia64 2]

nnnnnn

Two possibilities:
port to guest OS (Xenolinux/ia64)

port to hypervisor with DomainQ as controller

Port to Xenolinux/iab64

monitor each domain separately
easier because familiar environment
ring0 vs ring 1 issues

Port to hypervisor

allow cross-domain monitoring
non Linux-environment

issues: memory allocation, interrupt, tile descriptor intf.,
memory remapping

January 20, 2005 26

I Porting pertmon?2 to Xenolinux p

Ring 1 vs. ring O issues:
mov to/trom pmd[]/pmc[]
toggling of psr.pp and psr.up
toggling of der.pp

PMU interrupt:

managed as asynchronous external device interrupt
reuse Xen |/O descriptor ring (Xen -> Xenolinux only)

PMU state must be saved & restored on domain switch

January 20, 2005 27

. : . . (M |
I Linux/ia64 monitoring tools (3
Caliper(HP):

Perthread monitoring, binary product, free download
Source level profiles

VTUNE(Intel) for Linux/ia64
PMU-based, system-wide flat profile, Windows-side GUI

OProfile for Linux/ia64
PMU-based, system-wide flat profile

PAPI toolkit (U. of Tenessee) for Linux/ia64
PMU-based, counting, sampling, uses libpfm

ptmon/libptm (HPLabs) for Linux/ia64
q’rools gprot (HPLabs) for Linux/ia64

oooooo 20, 2005 28

I Monitoring complicated workloads

Implemented with ptmon-3.0 for pertmon-2:
Can follow across tork/vtork and pthread_create
Works for counting and sampling
Supports regular expression to filter binaries of interest

Example: elasped cycles of a compilation

$ pfmon --us-c -u -k --follow-all -ecpu_cycles,iab4_inst_retired \
-- cC e.c -0 e

1,164,772 CPU_CYCLES /usr/1ib/gcc-1ib/ia64-11nux/2.96/cpp0
1,295,480 TA64_INST_RETIRED /usr/lib/gcc-1ib/1a64-11inux/2.96/cpp0
13,758,346 CPU_CYCLES /usr/1ib/gcc-11b/ia64-11nux/2.96/ccl
21,863,635 TIA64_INST_RETIRED /usr/lib/gcc-1ib/1a64-11nux/2.96/ccl
5,708,731 CPU_CYCLES as

7,165,599 IA64_INST_RETIRED as]
27,046,535 CPU_CYCLES /usr/bin/1d

35,247,760 IA64_INST_RETIRED /usr/bin/1d _

1,381,134 CPU_CYCLES /usr/1ib/gcc-1ib/1a64-11nux/2.96/collect?
1,508,977 IA64_INST_RETIRED /usr/lib/gcc-1ib/1a64-11inux/2.96/collect?
1,913,253 CPU_CYCLES cC

1,976,590 IA64_INST_RETIRED ccC

January 20, 2005 29

[

Detailed cycle breakdown

Can use current pfmon with wrapper script
i2prof.pl written by Per Ekman

Using the experimental version of pfmon:

$ pfmon -m itanium2-stalls -ku -system-wide -print-interval - mcf inp.in

%itlb %icache %bra %unstall %BE %score %RSE ----———-—-=—=-————- D-access ------
exec flush board %d1tlb %d2tlb %cache -loaduse-
res %gr %fr

0.00 0.02 2.81 32.08 10.06 1.19 0.00 0.57 5.28 4.19 43.80 0.00
0.00 0.02 2.81 32.12 10.06 1.19 0.00 0.57 5.28 4.19 43.77 0.00
0.00 0.02 2.81 32.09 10.06 1.19 0.00 0.57 5.28 4.19 43.78 0.00
0.00 0.00 0.08 59.29 0.22 0.05 0.00 0.03 0.01 1.75 38.57 0.01
0.00 0.00 0.06 54.49 0.16 1.16 0.00 0.46 3.16 3.74 36.76 0.00
0.00 0.05 2.83 42.14 10.08 1.06 0.02 0.68 4.77 5.69 32.69 0.00
0.00 0.05 2.79 42.27 9.97 1.07 0.02 0.69 4.88 5.67 32.59 0.00
0.00 0.03 2.44 41.42 8.74 1.11 0.00 0.55 4.30 4.32 37.09 0.00
0.00 0.02 2.82 32.07 10.07 1.16 0.00 0.62 5.69 4.46 43.08 0.00

January 20, 2005 30

Opcode matching with ptmon

Constrains monitoring to instructions or patterns
Based on opcode, e.g., st8.*
Based on functional unit, e.g., M,F,|,B
Pattern uses a match+mask fields
Not all instructions can be uniquely identitied
Two opcode matching registers on ltanium® 1 & 2

Ex.: counting the number of br.cloop instructions:

$ pfmon -us-c --opc-match8=0x1400028003ffflfa \

—~e TIA64 TAGGED INST RETIRED IBRPO PMC8 -- foo
4,999,950,164 IA64 TAGGED INST RETIRED IBRPO PMCS8

January 20, 2005 31

Range restrictions

Constrains monitoring to range of data or code
Implemented via debug registers (not used as breakpoints)
Can specify a range inside the kernel (Linux/ia64)

Works for both per-process and system-wide
Not all events support range restrictions

Range must be aligned on size for exact measurements
gcc -falign-functions= option can be usetul

Ex.: how many L2 misses while executing init_tab()

$ pfmon -us-c -el2 misses —-- foo
1,245,516 L2 MISSES (misses for the entire execution)
$ pfmon -us-c —-irange=init tab -el2 misses -- foo
14,456 L2 MISSES (misses for init tab () only)

January 20, 2005 32

Sampling cache and TLB misses Q) |

ks

Cannot
Pinpoint t
Careful

ul to find where cache/TLB load misses occur
oe done with naive IP-based sampling

ne source of a miss, not the consequence
pecause not all misses lead to stalls

Ex.: sample every 1000 cache misses with latency > 4

cycles

$ pfmon —-long-smpl-periods=1000 -edata ear cache lat4 - foo

entry 2000 PID:608 CPU:0 STAMP:0xfe3el212e5 IIP:0x4000000000000990
accessed data: 0x2000000000357000
miss latency : 16 cycles
inst address : 0x4000000000000981

4000000000000980: [MMT] 1d8 rlb5=[rlo]
4000000000000981 1d8 rl4=[r17]€ miss source
4000000000000982: nop.1 0x0;;

4000000000000990: [MMT] cmp.ltu p7,p6=rl4d,rl5;; € stall

January 20, 2005

33

[

Data load cache misses protiles
Obtained using the Data EARS

Provides two views:
Instruction view: which loads trigger misses?
Data view: on which data do misses occur?

Example: mct instruction and data views

#count %self %cum %L2 %L3 %RAM instruction addr
6358 11.11% 11.11% 3.05% 5.17% 91.77% price_out_impl+0x820<mcf>
6238 10.90% 22.01% 26.74% 69.93% 3.33% price_out_impl1+0x850<mcf>

5404 9.44% 31.45% 74.43% 24.94% 0.63% bea_compute_red_cost+0x50<mcf>
5016 8.77% 40.22% 46.69% 33.77% 19.54% bea_compute_red_cost+0xal<mcf>
4968 8.68% 48.90% 42.43% 9.98% 47.58% primal_bea_mpp+0x7bl<mcf>

4878 8.52% 57.42% 36.67% 51.87% 11.46% bea_compute_red_cost+0x90<mcf>

#count %self %cum %L 2 %L3 %RAM data addr
37 0.06% 0.06% 62.16% 32.43% 5.41% 0x200000000017ebdO
32 0.06% 0.12% 75.00% 18.75% 6.25% 0x20000000000d07b0
29 0.05% 0.17% 68.97% 24.14% 6.90% 0x20000000000e2438
28 0.05% 0.22% 96.43% 3.57% 0.00% 0x20000000000d3708
26 0.05% 0.27% 88.46% 11.54% 0.00% 0x20000000000d8c58

January 20, 2005 34

Sampling branches (BTB)
Capture up to the last 4 branches:

Each entry contains source/target addr., prediction outcome
Possible to filter branches: taken/not taken, mispredicted

Can be combined with EAR to build a path to a cache/tlb

miss

Ex.: sample every 1000 taken branch, record last 4

$ pfmon --smpl-periods-random=5:0xff —--btb-tm-tk \
—-—-long-smpl-periods=1000 -ebranch event -- foo

entry 231 PID:673 CPU:0 STAMP:0x12957325ac49 IIP:0x40000000000004d0
last reset : 1004
branch source address: 0x40000000000004£2
branch target address: 0x40000000000004cO

branch taken : yes, prediction: success, pipe flush: no
40000000000004f0: [MFB] nop.m 0x0
40000000000004f1: nop.f 0x0

40000000000004f£2: br.cloop.sptk.few 40000000000004cO0
January 20, 2005 35

I Current and future work e

Full interface specification document
To be released as HPLabs tech report in February 2005

Engage in discussion with Linux communi’?/ to
standardize performance monitoring intertace

Ensure SLES9/RHEL4 have decent pertmon?2 support

Important for HP and Intel and entire user community
Open-source event set multiplexing support
Update ptmon/libptm for Montecito support

Develop new kinds of pert. tools exploiting the
interface

Januar y 20, 2005 36

. D |
Kernel level call stack sampling 2
Combines kernel stack unwinder with perfmon2:

On counter overflow, record the call stack
Uses a custom sampling butfer format

Example using the moditied version of ptmon:

$ pfmon -e --long-smp1-periods=2000 --smpl-periods-random=0xff:10 -k \
--smpl-module=kcall-stack-ia64 --resolve-addr --system-wide

__copy_user,file_read_actor,do_generic_mapping_read,__generic_file_aio_read,generic_file_aio_read,
do_sync_read,vfs_read,sys_read,iab4_ret_from_syscall

do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel
clear_page,do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel
bh_Tru_install,__find_get_block,__getblk,ext3_get_inode_loc,ext3_reserve_inode_write,
ext3_mark_inode_dirty,ext3_dirty_inode,__mark_inode_dirty,update_atime,link_path_walk,open_namei,

filp_open,sys_open,ia6d_ret_from_syscall

end_bio_bh_io_sync,bio_endio,__end_that_request_first,scsi_end_request,scsi_io_completion,
sd_rw_intr,scsi_finish_command,scsi_softirqg,do_softirq,ia64_handle_irq,ia64_leave_kernel

filemap_nopage,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel
scsi_finish_command,scsi_softirq,do_softirqg,ia64_handle_irqg,ia64_leave_kernel
end_page_writeback,end_buffer_async_write,end_bio_bh_io_sync,bio_endio,__end_that_request_first,

scsi_end_request,scsi_io_completion,sd_rw_intr,scsi_finish_command,scsi_softirqg,do_softirq,
ia64_handle_irqg,ia64_leave_kernel

January 20, 2005 37

. |
I Conclusions 3

Monitoring is key to achieving world-class
performance

Having a standardized pertmon intertace is important

Pertmon? is the most advanced monitoring interface of
all Linux implementations

The ltanium® 2 PMU is very powertful
Linux/ia64 already has a variety of performance tools

Need to develop better, smarter tools tor non-experts

Januar y 20, 2005 38

PMU resources

PMU resources
pftmon/libptm, g+tools, g-prot (HPLABS)

http://www.hpl.hp.com/research/linux
Caliper(HP):
ttp://www.hp.com/go/caliper
VTUNE(Intel):

nttp://ww.intel.com/sottware/products/vtune

PAPI
http://icl.cs.utk.edu/projects/papi

OProfile
http://oprofile.st.net

Prospect:
http://prospect.st.net

January 20, 2005

nnnnnn

40

I Linux/ia64 pertmon resources o

i2prof.pl:
http://www.pdc.kth.se/~pek/i2prof.pl

IPF PMU architecture:
http://developer.intel.com/design/itanium/

ltanium® 2 PMU specitication:

http://developer.intel.com/design/itanium/manuals.htm

N-way sampling butter format:
ttp://ttp.hpl.hp.com/pub/linux-ia64/nway_smpl-0.1.tar.gz

Januar y 20, 2005 4]

Backup slides

nnnnnn

