

openlab overview

CHEP2004

Sverre Jarp openLab Technical Manager IT Department CERN

September 20(

In partnership with

CERN openlab

- Department's main R&D focus
- Framework for collaboration with industry
- Evaluation, integration, validation
 - of cutting-edge technologies that can serve LCG

Initially a 3-year lifetime

- As of 1.1.2003
- Later: Annual prolongations

openlab participation

- 5 current partners

 - - metadata servers and data
- Because of the time twitter can be converged Because of the time twitter can be covered Because of the time limit of this talk, only c nightights of our activities can w/r. aft Itanium processors & 10 Gbps NICs
- e contributor
 - Voltaire
 - 96-way Infiniband switch and necessary HCAs

Full integration with the LCG testbed

Voltaire

- Infiniband is a new technology with multiple strengths:
 - Low latency
 - High throughput
 - Low processor overhead
 - Connectivity to other protocols
 - In particular:
 - 1 Gb Ethernet (10 GbE later)
 - Fibre-channel disks

Alice Data Challenge HW Architecture

Achievements (as seen by Alice)

***** Sustained bandwidth to tape:

- Peak 350 MB/s
- Reached production-quality level only last week of testing
- Sustained 280 MB/s over 1 day but with interventions [goal was 300]

 Itanium systems from openIab successfully integrated in the ADC
 Very satisfactory stability

Goal for ADC VI: 450 MB/s

New generations

- In openlab we are currently using N7 "midrange" routers
- Used successfully in tests with IBM StorageTank
- Recently, Enterasys has provided us with their most recent systems
 - See Enterasys's presentations and documentation here at CHEP2004 for details

Use of Itanium systems

- Why Itanium?
 - Choice made in already in 2002
 - Neither Intel EM64T or AMD64 available
 - Pure 64-bit approach forces "complete conversion" to new mode
 - Ported: ROOT, CLHEP, GEANT4, ALIROOT, LCG2, etc.
 - HP Itanium servers
 - Have excellent stability and I/O capabilities
 - We use standard "Scientific Linux CERN 3"
 - Intel and GNU compilers
 - Very good performance monitoring tools
 - For both application and system performance
 - SPECint performance is adequate
 - ~1300 SPECint
 - ~1100 ROOTmarks with "stress"
 - Eagerly awaiting
 - Dual-core "Montecito" processors next year
 - Intel is also very "bullish" on evolution towards 2007

Gridification

- A good success story:
 - Starting point: The software chosen for LCG (VDT + EDG) had been developed only with IA32 (and specific Red Hat versions) in mind
 - Consequence: Configure-files and make-files not prepared for multiple architectures. Source files not available in distributions (often not even locatable)
 - Stephen Eccles, Andreas Unterkircher worked for many months to complete the porting of LCG-2
 - Result: All major components now work on Itanium/Linux:
 - Worker Nodes, Compute Elements, Storage Elements, User Interface, etc.
 - Well tested inside the Test Grid
 - Code, available via Web-site, transferred to HP sites (Initially Puerto Rico and Bristol)
 - Changes given back to developers
 - VDT now built also for Itanium systems
 - Porting experience summarized in white paper (on the Web)

From now on the Grid is heterogeneous!

Based on state-of-the-art equipment:

- 4-way Itanium server (RX4640)
 - Two full-speed PCI-X slots
 - 10 GbE and/or Infiniband
 - 24 * S-ATA disks with 74 GB
 - WD740 "Raptor" @ 10k rpm
 - Burst speed of 100 MB/s
 - Two 3ware 9500 RAID controllers
- In excess of 770 MB/s RAID-5 read speed
 - Single stream, sequential
- Only 340 MB/s for write w/RAID 5

Read speed with RFIO is 650 MB/s (multiple streams)

10 Gbps WAN tests (between CERN and CalTech)

- Initial breakthrough during Telecom-2003
 - with IPv4 (single/multiple) streams: 5.44 Gbps
 - Linux, Itanium-2 (RX 2600), Intel 10Gbps NIC
 - Also IPv6 (single/multiple) streams
- In June
 - Again IPv4, and single stream (Datatag/OpenIab):
 - 6.55 Gbps with Linux, Itanium-2 (RX4640), S2IO NIC

In September:

- Same conditions as before:
- 7.29 Gbps

But SuNET with a much longer lightpath has just grabbed the record, even if they only reach 4.3 Gbps. We will be back!

Data export to LCG Tier-1/-2

- Tests (initially) between
 CERN and Fermilab + BNL
 +NIKHEF (and others)
 - Multiple HP Itanium servers with dual 1 Gb NICs
 - Disk to disk transfers via GridFTP
 - Each server:
 - 100 MB/s IN + 100 MB/s OUT
 - Aggregation of multiple streams across 10 GbE link
 - Similar tuning as Internet2 tests
 - Goal: Achieve 5 Gbps sustained by Dec. 04

"Service Data Challenge" Stability is paramount – no longer just "raw" speed

StorageTank

- Collaboration directly between CERN and IBM Almaden
 - CERN expressed the desire to use Linux clients and iSCSI protocol right from the start
 - Not available in initial SAN FS product
- Random Access test
 - CMS pileup "look-alike" developed by Rainer Többicke
- Scenario:
 - 100 GB dataset, randomly accessed in ~50kB blocks
 - 1 100 2 GHz P4-class clients, running 3 10000 "jobs"
- Hardware
 - 4 IBM x335 metadata servers
 - 8 IBM 200i controllers, 336 SCSI disks
 - Added 2 IBM x345 servers as disk controllers after the test
- Results (after one week's running)
 - Peak data rate: 484 MB/s (with 9855 simultaneous "jobs")
 - After the test, special tuning, 10 servers, smaller number of clients:
 - 705 MB/s

Plans for Phase 2

- Alice Computing Data Challenge VI
- Scenario
 - ~50 input streams, ~50 output streams
 - Data staged from input through disk subsystem to tape
 - Goal is 450 MB/s "end-to-end" for 1 week (or more)

Sizing the system

- Reasonable data block size, e.g. 256 KB
- Note that 450 MB/s end-to-end means 450 in + 450 out!
- Sufficient margin for dead time during tape mounts, tape file switching, etc.
- 1.5 GB/s disk bandwidth may be required

- Activities to date
 - Two Oracle-funded research fellows since early 2004
 - Work focuses on prototyping new Oracle technologies, based on the needs of critical services, such as RLS (Replica Location Service)
 - First results obtained on
 - DataGuard
 - Maintains a hot backup of the catalogue which can be used while the main instance is not available for operating system scheduled interventions
 - Streams
 - Allows asynchronous database replication
 - 10g installed on Itanium cluster node

Future Activities

- Significant activity expected in the area of Oracle Clusters
 - Application Server Clusters + DB Clusters (RAC)
- Further exploitation of RAC, which is a technology that services a number of purposes:
 - High availability proven technology used in production at CERN to avoid single points of failure with transparent application failover
 - Consolidation allows a smallish number (1 8?, 1 64?) of database services to be consolidated into a single management entity
 - Scalability SAN-based infrastructure means CPU nodes and storage can be added to meet demand
- Many opportunities
 - Further development of Streams
 - Organize a "challenge" within DB group
 - Move to Oracle-managed storage (ASM) ?
 - Move to "the Oracle Grid" for IAS/DB infrastructure?
 - Exploit many other 10g features?
 - "Big file table-space" for Ultra-Large DBs (ULDBs)

- CERN openlab:
 - Solid collaboration with our industrial partners
 - Encouraging results in multiple domains
 - We believe partners are getting good "ROI"
 - But only they can really confirm it
 - No risk of running short of R&D
 - IT Technology is still moving at an incredible pace
 - Vital for LCG that the "right" pieces of technology are available for deployment
 - Performance, cost, resilience, etc.
 - Likely ingredients identified for LCG (so far): 64-bit programming, iSCSI, next generation I/O (10 Gb Ethernet, Infiniband, etc.)

During summer: addition of 6 summer students