
Eric Grancher

eric.grancher@cern.ch

CERN IT

Oracle and storage IOs, explanations and

experience at CERN

CHEP 2009 [paper 28]

Image courtesy of Forschungszentrum Jülich /

Seitenplan, with material from NASA, ESA and

AURA/Caltech

Outline

• Logical and Physical IO

• Measuring IO

• Exadata

• SSD

• Conclusions

• References

2

PIO versus LIO

• Even so memory access is fast compared to disk

access, LIO are actually expensive

• LIO cost latching and CPU

• Tuning using LIO reduction as a reference is

advised

• See “Why You Should Focus on LIOs Instead of

PIOs” Carry Millsap

3

How to measure IO (1/4)

• One has to measure “where the PIO are

performed” and “how long they take / how many per

second are performed”

• Oracle instrumentation and counters provide us the

necessary information, raw and aggregated

• Counters:

– Aggr file: V$FILESTAT / DBA_HIST_FILESTATXS (*),

V$FILE_HISTOGRAM

– Aggr session: V$SESS_IO

– Aggr system-wide: V$SYSSTAT

4

How to measure IO (2/4)

• Individual wait events:

– 10046 event or EXECUTE

DBMS_MONITOR.SESSION_TRACE_ENABLE(83,5,

TRUE, FALSE); then EXECUTE

DBMS_MONITOR.SESSION_TRACE_DISABLE(83,5);

– Trace file contains lines like:

WAIT #5: nam='db file sequential read'

ela=6784 file#=6 block#=467667 blocks=1

obj#=73442 tim=1490530491532

• Session wait: V$SESSION_WAIT (V$SESSION 10.1+)

• Aggregated wait events:

– Aggr session: V$SESSION_EVENT

– Aggr system-wide: V$SYSTEM_EVENT
5

How to measure IO (3/4)

– Statspack/AWR(*) reports

6

SQL> execute dbms_workload_repository.create_snapshot;

...

SQL> @?/rdbms/admin/awrrpt

Top 5 Timed Foreground Events

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Avg

wait   % D

Event                                 Waits     Time(s)   (ms)   time Wait Class

------------------------------ ------------ ----------- ------ ------ ----------

db file sequential read              17,049         122      7 94.2 User I/O

DB CPU                                                7           5.3

log file sync                             4           2    570    1.8 Commit

db file scattered read                   21           0      1     .0 User I/O

control file sequential read            694           0      0     .0 System I/O

^LWait Event Histogram                       DB/Inst: ORCL/orcl Snaps: 367-368

-> Units for Total Waits column: K is 1000, M is 1000000, G is 1000000000

-> % of Waits: value of .0 indicates value was <.05%. Value of null is truly 0

-> % of Waits: column heading of <=1s is truly <1024ms, >1s is truly >=1024ms

-> Ordered by Event (idle events last)

% of Waits

-----------------------------------------------

Total

Event                      Waits  <1ms  <2ms  <4ms  <8ms <16ms <32ms  <=1s   >1s

-------------------------- ----- ----- ----- ----- ----- ----- ----- ----- -----

SQL*Net message to client     1  100.0

control file parallel writ   40                                 55.0  45.0

control file sequential re  758  100.0

db file parallel write      111                1.8   3.6  27.9  31.5  35.1

db file scattered read       22   95.5                           4.5

db file sequential read      16K   3.5    .0   4.5  58.1  32.9    .9    .1



How to measure IO (4/4)

7

^LTablespace IO Stats                        DB/Inst: ORCL/orcl Snaps: 367-368

-> ordered by IOs (Reads + Writes) desc

Tablespace

------------------------------

Av      Av Av Av Buffer Av Buf

Reads Reads/s Rd(ms) Blks/Rd       Writes Writes/s      Waits Wt(ms)

-------------- ------- ------ ------- ------------ -------- ---------- ------

TESTTBS

16,323     131    7.5 1.0            0        0          0    0.0

SYSAUX

614       5    0.0     1.0          121        1          0    0.0

SYSTEM

221       2    0.0     1.6            7        0          0    0.0

UNDOTBS1

1       0    0.0     1.0           17        0          0    0.0

-------------------------------------------------------------

^LFile IO Stats                              DB/Inst: ORCL/orcl Snaps: 367-368

-> ordered by Tablespace, File

Tablespace               Filename

------------------------ ----------------------------------------------------

Av      Av Av Av Buffer Av Buf

Reads Reads/s Rd(ms) Blks/Rd       Writes Writes/s      Waits Wt(ms)

-------------- ------- ------ ------- ------------ -------- ---------- ------

SYSAUX                   /export/home/oracle/app/oracle/oradata/orcl/sysaux01

614       5    0.0     1.0          121        1          0    0.0

SYSTEM                   /export/home/oracle/app/oracle/oradata/orcl/system01

221       2    0.0     1.6            7        0          0    0.0

TESTTBS                  /ORA/orcl_testtbs.dbf

8,001      64    7.5 1.0            0        0          0    0.0

TESTTBS                  /ORA2/orcl_testtbs2.dbf

8,322      67    7.5     1.0            0        0          0    0.0

UNDOTBS1                 /export/home/oracle/app/oracle/oradata/orcl/undotbs0

1       0    0.0     1.0           17        0          0    0.0

-------------------------------------------------------------



ASH and IO (1/2)

– Using ASH(*)

• Sampling of session information every 1s

• Not biased (just time sampling), so reliable source of information

• Obviously not all information is recorded so some might be 

missed

– Can be accessed via

• @ashrpt / @ashrpti

• v$active_session_history / 

DBA_HIST_ACTIVE_SESS_HISTORY(*)

8



ASH and IO (2/2)

9

SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_ENABLE(69,17062, TRUE, FALSE);

PL/SQL procedure successfully completed.

SQL> select to_char(sample_time,'HH24MISS') ts,seq#,p1,p2,time_waited from v$active_session_history where SESSION_ID= 

69 and session_serial#=17062

2  and SESSION_STATE = 'WAITING' and event='db file sequential read' and sample_time>sysdate -5/24/3600

3  order by sample_time;

TS           SEQ#         P1         P2 TIME_WAITED

------ ---------- ---------- ---------- -----------

001557      45565          6     449426        5355

001558      45716          6     179376 10118
001559      45862          6     702316        7886

001600      46014          7      91988        5286

001601      46167          7     424665        7594

001602      46288          6     124184 0

SQL> EXECUTE DBMS_MONITOR.SESSION_TRACE_DISABLE(69,17062);

PL/SQL procedure successfully completed.

-bash-3.00$ grep -n 124184 orcl_ora_15854.trc

676:WAIT #2: nam='db file sequential read' ela= 5355 file#=6 block#=449426 blocks=1 obj#=73442 tim=2707602560910 

[...]

829:WAIT #2: nam='db file sequential read' ela= 10118 file#=6 block#=179376 blocks=1 obj#=73442 tim=2707603572300 

[...]

977:WAIT #2: nam='db file sequential read' ela= 7886 file#=6 block#=702316 blocks=1 obj#=73442 tim=2707604583489 

[...]

1131:WAIT #2: nam='db file sequential read' ela= 5286 file#=7 block#=91988 blocks=1 obj#=73442 tim=2707605593626

[...]

1286:WAIT #2: nam='db file sequential read' ela= 7594 file#=7 block#=424665 blocks=1 obj#=73442 tim=2707606607137

[...]

1409:WAIT #2: nam='db file sequential read' ela= 8861 file#=6 block#=124184 blocks=1 obj#=73442 tim=2707607617211



Cross verification, ASH and 

10046 trace (1/2)

• How to identify which segments are accessed most 

often from a given session? (ashrpti can do it as well)

• Ultimate information is in a 10046 trace

• Extract necessary information, load into t(p1,p2)

10

> grep "db file sequential read" accmeas2_j004_32116.trc  | head -2

WAIT #12: nam='db file sequential read' ela= 11175 file#=13 block#=200041 
blocks=1 obj#=67575 tim=1193690114589134

WAIT #12: nam='db file sequential read' ela= 9454 file#=6 block#=587915 
blocks=1 obj#=67577 tim=1193690114672648

accmeas_2 bdump > grep "db file sequential read" accmeas2_j004_32116.trc  

| head -2 | awk '{print $9"="$10}' | awk -F= '{print $2","$4}'

13,200041

6,587915

SQL> select distinct 

e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from

t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and 

e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;



Cross verification, ASH and 

10046 trace (2/2)

• Take information from v$active_session_history

11

create table t as select p1,p2 from v$active_session_history h where 

h.module like 'DATA_LOAD%' and h.action like 'COLLECT_DN%' and 

h.event ='db file sequential read' and h.sample_time>sysdate-4/24;

SQL> select distinct 

e.owner,e.segment_name,e.PARTITION_NAME,(e.bytes/1024/1024) size_MB from

t, dba_extents e where e.file_id=t.p1 and t.p2 between e.block_id and 

e.block_id+e.blocks order by e.owner,e.segment_name,e.PARTITION_NAME;



ashrpti and DB objects

UKOUG Conference 2008 - 12

CSR:SQL> select user_id from dba_users where username='CINBAD';

USER_ID

----------

55
CSR:SQL> select event,user_id,session_id,session_serial#,to_char(SAMPLE_TIME,'YYYYMMDD-

HH24MISS') from v$active_session_history where SAMPLE_TIME>sysdate-2/24 and user_id=55 and 

event is not null order by sample_time;

EVENT                        USER_ID SESSION_ID SESSION_SERIAL# TO_CHAR(SAMPLE_

------------------------- ---------- ---------- --------------- ---------------

[...]

db file sequential read           55        530           28609 20081130-225208

db file sequential read           55     530        28609 20081130-230708

CSR:SQL> @ashrpti

[...]

Specify SESSION_ID (eg: from V$SESSION.SID) report target:

Defaults to NULL:

Enter value for target_session_id: 530

[...]



OS level 

• First identify how the IO is performed:

– DstackProf (Tanel Poder)

– strace (Linux) / truss (Solaris)

– Dtruss

– DTrace (example later)

13



DStackProf example

14

-bash-3.00$ ./dstackprof.sh 11073 

DStackProf v1.02 by Tanel Poder ( http://www.tanelpoder.com )

Sampling pid 11073 for 5 seconds with stack depth of 100 frames...

[...]

780 samples with stack below

__________________

libc.so.1`_pread

skgfqio

ksfd_skgfqio

ksfd_io

ksfdread1 ksfd: support for various kernel associated capabilities

kcfrbd manages and coordinates operations on the control file(s)

kcbzib

kcbgtcr kcb: manages Oracle's buffer cache operation as well as 

operations used by capabilities such as direct load, has clusters , etc.

ktrget2 ktr - kernel transaction read consistency

kdsgrp kds: operations on data such as retrieving a row and updating 

existing row data

qetlbr

qertbFetchByRowID qertb - table row source

qerjotRowProc qerjo - row source: join

kdstf0000001000kmP

kdsttgr kds: operations on data such as retrieving a row and updating 

existing row data

qertbFetch qertb - table row source

qerjotFetch qerjo - row source: join

qergsFetch qergs - group by sort row source

opifch2
Kpoal8 / opiodr / ttcpip/ opitsk / opiino / opiodr / opidrv / sou2o / a.out`main / a.out`_start

note 175982.1



OS level (btw exec plan)

• BTW you can get the status of execution this way, 

instead of looking at note 175982.1, you can use 

Tanel Poder’s os_explain.sh

15

-bash-3.00$  pstack 11073| ./os_explain.sh

kpoal8

SELECT FETCH:

GROUP BY SORT: Fetch

NESTED LOOP JOIN: Fetch

TABLE ACCESS: Fetch

kdsttgr

kdstf0000001000kmP

NESTED LOOP JOIN: RowProc

TABLE ACCESS: FetchByRowID

qetlbr

kdsgrp

ktrget2

kcbgtcr

kcbzib

kcfrbd

ksfdread1

ksfd_io

ksfd_skgfqio

skgfqio

_pread

SQL> select * from table(dbms_xplan.display_cursor

('8st7asbzt4jz7',null,'BASIC'));

[...]

PLAN_TABLE_OUTPUT

--------------------------------------------------

|   1 |  SORT AGGREGATE              |            |

|   2 |   NESTED LOOPS               |            |

|   3 |    TABLE ACCESS FULL         | PROBETEST1 |

|   4 |    TABLE ACCESS BY USER ROWID| TESTTABLE1 |

---------------------------------------------------



OS level

• You can measure (with the least overhead), 

selecting only the syscalls that you need

• For example, pread

16

-bash-3.00$ truss -t pread -Dp 17924

/1:      0.0065 pread(258, "06A2\0\001CA9EE1\0 !B886".., 8192, 0x153DC2000) = 8192

/1:      0.0075 pread(257, "06A2\0\0018CFEE4\0 !C004".., 8192, 0x19FDC8000) = 8192

/1:      0.0078 pread(258, "06A2\0\001C4CEE9\0 !92AA".., 8192, 0x99DD2000) = 8192

/1:      0.0103 pread(257, "06A2\0\00188 S F\0 !A6C9".., 8192, 0x10A68C000) = 8192

/1:      0.0072 pread(257, "06A2\0\0018E kD7\0 !CFC2".., 8192, 0x1CD7AE000) = 8192

-bash-3.00$ truss -t pread -Dp 15854 2>&1 | awk '{s+=$2; if (NR%1000==0) {print NR " " s " " 

s/NR}}'

1000 7.6375  0.0076375

2000 15.1071 0.00755355

3000 22.4648 0.00748827



Overload at disk driver / 

system level (1/2)

• Each (spinning) disk is capable of ~ 100 to 300 IO 

operations per second depending on the speed and 

controller capabilities

• Putting many requests at the same time from the 

Oracle layer, makes as if IO takes longer to be 

serviced

17



Overload at disk driver level / 

system level (2/2)

18

X threads

2*X threads

4*X threads

8*X threads

IO operations per second



Overload at CPU level (1/)

• Observed many times: “the storage is slow” (and 

storage administrators/specialists say “storage is 

fine / not loaded”)

• Typically happens that observed (from Oracle 

rdbms point of view) IO wait times are long if CPU 

load is high

• Instrumentation / on-off cpu

19



Overload at CPU level (2/) example

20

load growing hit load limit !

15k... 30k ... 60k... 90k... 120k ...135k... || 150k (insertions per second)

In
s
e

rt
io

n
 t

im
e

 (
m

s
),

 h
a

s
 t

o
 b

e
 l
e

s
s
 t
h

a
n

 1
0

0
0

m
s



OS level / high-load

21

time

Oracle

OS

IO

t1 t2

Acceptable

load

Oracle

OS

IO

t1 t2 t1 t2

High loadOff cpu

t1 t2 t1 t2



Overload at CPU level (3/), 

Dtrace

• Dtrace (Solaris) can be used at OS level to get 

(detailed) information at OS level

22

syscall::pread:entry

/pid == $target && self->traceme == 0 /

{

self->traceme = 1;

self->on = timestamp;

self->off= timestamp;

self->io_start=timestamp;

}

syscall::pread:entry

/self->traceme == 1 /

{

self->io_start=timestamp;

}

syscall::pread:return

/self->traceme == 1 /

{

@avgs["avg_io"] = avg(timestamp-self->io_start);

@[tid,"time_io"] = quantize(timestamp-self->io_start);

@counts["count_io"] = count();

}



Dtrace

23

sched:::on-cpu

/pid == $target && self->traceme == 1 /

{

self->on = timestamp;

@[tid,"off-cpu"] = quantize(self->on - self->off);

@totals["total_cpu_off"] = sum(self->on - self->off);

@avgs["avg_cpu_off"] = avg (self->on - self->off);

@counts["count_cpu_on"] = count();

}

sched:::off-cpu

/self->traceme == 1/

{

self->off= timestamp;

@totals["total_cpu_on"] = sum(self->off - self->on);

@avgs["avg_cpu_on"] = avg(self->off - self->on);

@[tid,"on-cpu"] = quantize(self->off - self->on);

@counts["count_cpu_off"] = count();

}

tick-1sec

/i++ >= 5/

{

exit(0);

}



Dtrace, “normal load”

24

-bash-3.00$ sudo ./cpu.d4 -p 15854

dtrace: script './cpu.d4' matched 7 probes

CPU     ID                    FUNCTION:NAME

3  52078                       :tick-1sec

avg_cpu_on 169114

avg_cpu_off 6768876

avg_io 6850397

[...]

1  off-cpu

value  ------------- Distribution ------------- count

524288 |                                         0

1048576 |                                         2

2097152 |@@@@                                     86

4194304 |@@@@@@@@@@@@@@@@@@@@@@@@@@@              577

8388608 |@@@@@@@@@                                189

16777216 |                                         2

33554432 |                                         0

[...]

count_cpu_on 856

count_io 856

count_cpu_off 857

total_cpu_on 144931300

total_cpu_off 5794158700



Dtrace, “high load”

25

-bash-3.00$ sudo ./cpu.d4 -p 15854

dtrace: script './cpu.d4' matched 7 probes

CPU     ID                    FUNCTION:NAME

2  52078                       :tick-1sec

avg_cpu_on 210391

avg_cpu_off 10409057
avg_io 10889597

[...]

1  off-cpu

value  ------------- Distribution ------------- count

8192 |                                         0

16384 |                                         4

32768 |@                                        11

65536 |                                         2

131072 |                                         0

262144 |                                         0

524288 |                                         0

1048576 |                                         0

2097152 |@                                        15

4194304 |@@@@@@@@@@@@@@                           177

8388608 |@@@@@@@@@@@@@@@@@@@@                     249

16777216 |@@@                                      41

33554432 |                                         4

67108864 |                                         0

[...]

count_io 486

count_cpu_on 503

count_cpu_off 504

total_cpu_on 106037500

total_cpu_off 5235756100



Exadata (1/2)

• Exadata has a number of offload features, most 

published about are row selection and column 

selection

• Some of our workloads are data insertion intensive, 

for these the tablespace creation is/can be a 

problem

• Additional load, additional IO head moves, 

additional bandwidth usage on the connection 

server→storage

• Exadata has file creation offloading

• Tested recently with 4 Exadata cells storage. Tests 

done with Anton Topurov / Ela Gajewska-Dendek
26



Swingbench in action



Exadata (2/2)

28

_cell_fcre=true _cell_fcre=false

Several 

tablespace

switches

Several 

tablespace

switchesE
x
e
c
u
ti
o
n
 t

im
e



SSD (1/6)

• Solid-State Drive, based on flash, means many 

different things

• Single Level Cell (more expensive, said to be 

more reliable / faster) / Multiple Level Cell

• Competition in the consumer market is shown on 

the bandwidth...

• Tests done thanks to Peter Kelemen / CERN –

Linux (some done only by him)

29



SSD (2/6)

• Here are results for 5 different types / models

• Large variety, even the “single cell” SSDs

• (as expected) The biggest difference is with the 

writing IO operations per second

30



SSD (4/6)

31



SSD (3/6)

Write IOPS 

capacity for 

devices 1/2/3 

is between 50 

and 120!

Write IOPS 

capacity for 

devices 1/2/3 

is between 50 

and 120!



SSD (5/6) “devices 4 and 5”

• “expensive” and “small” (50GB), complex, very 

promising

• For random read small IO operations (4kiB or 8kiB), 

we measure ~4000 to 5000 IOPS (compare to 26 

disks)

• For random write operations (4kiB or 8kiB), we 

measure 2000 to 3000+ write IOPS (compare to 13 

disks)

• But for some of the 8K offsets the I/O completion 

latency is 10× the more common 0.2 ms

• “Wear-levelling/erasure block artefact”? Reported 

to the vendor
33



SSD (6/6)

34



Conclusions

• New tools like Dtrace change the way we can track 

IO operations

• Overload in IO and CPU can not be seen from 

Oracle IO views

• Exadata offloading operations can be interesting 

(and promising)

• Flash SSD are coming, a lot of differences between 

them. Writing is the issue (and is a driving price 

factor). Not applicable for everything. Not to be 

used for everything for now (as write cache? Oracle 

redo logs)They change the way IO are perceived. 

Test/test/test!
35



UKOUG Conference 2009 - 36

References

• Why You Should Focus on LIOs Instead of PIOs 

Author, Cary Millsap http://www.hotsos.com/e-

library/abstract.php?id=7

• Tanel Poder DStackProf

http://tanelpoder.otepad.com/script:dstackprof.sh

• Metalink Note 175982.1

• Tanel Poder os_explain.sh 

http://www.tanelpoder.com/files/scripts/os_explain

http://www.hotsos.com/e-library/abstract.php?id=7
http://www.hotsos.com/e-library/abstract.php?id=7
http://www.hotsos.com/e-library/abstract.php?id=7
http://tanelpoder.otepad.com/script:dstackprof.sh
http://www.tanelpoder.com/files/scripts/os_explain


37

Q&A


