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Lesson 1
a) Introduction
b) Overview of Architecture and Conventions

Lesson 2
a) Standard Instruction Set
b) Our first “real” example

Lesson 3
a) Secrets of Speed
b) An improved version our example

Lesson 4
a) Multimedia Instructions
b) A top-notch version of our example

Lesson 5
a) Floating-point Instructions
b) Changing our example to handle floating-point

Lesson 6
a) Compilers and Assemblers: Peaceful coexistence?
b) Conclusions

Appendices
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Part 1a

Introduction
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Presentation Objectives
Offer programmers

Comprehension of the architecture
Instruction set and other features

Working Understanding of Itanium 
machine code

Compiler-generated code
Hand-written assembler code

Inspiration for writing code
Well-targeted assembler routines

Highly optimized routines
In-line assembly code

Full control of architectural features
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Part 1b

Overview of 
Architecture

and Conventions
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Architectural Highlights

(Some of the) Main Innovations:
Rich Instruction Set
Bundled Execution
Predicated Instructions
Large Register Files

Register Stack
Rotating Registers

Software Pipelined Loops
Control/Data Speculation
Cache Control Instructions
High-precision Floating-Point
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A simple example
Lots of details

Many questions

.proc
getval:

alloc r3=ar.pfs,R_input,R_local,R_output,R_rotating
(p0) movl r2=Table // Base table address
(p0) and in0=7,in0 // Choice is 0 – 7
;;
(p0) shladd r2=in0,3,r2 // Index table
;;
(p0) ldfd f8=[r2] // Load value

(p0) br.ret.sptk.few rp // return

Application registers

Branch return

Register 
allocation

Enforced
Instruction
Separation

Predicated execution
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User Register Overview

128
Integer Registers

16 Kernel
Backup Registers

128
Floating Point Registers

8
Region Registers

64
Predicate Registers

128
Control Registers

8
Branch Registers Instruction Pointer

128
Application Registers

NN Debug
Breakpoint Registers

5
CPUID Registers

NN Perf. Mon.
Data Reg’s
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IA64 Common Registers
Integer registers

128 in total; Width is 64 bits + 1 bit (NaT); r0 = 0
Integer, Logical and Multimedia data

Floating point registers
128 in total; 82 bits wide
17-bit exponent, 64-bit significand
f0 = 0.0; f1 = 1.0
Significand also used for two SIMD floats

Predicate registers
64 in total; 1 bit each (fire/do not fire)
p0 = 1 (default value)

Branch registers
8 in total; 64 bits wide (for address)
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Rotating Registers

…….

Upper 75% rotate (when activated):
General registers (r32-r127)
Floating Point Registers (f32-f127)
Predicate Registers (p16-p63)

Formula:
Virtual Register = Physical Register – Register Rotation 
Base (RRB)

f28 f29 f30 f31 f32 f33 f34 f35 f124 f125 f126 f127…….
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Register Convention
Run-time:

Branch Registers:
B0: Call register [rp]
B1-B5: Must be preserved
B6-B7: Scratch

General Registers:
R1: Global Data Pointer [gp]
R2-R3: scratch
R4-R7: Must be preserved
R8-R11: Procedure Return Values [ret0, ret1, ret2, ..]
R12: Stack Pointer [sp]
R13: (Reserved as) Thread Pointer
R14-R31: Scratch
R32-Rxx: Argument Registers [in0, in1, in2, ..]
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Register Convention (2)
Run-time convention

Floating-Point:
F2-F5: Preserved
F6-F7: Scratch
F8-F15: Argument/Return Registers
F16-F31: Must be preserved
F32-F127: Scratch

Predicates:
P1-P5: Must be preserved
P6-P15: Scratch
P16-P63: Must be preserved

Additionally:
Ar.lc: Must be preserved
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Register Stack Rules
The rotating integer registers serve as a 
stack

Each routine allocates via ”alloc” instruction:
Input + Local + Output
“R_rotate” <= “R_input + R_local” may rotate (in a 
multiple of 8 registers)

Local A Output A

Input B + Local B Output B

Proc A

Further Calls

Local A Output A

Proc B

Proc C

Proc B

Proc A
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Instruction Types
M

Memory/Move Operations

I
Complex Integer/Multimedia Operations

A
Simple Integer/Logic/Multimedia Operations 

F
Floating Point Operations (Normal/SIMD)

B
Branch Operations

L
Special instructions with 64-bit immediate
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Instruction Bundle

Bundle as “Packaging entity”:
3 * 41 bit Instruction Slots
5 bits for Template (of Inst. types)

Typical examples: MFI or MIB
Including bit for Instruction Group Separation “S”

A bundle is 16B:
Basic unit for expressing parallelism
The unit that the Instruction Pointer points to
The unit you branch to
Actually executed may be less, equal, or more

Slot 2 Slot 1 Slot 0 T
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Instruction Group 
Separation (Stop bit)
Necessary to avoid “Dependency Violations”

For ALL registers: Integer, FP, Predicate, Branch, App., etc.

Two out of four possibilities (Forbidden):
Read-After-Write (RAW):

add r22=1,r21   ;   add r23=1,r22 ;;
Write-After-Write (WAW):

add r22=1,r21   ;   add r22=1,r23 ;;

Two out of four (OK):
Read-After-Read (RAR):

add r22=1,r21 ;   add r23=1,r21 ;;

Write-After-Read (WAR):
add r23=1,r22 ;   add r22=1,r21 ;;

Good 
assemblers 
will issue 
necessary 
warnings!
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Conventions
Instruction syntax

(qp)   ops[.comp1] r1 = r2, r3
Execution is always right-to-left
Result(s) on left-hand side of equal-sign.
Almost all instructions have a qualifying 
predicate
Many have further completers:

Unsigned, left, double, etc.

Numbering
Also right-to left

Immediates
Various sizes exist
Imm8 (Signed immediate – 7 bits plus sign)

01234567

63 0

At execution 
time, sign bit is 
extended all the 

way to bit 63
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Part 2a

Standard 
Instruction 

Set
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The Total Instruction Set
Many Instruction Categories:

Logical operations (e.g. and)
Arithmetic operations (e.g. add)
Compare operations
Shift operations
Branches, including loop control
Memory and cache operations 
Move operations

Multimedia operations (e.g. padd)

Floating Point operations (e.g. fma)
SIMD Floating Point operations (e.g. fpma)

See documentation for complete reference set
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Arithmetic Operations
Instruction format:

(qp)   ops1 r1 = r2, r3[,1]
(qp)   ops2 r1 = immx, r3

(qp)   ops3 r1= r2, count2, r3

Valid Operations:
ops1: add, sub
ops2: sub, adds/addl (imm14 , imm22)
ops3: shladd

NB: Integer multiply is an FLP operation

X86 Inc/Dec
replaced with

(qp) ops  r1 = r2,r0,1

Z = Y – imm
becomes

(qp) Add  r1 =-imm, r3

Loading
an immediate value

(qp) Add  r1 =imm, r0
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Compare Operations

Instruction format:
(qp)   cmp.crel.ctype p1, p2= r2, r3
(qp)   cmp.crel.ctype p1, p2 =imm8, r3
(qp)   cmp.crel.ctype p1, p2 =r0, r3

Valid Relationships:
eq, ne, lt, le, gt, ge, ltu, leu gtu, geu,

Types:
none, unc, and, or, or.andcm, orcm, andcm, and.orcm

Parallel 
inequality 

form
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Load Operations
Standard instructions:

(qp)   ldsz.ldtype.ldhint r1=[r3], r2

(qp)   ldsz. ldtype.ldhint r1=[r3], imm9

(qp)   ldffsz.fldtype.ldhint f1=[r3], r2

(qp)   ldffsz.fldtype.ldhint f1=[r3], imm9

Valid Sizes:
sz:   1/2/4/8 [bytes]
fsz: s(ingle)/d(double)/e(extended)/8(as integer)

Types:
s/a/sa/c.nc/c.clr/c.clr.acq/acq/bias

Advanced options (not discussed here!)

Always 
post-

modify

In the case 
of integer 

multiply (for 
instance)

Also “fill”
variants More complex usage (see Manuals)

Sign-bit is 
NOT 

extended for 
1/2/4 bytes



Summer 2005 23

S.Jarp
CERN

Branch Operations
Several different types:

Conditional or Call branches
Relative offset (IP-relative) or Indirect (via branch 
registers)
Triggered by predication

Return branches
Indirect + Qualifying Predicate (QP)

Loop controlling branches:
Simple Counted Loops (br.cloop)

IP-relative with AR.LC

Software-pipelined Counted Loop (br.ctop)
IP-relative with AR.LC and AR.EC

Software-pipelined While Loops (br.wtop)
IP-relative with QP and AR.EC
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Simple Counted Loop
Works as ‘expected’

ar.lc counts down the loop (automatically)
No need to use a general register

Software-pipelined loops are more advanced
Uses Epilogue Count (as well as Loop Count)
… and Rotating Registers

We will deal with such loops later

mov ar.lc=5  ;; // NB: 6 iterations

loop: { work }

…….

{ much more work }

br.cloop.sptk.few loop ;;
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One use of predication

Avoid cost of branching
Which can be high due to misprediction

Both b++ and b– are done in the same 
cycle:

If (b > 0) b++;
else b--;

cmp.gt.unc p6,p7=r2,0     ;;
(p6)     add      r2=1,r2
(p7)     add      r2=-1,r2                    ;;
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Part 2b

Our first 
“real”

example
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Expressing a loop

Use array search example, “find”, to 
demonstrate how to get started

Based on background information on registers 
and conventions
First with a basic counted loop and later more
advanced versions

int find(int key, int n, int* vect)
{

int i;
for (i=0; i<n; ++i)
{
if (key == vect[i]) return i;  // Found

}
return -1; // Not found

}
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The loop itself
Simple counted loop

Only five instructions
Use input registers directly
Main latency is the load latency
NB: In the same cycle we can have 
Compare + Related branch

cntloop:
ld4       r31=[in2],4
add       ret0=1,ret0       // tracking of index

;;    
cmp4.eq.unc    p6,p0=s_temp,in0

(p6)     br.cond,dpnt.few  found
br.cloop.dptk.few cntloop

;;
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Total “search”
program – V.1

#define s_pfssave r9
#define s_lcsave r10
#define s_temp      r31
#define Name find
.text
.global Name
.type   Name,@function
.proc   Name
Name:          

alloc s_pfssave=ar.pfs,3,0,0,0
mov s_lcsave=ar.lc
cmp.le.unc p6,p0=in1,r0

(p6)     br.cond.dpnt.few  notfound ;;
add    in1=-1,in1    ;;     // loop count - 1
mov ret0=-1               // index count
mov ar.lc=in1  ;;         // loop count

cntloop:
ld4       s_temp=[in2],4
add       ret0=1,ret0  ;;    // track index   
cmp4.eq.unc    p6,p0=s_temp,in0

(p6)     br.cond.dpnt.few  found
br.cloop.dptk.few cntloop ;;

//
notfound:   mov ret0=-1   ;;      //Not found
found:   mov ar.lc=s_lcsave

br.ret.sptk.many rp
.endp

Initial version:
Classical “counted loop”
Minimal:

Register usage
Assembler directives
Entry/Exit code

Main latency in loop
From “ld4”
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Part 3a

Secrets of speed



Summer 2005 31

S.Jarp
CERN

Key Performance Enablers
Exploit

Architectural support
Memory optimization:

Prefetching, Load pair instructions, Branch-Predict, etc.
Modulo Scheduling support

Predication (“loop control”)
Register Rotation (Large Register Files)

Predication (“if-conversion”)
Vectorisation

Integer/FLP SIMD 

Micro-architecture
Consistent, Wide execution:

Number of parallel bundles; Execution units; Latencies
Memory specifications:

Cache sizes, Bandwidth
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Itanium Execution Width
A given IA-64 implementation could be N 
wide

All Itanium processors are implemented as a “two-
banger”

6 parallel instructions
More parallelism than IA-32

But,
If nothing useful is put into the syllables, they get 
filled as NOPs

S2 S1 S0 S2 S1 S0

This template should be even (i.e. without stop bit)



Summer 2005 33

S.Jarp
CERN

Instruction Delivery
Must match

instructions to issue ports
w/corresponding execution units attached

S2 S1 S0 S2 S1 S0

Dispersal network
(template interpretation)

M2M3 F0 F1 I0 I1 B0 B1 B2M0M1

11 available ports in total
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Software-pipelined loops
Graphical representation

N loop traversals desired, but with skewed execution:
Stage 2 is offset relative to Stage 1
Stage 3 is offset relative to Stage 2

A B
B

B

C
C

C

D
D

D F
G

G

Time

Completed
Stages

A
A

EpilogueMain loop

Analogy: Think of a restaurant where each customer (Red arrow) wants to:
1) order food, 2) eat the meal, 3) pay the bill.

The waiter (Blue arrow) is working “flat out” by

1) taking the order from C, 2) serving the meal to B, 3) getting paid by A.

Customer A Waiter

Stage 1

Stage 2

Stage3
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Modulo Loops
How is it programmed ?

By using:
Rotating registers (Programmable renaming)

Let register contents live longer

Predication
Each stage uses a distinct predicate register 
starting from p16

Stage 1 controlled by p16
Stage 2 by p17
Etc.

Architected loop control using BR.CTOP
Clock down LC & then EC
Set p16 = 1 when LC > 0
Set P16 = 0  otherwise
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Part 3b

Back to our “find” example:
We are now ready to try to produce a 
software pipelined loop

int find(int key, int n, int* vect)
{

int i;
for (i=0; i<n; ++i)
{
if (key == vect[i]) return i;  // Found

}
return -1; // Not found

}
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Step 3: Pipelined loop
One cycle loop:

Possible when 6 (or fewer) instructions
All latencies are hidden
No dependency violations (no stops)

Due to rotating registers

mov s_key=in0
mov s_pvect=in2  // must be moved

;;
modloop:
(p16)       ld4     r32=[s_pvect],4
(p17)         add    ret0=1,ret0   // easy tracking of index    
(p17)         cmp4.eq.unc p6,p0=r33,s_key
(p6)   br.cond.dpnt.few  found

br.ctop.sptk.few modloop
;;
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Advanced 
Topics:

Tight 
coding:

Manual 
bundling
Verification 
against 
available 
execution 
units

modloop:
{ .mii
pc[0]       ld4       array[0]=[s_pvect],4
pc[LL]    add      ret0=1,ret0   // easy tracking
pc[LL]    cmp4.eq.unc  qc[0],p0=array[LL],s_key
}
{ .mbb

nop.m 0
qc[CL]    br.cond.dpnt.few  found

br.ctop.sptk.few modloop ;; }

br.ctop br.cond nop.m cmp4 add ld4

Dispersal network
(template interpretation)

Itanium Execution Units

Next question:
How can we 
double the 
speed of this 
routine ?

M2M3 F0 F1 I0 I1 B0 B1 B2M0M1
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