CERN's Computer Security Challenges

Denise Heagerty CERN Computer Security Officer

Openlab Security Workshop, 27 Apr 2004

Incident summary, 2001-2003

Viruses, Worms and Backdoors

Risks and actions taken so far

Software risks and restrictions

- P2P, IRC, IM, ...
- Balancing risk with academic freedom
- Risks from visiting users
- Protecting control systems
- Protecting GRID resources
- Summary of CERN's computer security challenges

Incident Summary, 2001-2003

2001	2002	2003	Incident Type
59	31	31	System compromised (intruder has control) - security holes in software (e.g. ssh, kernel, IE, web, CVS)
42	25	32	Compromised CERN accounts
			sniffed or guessed passwords
11	21	429	Serious Viruses and worms
			Blaster/Welchia (414), Sobig (12), Slammer(3)
13	21	143	Unauthorised use of file servers and P2P software
			insufficient access controls, P2P file-sharing, Skype
15	16	2	Serious SPAM incidents
			e.g. CERN systems used to originate SPAM
11	9	6	Miscellaneous security alerts
151	123	643	Total Incidents

are a serious security threat:

- Infections increasingly occur before anti-virus patterns are available
- Infections regularly include backdoors which give system control to intruders
- Backdoors are difficult to detect
 - e.g. initiated by a client program in response to pre-defined *normal* packets
- Infections increasingly include keyloggers
 - Used to collect passwords, credit card details, etc
- Most infected PCs belong to visitors
 - Managed by individuals and not part of CERN domain

Viruses, Worms and Backdoors (2)

Actions taken so far:

Pro-active anti-virus response

 E.g. Beta pattern files, specific filters on mail gateways, new viruses are reported, detection tools identify infected systems to disconnect

Computers must be registered and kept secure

- Computers detected as insecure can be blocked from the network and the registered contact informed
- Collaboration is generally good, but expertise is insufficient

Strong management recommendation to run centrally managed systems (Windows and Linux)

- More than 5000 Windows and 3500 Linux PCs have automated patches
- More than 1000 PCs are individually managed (visitors, non-standard)
- Dual boot systems need to keep both systems patched

Risks from client software

Client software bypasses traditional security checks

- E.g. firewalls, application gateways, trusted web sites
- P2P file sharing software is a target for spreading viruses
 - Reports say more than 50% of KaZaA files contain viruses

IRC (Internet Relay Chat) is used by intruders

 E.g. to communicate together, to upload stolen data, to advertise tricked data

IM (Instant Messaging) is targeted by intruders

 E.g. Compromised systems via security holes, connections to nontrusted servers (ICQ), links to tricked web sites

Client systems may be converted to *Bots*

Allows intruders to control many systems e.g. to launch DDoS attacks

Software Restrictions

Software installation and use is restricted

<u>http://cern.ch/security/software-restrictions</u>

Personal use of P2P software is NOT permitted

- <u>http://cern.ch/security/file-sharing</u>
- <u>http://cern.ch/security/skype</u>

IRC bots and servers are NOT permitted

Clients are permitted and used for a professional purpose

Personal installations of IM are not permitted

CERN's standard Windows/XP configuration includes Messenger

Systems and applications must be kept secure

- <u>http://cern.ch/ComputingRules</u>
- Relies on user awareness and competence
- Competes with publicity from the "friends network"

Risks:

Personal use of CERN's computing and network facilities *is* permitted

- Defined at <u>http://cern.ch/ComputingRules</u>
- e.g. personal email and web surfing

Social engineering tricks succeed

E.g. virus infected attachments executed, insecure web sites visited

Academic curiosity increases risk

E.g. Insecure software and spyware unintentionally installed

Counter-Measures:

- Awareness raising campaigns
- Restrictive Rules

Risks from Visiting Users

CERN's users are located around the world

Many are based at universities and research labs

Visiting users increasingly bring their laptops

- Need network access to CERN services and general Internet
- Relies on users keeping their laptops secure
- Network based tools detect some problems, e.g. scanning

Users need to access CERN systems remotely

- Key services directly on the Internet (mail, web, files)
- Terminal Services offer additional functionality (client-server)
- VPN for special cases (users agree to additional security rules)

Insecure laptops (connected directly or by VPN) are the biggest source of viruses

 Enforced network registration helps to fix them quickly, but does not prevent the problem

Protecting Control Systems

- Accelerator and technical control systems are connected on a physically separate network
 - No direct Internet access to/from off-site
 - Access restrictions on-site are difficult to manage

Off-site access for specialists

- Experts can be at home or at remote sites around the world
- Some systems are managed by outsourced contracts
- Connect via gateways, e.g. Windows Terminal Services
- Token based authentication proposed for critical systems

Stability v Updates

Automated patching and software updates based on needs and risk

Critical systems

Reduce risk with gateways, firewalls, one-time passwords, ...

Protecting GRID resources

- GRID computing distributes applications across many sites with significant computing power
- Risks for GRID resources have been analysed
 - <u>http://cern.ch/proj-lcg-security/risk_analysis.html</u>
- Security holes are considered high risk
 - Requires a rapid process for applying security updates
 - Respond rapidly to suspected break-ins
 - Good collaboration between CSIRTs
 - Reduce risk by combining relevant security tools
 - e.g. firewalls, access control, intrusion detection

Limit the risk for DoS attacks

- Restrict network access to GRID systems
- Respond rapidly to attacks, e.g. disconnect from the network

Summary of security challenges

Limit the impact of viruses and worms

Avoid significant computer and network downtime

Protect client and server software

- Solutions beyond vulnerability scanning and automated patching
- Limit the ability of users to introduce security exposures
 - P2P, IRC, IM are prone to social engineering tricks

Prevent network access for insecure systems

How to detect security exposures before allowing network access?

Protect control systems

 Solutions must be easily manageable and allow remote Internet access for authorised experts

Scale security solutions to GRIDs

Tools need to be easy, fast and automated