CERN openlab **Minor Review Meeting** 21st April 2009 FR Milosz Marian Hulboj - CERN/Procurve openlab Ryszard Erazm Jurga - CERN/Procurve **ProCurve** Networking by HP

Motivation for the Time Series Data Mining

- Time Series short introduction
- SAX representation of the Time Series data:
 - Algorithm
 - Example of applications:
 - Time Series Bitmaps
 - Motif Detection
- Conclusions and Future Plans

Results are promising, but...

Some of the methods require a significant amount of manual work

That is why we want to look at the Time Series Data Mining techniques...

Which hopefully will allow to increase the automatisation

Time series and why do we care?

- What are the Time Series?
 - A time series is a sequence of data points, measured at successive times
 - Time series are ubiquitous, more and more data is being measured and collected

Examples:

What can we find in time series data?

Time series mining

- Much ongoing research in the area of time series analysis, for example:
 - Financial data analysis (we all want to be rich...)
 - Bioinformatics, genomics (i.e. DNA analysis)
 - Medicine (i.e. attempts to build brain-computer interface)
 - • • •
 - Network traffic analysis (i.e. detecting traffic volume anomalies)
- Look at the current state of the time series data mining
- Develop methods useful for the CINBAD project

Time Series Representations

- Representation of data is the key to effective and scalable techniques:
 - Huge amounts of live, streaming data
 - Limited amount of storage
 - Many algorithms require discrete data
- Symbolic Aggregate approXimation
 - Discretisation with meaningful distance measure
 - Dimensionality reduction
 - Output suited for data mining procedures
 - Simple implementation and nearly real-time operation

SAX Example (I)

SAX Example (II)

SAX Example (III)

- Transforming real-valued data into symbolic representation for data-mining algorithms:
 - Text mining and bioinformatics methods
 - Suffix trees/tries, hashing, etc.
 - Increasing speed of real-valued algorithms
 - Dimensionality reduction + easy distance calculation
- Time Series Bitmaps
- Motif Detection with Random Projection
- VizTree analysis

Time Series Bitmaps (I) openlab abaacbbdbabcbbabba ba bb ab aa 3 1 4 3 b а 6 9 ad bc bd ac 1 1 1 1 cb da db ca 2 0 0 1 с 2 d 1 cd dc dd CC 0 0 0 0

Time Series Bitmaps (III)

Looks nice...

But there are some issues...

Motif Detection (II)

1	b	d	b	а
2	С	а	С	d
150	b	d	С	а
3947	С	а	С	С

SAX Representation

Random Projection

Collision Matrix

VizTree

Tool for graphical analysis of time series

openlab

- Simple and straightforward to use
- Helps identify motifs and anomalies
- Allows to compare two time series

window size = 3 # of symbols = 3 Alphabet size = 2

Picture from **VizTree** presentation by *Huyen Dao and Chris Ackermann* VizTree demo at: http://cs.gmu.edu/~jessica/viztree/viztree_demo.htm

- Still far away from parameter-free technique:
 - Sliding window size, PAA aggregation size, alphabet size, …
- SAX seems a promising way to pre-process the time series
- We are investigating other recent time-series developments
- We want to prepare a technical report summarising our findings.