
Debugging programs on Linux:

An Overview of gdb, idb, Insure++, Valgrind, ccmalloc and
mpatrol

Jarno Laitinen (Jarno.Laitinen@cern.ch)

Slides: http://www.lut.fi/u/jtl7950/dbg_slides.pdf

http://www.lut.fi/u/jtl7950/dbg_slides.pdf

1

Debugging

• Problems occurs - especially with C/C++ pointers and memory handling
(new, malloc/calloc, free, delete)

• Segmentation fault: exceeding memory area

• But where and when?!

2

Printf as debugging method

• Simple, no need for tools

• Needs recompiling, inserting lines (where?!) and removing them (in good
case)

• Too much stdout is problematic (especially in loops etc.) to follow and slows
execution

• Maybe problematic in multithread or process case (logfiles?)

• Often useful to print source code file and line number

printf("Thread.c: %d: numThreads: %d\n",__LINE__,numThreads);

3

Compiler options to enable debugging

• Usually recommended to reduce optimisation (to -O1 or -O0)

• Option -g is needed to show source code by many debuggers (some might
not want it)

• gcc: For gdb exists also -ggdb

• gcc: For -g and -ggdb can be set levels 1-3. e.g. ”Some debuggers support
macro expansion when you use -g3”

• Warnings may help to spot the problem. It seems that icc produces more
warnings by default than gcc.

• More gcc warning with -Wall . Also several others e.g. -Wfloat-equal

Reporter.c:723: warning: comparing floating point with == or != is unsafe

4

Common functionality of debuggers

• Run & kill, break & continue the execution

• Breakpoints: to stop on certain line/function (may have condtion)

• Watchpoints: stop if certain variable read or written (variables can be seen
on local stack)

• clear & delete, disable & enable temporarily

• Step (to next line) or next (through subroutine) to line (#lines can be given
as a parameter)

• Show backtrace of calls when crashed

• Print value or type of an variable or structure

• Some may allow setting value and executing printf

5

• Some may support (more or less better) POSIX threads (in gdb info
threads, thread th number

• Also running processes may be attached (attach process id and
detach in gdb)

• Special action need to debug child processes
tutorial

• info (in gdb) about processes, threads, breakpoints..

• OpenMP (threads) and message passing libraries (MPI, PVM) exists specific
debuggers

http://www.delorie.com/gnu/docs/gdb/gdb_26.html

6

Usage of idb

• Documentation on Intel’s web site

• A bit different than gdb, can be set to -gdb mode (other mode dbx (Berkeley
UNIX symbolic debugger)).

• Include source code files with -I directory

• GUI (-gui) is worth of trying! ddd can use idb too.

• Exists at least in some oplapro (IA-64) machines

• Has limitations as well e.g. does not support new and delete C++ calls

http://developer.intel.com/software/products/compilers/docs/linux/idb_manual_l.html

7

IDB example

Thread received signal SEGV
stopped at [<opaque> __cfree(...) 0x200000000038b5a0]

Information: An <opaque> type was presented during execution of the
previous command. For complete type information on this symbol,
recompilation of the program will be necessary. Consult the compiler
man pages for details on producing full symbol table information using
the ’-g’ (and ’-gall’ for cxx) flags.

(idb) where
>0 0x200000000038b5a0 in __cfree(...) in /lib/tls/libc.so.6.1
#1 0x2000000000151480 in /usr/lib/libstdc++.so.5
#2 0x2000000000151550 in /usr/lib/libstdc++.so.5
#3 0x400000000000bc90 in Settings_Destroy(mSettings=0x6000000000012ce0)
"Settings.cpp":262
#4 0x4000000000003f80 in thread_run_wrapper(paramPtr=<no value>)
"Thread.c":264
#5 0x2000000000288510 in start_thread(...) in /lib/tls/libpthread.so.0

8

Figure 1: Intel Debugger’s nice GUI (start with -gui)

9

GNU debugger (gdb)

• Homepage and docs: http://www.gnu.org/software/gdb/gdb.
html

• Many GUIs cgdb (ncurses), ddd (X), kdbg, (KDE, probably best of these)
and insight (X)

• Start debugging: gdb [--args] ./executable [arg1]

• Set source file directories dir sub1 : sub2

• Starting the execution: run Stopping the execution: kill (quit to exit gdb)

• Help: help [command]

• List code lines: list (params can be file, function, lines or address)

• To see, where it crashed: where or backtrace , which gives list of frames

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/gdb.html
http://cgdb.sourceforge.net/
http://members.nextra.at/johsixt/kdbg.html
http://sources.redhat.com/insight/

10

• To choose frame: frame nmb or up or down. Print vars info locals

(gdb) up
#1 0x0804b7da in Server::Run (this=0x806f220) at Server.cpp:110
110 currLen = recv(mSettings->mSock, mBuf,
mSettings->mBufLen, 0);
(gdb) info locals
currLen = 8192
mBuf_UDP = (UDP_datagram *) 0x806f238
reportstruct = (ReportStruct *) 0x805b060
(gdb) list
105 if (reportstruct != NULL) {
106 reportstruct->packetID = 0;

• Breakpoints: (temporary (deleted when hit)) tbreak and non-temporary:
break . Both takes as a parameter function name or line number

• Priting variable: print variable

• Setting varible: set variable=3

• Possibly to monitor (watch) a variable (read,write,condition)

11

• Has problems with multiple threads (NPTL library)

? reading register r1 (#1): No such process. or
? Cannot find thread 655401: no thread to satisfy query
? Probably using back port setenv LD ASSUMEKERNEL 2.4.1 works

better

Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 65541 (LWP 2447)]
0x0804fbf1 in ReportPacket (agent=0xd156728, packet=0x805bab8)

at Reporter.c:321
321 int index = agent->reporterindex;
Current language: auto; currently c

(gdb) list ReportPacket
314 * the arrival or departure of a "packet" (for TCP it
315 * will actually represent many packets). This needs to
316 * be as simple and fast as possible as it gets called for
317 * every "packet".
318 */
319 void ReportPacket(ReportHeader* agent, ReportStruct *packet) {
320 if (agent != NULL) {
321 int index = agent->reporterindex;

12

322 /*
323 * First find the appropriate place to put the
information

(gdb) print index
$1 = 1074857152
(gdb) whatis agent->reporterindex
type = int

(gdb) print agent->reporterindex
Cannot access memory at address 0xd156728

(gdb) break ReportPacket
Breakpoint 1 at 0x804fbe4: file Reporter.c, line 320.

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Breakpoint 1, ReportPacket (agent=0x8083d28, packet=0x8083d08)
at Reporter.c:320

320 if (agent != NULL) {

13

(gdb) next
321 int index = agent->reporterindex;

(gdb) print agent->reporterindex
$3 = 699

(gdb) clear ReportPacket
Deleted breakpoints 2 1

(gdb) continue
Program received signal SIGSEGV, Segmentation fault.
[Switching to Thread 65541 (LWP 2542)]
0x401d114c in memcpy () from /lib/libc.so.6

(gdb) where
#0 0x401d114c in memcpy () from /lib/libc.so.6
#1 0x0804fc67 in ReportPacket (agent=0x805baf8, packet=0x805c000)

at Reporter.c:341
#2 0x0804b8e7 in Server::Run() (this=0x805baf8) at Server.cpp:122
#3 0x0804a243 in server_spawn (thread=0x805c000) at Launch.cpp:85
#4 0x08049c7f in thread_run_wrapper (paramPtr=0x805c000) at
Thread.c:216
#5 0x40109c40 in pthread_start_thread_event () from

14

/lib/libpthread.so.0

(gdb) list Reporter.c:341
336 thread_rest();
337 index = agent->reporterindex;
338 }
339
340 // Put the information there
341 memcpy(agent->data + agent->agentindex, packet,
sizeof(ReportStruct));

(gdb) print agent->data
No symbol "agent" in current context.

15

Figure 2: kdbg: A nice user interface for gdb

16

Figure 3: Insight: Yet another GUI for gdb. A bit nicer than ddd.

17

Post-mortem analysis of a core dump

• No need to run in debugger

• To get core dump when segfaulting, ulimit -c none (may be a big)

(gdb) core core.23257
Core was generated by ‘./iperf -s’.
Program terminated with signal 11, Segmentation fault.
Reading symbols from /usr/lib/libstdc++.so.5...done.
Loaded symbols for /usr/lib/libstdc++.so.5
..
(gdb) backtrace
#0 0x200000000038ddd0 in _int_free () from /lib/tls/libc.so.6.1
#1 0x200000000038b620 in free () from /lib/tls/libc.so.6.1
#2 0x2000000000151480 in operator delete(void*) ()

from /usr/lib/libstdc++.so.5
#3 0x400000000000c070 in Settings_Destroy
(mSettings=0x600000000001bc80) at Settings.cpp:266
..

18

Valgrind

• GPL licensed: http://valgrind.kde.org/

• Support NPTL threads, but not IA-64

• Takes binary file, written in any language, as a parameter

• Can start debugger on errorneous point (–db-attach=yes)

• Logfile: --log-file=something

• Couple projects to create GUI (Gnome/Kde devel needed)

• Also profiler projects (picture from kcachegrind

http://valgrind.kde.org/
http://kcachegrind.sourceforge.net

19

Figure 4: kcachegrind

20

• Valgrind core can be extended with plugins (–tool)

? memcheck : To detect memory-management problems (C/C++) use of
uninitialised mem, R/W freed memory or inappropriate places, mem-
ory leaks, mismatched allocation and frees (C vs. C++), passing unini-
tialised/unaddressible mem to syscalls and misuse of some POSIX
theads
==9112== Thread 2:
==9112== Invalid read of size 8
==9112== at 0x8050782: reporter_handle_multiple_reports
(Reporter.c:716)
==9112== by 0x8050AAF: reporter_condprintstats (Reporter.c:781)

==9112== Thread 2:
==9112== Invalid read of size 4
==9112== at 0x80508CF: reporter_handle_multiple_reports
(Reporter.c:741)
==9112== by 0x8050AAF: reporter_condprintstats (Reporter.c:781)
==9112== by 0x805071A: reporter_handle_packet (Reporter.c:702)
==9112== by 0x80504E7: reporter_process_report (Reporter.c:630)
==9112== Address 0x1BB69FD4 is not stack’d, malloc’d or (recently)
free’d

21

==9112== Address 0x1BB69FE4 is 12 bytes before a block of size 152
free’d
==9112== at 0x1B904249: free (vg_replace_malloc.c:153)
==9112== by 0x1B9FC880: my_free (vg_libpthread.c:346)
==9112== by 0x1B9FD830: thread_wrapper (vg_libpthread.c:850)
==9112== by 0xB000F6A8: do__quit (vg_scheduler.c:1861)

==9112== ERROR SUMMARY: 259 errors from 26 contexts (suppressed: 21 from
1)
==9112== malloc/free: in use at exit: 10644 bytes in 10 blocks.
==9112== malloc/free: 85 allocs, 75 frees, 273392 bytes allocated

? addrcheck : Checks fewer errors Memcheck (faster, less mem needed)
? cachegrind : Aims to point cache misses in code. Gives amount of cache

misses, memory references and instructions per line/function/programs

==9142== I refs: 19,709,481
==9142== I1 misses: 13,196
==9142== L2i misses: 3,286
==9142== I1 miss rate: 0.6%
==9142== L2i miss rate: 0.1%
==9142==
==9142== D refs: 13,011,762 (8,491,314 rd + 4,520,448 wr)

22

==9142== D1 misses: 290,854 (116,930 rd + 173,924 wr)
==9142== L2d misses: 15,739 (8,875 rd + 6,864 wr)
==9142== D1 miss rate: 2.2% (1.3% + 3.8%)
==9142== L2d miss rate: 0.1% (0.1% + 0.1%)
==9142==
==9142== L2 refs: 304,050 (130,126 rd + 173,924 wr)
==9142== L2 misses: 19,025 (12,161 rd + 6,864 wr)
==9142== L2 miss rate: 0.0% (0.0% + 0.1%)

? massif : Profiles program’s heap. Produces graphs of usage over time
and places where most memory was allocated

==24753== Total spacetime: 5,465,480,517 ms.B
==24753== heap: 96.0%
==24753== heap admin: 0.2%
==24753== stack(s): 3.6%

23

Figure 5: A graph from Valgrind’s massif heap profiler
? helgrind : detects data races for C/C++ Pthreads. Experimental.

==9322== Thread 2:

24

==9322== Possible data race reading variable at 0x805720C (ReportRoot)
==9322== at 0x8050228: reporter_spawn (Reporter.c:543)

25

Insure++

• Memory corruption/leak check on runtime for C/C++ codes

• Commercial product of Panasoft http://www.parasoft.com/jsp/products/screenshots.jsp?productĪnsure&itemId9̄1

• Expensive (1 year license $15k), but CERN has five floating lic.

• Should be more advanced than mpatrol or Valgrind

http://www.panasoft.com

26

To use CERN’s Insure++

• Instructions and license usage:
http://product-support.web.cern.ch/product-support/sdt/insure.
html

• Works at least in lxplus machines (remember ssh -X)

• Copy to your dir insure.csh (.sh) from
/afs/cern.ch/pttools/Insure/insure/linux/

• Correct: setenv INSURE /afs/cern.ch/pttools/Insure/insure/ (official in-
struction creates symlinks)

• Run: source insure.csh (or ./insure.sh) (sets the PATH)

• Use insure instead of your compiler

• Execute program as usual. Messages appears for eache process to gui, where user can
browse them through and dive to source code (from vi editor, get out with shift+zz)

http://product-support.web.cern.ch/product-support/sdt/insure.html
http://product-support.web.cern.ch/product-support/sdt/insure.html

27

Figure 6: Panasoft’s Insure++

28

Inuse

• In the same directory as Insure++

• Inuse shows charts of memory usage (when, how much)

• and memory leaks

29

Figure 7: Panasoft’s Inuse to show memory usage

30

ccmalloc

• GPL licensed. ”Swiss made” http://www.inf.ethz.ch/personal/
biere/projects/ccmalloc/

• Notices at least access to freed data, but not all illegal reads.

• Replace compiler with ccmalloc and include couple libraries in linking. Con-
figurations made to file .ccmalloc (template included).

.---------------.
|ccmalloc report|
===
| total # of| allocated | deallocated | garbage |
+-----------+-------------+-------------+-------------+
| bytes| 279080 | 260708 | 18372 |
+-----------+-------------+-------------+-------------+
|allocations| 68 | 61 | 7 |
+---+
| number of checks: 1 |
| number of counts: 129 |

http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/
http://www.inf.ethz.ch/personal/biere/projects/ccmalloc/

31

| retrieving function names for addresses ... done. |
| reading file info from gdb ... done. |
| sorting by number of not reclaimed bytes ... done. |
| number of call chains: 6 |
| number of ignored call chains: 0 |
| number of reported call chains: 6 |
| number of internal call chains: 6 |
| number of library call chains: 0 |
===
|
* 44.6% = 8192 Bytes of garbage allocated in 1 allocation
| |
| @ [
| | +0x0808d34c
| |]
| |
| | 0x???????? in <???>
| |
| | 0x4023469a in <clone>
| |
| | 0x40111e51 in <pthread_start_thread>
| |
| | 0x0804a3b0 in <thread_run_wrapper>

32

| | at Thread.c:232
| |
| | 0x0804a7ba in <listener_spawn>
| | at Launch.cpp:68
| |
| | 0x0804ab35 in <Listener>
| | at Listener.cpp:94
| |
| | 0x400b84df in <operator new[](unsigned int)>
| |
| | 0x400b83ae in <operator new(unsigned int)>
| |
| ‘-----> 0x080536bf in <malloc>

33

mpatrol

• Mpatrol http://www.cbmamiga.demon.co.uk/mpatrol/

• Not so easy to use as Valgrind, but quite near to it. Manual 264 pages.

• Has plenty of options. Long list of features.

• mpatrol.h must be included to source file before others to instrument it or to
use --dynamic switch

• Should support threads and work in multiple operation systems (originally
Amiga project)

• Can produce some kind of profile data also (last three below) (apparently I
had problems to tell source code files)

ERROR: [ILLMEM]: illegal memory access at address 0x00000000
0x00000000 (24 bytes) {malloc:471:0} [-|-|-]

0x400F748E ???
0x08052286 _ZN6Client3RunEv+394

http://www.cbmamiga.demon.co.uk/mpatrol/

34
0x0804A287 client_spawn+123
0x08049C91 thread_run_wrapper+103
0x4014FE51 ???
0x4027269A ???

call stack
0x401C4658 ???
0x4002E87E ???
0x4003C328 ???
0x4004025A ???
0x400F748E ???
0x08052286 _ZN6Client3RunEv+394
0x0804A287 client_spawn+123
0x08049C91 thread_run_wrapper+103
0x4014FE51 ???
0x4027269A ???

....
allocation count: 472
allocation peak: 257 (1047793 bytes)
allocation limit: 0 bytes
allocated blocks: 259 (1047841 bytes)
marked blocks: 0 (0 bytes)
freed blocks: 0 (0 bytes)
free blocks: 70 (103 bytes)
internal blocks: 8 (131072 bytes)
total heap usage: 1183744 bytes
total compared: 164 bytes
total located: 636 bytes
total copied: 33643 bytes
total set: 31056 bytes
total warnings: 0
total errors: 1
...

35
ALLOCATION BINS

(number of bins: 1024)

allocated unfreed
-------------------------------- --------------------------------

size count % bytes % count % bytes %

4 2 0.20 8 0.00 0 0.00 0 0.00
5 3 0.29 15 0.01 0 0.00 0 0.00

...

MEMORY LEAKS

(maximum stack depth: 1)

unfreed allocated
-- ----------------

% bytes % count % bytes count function

83.76 1712 100.00 12 100.00 1712 12 0x40122781
9.20 188 35.01 1 33.33 537 3 0x401219EA

....

DIRECT ALLOCATIONS

(0 < s <= 32 < m <= 256 < l <= 2048 < x)

allocated unfreed
----------------------------- -----------------------------

bytes % s m l x bytes % s m l x count function

73856 37.27 37 0 0.00 7 _objalloc_alloc

36
72448 36.56 37 0 0.00 283 0x080593C1
23736 11.98 . 1 11 0 0.00 4 bfd_malloc

...

37

The backup slide..

• Also debuggers get stuck quite often

• If Ctrl+C does not help. Try Ctrl+Z and kill %1

• To see running prosesses ps -aux

• to kill them kill [-9] process id

• or killall [-9] process name

