CERN openlab
Minor Review Meeting

21st April 2009

Milosz Marian Hulboj - CERN/Procurve
Ryszard Erazm Jurga - CERN/Procurve
Motivation for the Time Series Data Mining

Time Series – short introduction

SAX representation of the Time Series data:
  - Algorithm
  - Example of applications:
    - Time Series Bitmaps
    - Motif Detection

Conclusions and Future Plans
More sFlow switches are being added as deployment of a new firmware advances, statistical flow analysis provides interesting results and patterns. A modified version of SNORT is being used for monitoring the network traffic.
Results are promising, but…

Some of the methods require a significant amount of manual work

That is why we want to look at the Time Series Data Mining techniques…

Which hopefully will allow to increase the automatisation
What are the Time Series?

- **A time series** is a sequence of data points, measured at successive times.
- Time series are ubiquitous, more and more data is being measured and collected.

Examples:
What can we find in time series data?

- **Clustering:** Identify groups of hosts, etc.
- **Novelty detection:** Identify potential anomalies and abnormalities
- **Motif Discovery:** Finding similar patterns in the same (or different) time series
- **Rule Discovery:** Find the relationship between patterns
Time series mining

- Much ongoing research in the area of time series analysis, for example:
  - Financial data analysis (we all want to be rich…)
  - Bioinformatics, genomics (i.e. DNA analysis)
  - Medicine (i.e. attempts to build brain-computer interface)
  - …
  - Network traffic analysis (i.e. detecting traffic volume anomalies)
- Look at the current state of the time series data mining
- Develop methods useful for the CINBAD project
Time Series Representations

- Representation of data is the key to effective and scalable techniques:
  - Huge amounts of live, streaming data
  - Limited amount of storage
  - Many algorithms require discrete data

- Symbolic Aggregate approXimation
  - Discretisation with meaningful distance measure
  - Dimensionality reduction
  - Output suited for data mining procedures
  - Simple implementation and nearly real-time operation
SAX Example (I)

ccdddaacc
SAX Example (III)
SAX Applications

- Transforming real-valued data into symbolic representation for data-mining algorithms:
  - Text mining and bioinformatics methods
  - Suffix trees/tries, hashing, etc.
  - Increasing speed of real-valued algorithms
    - Dimensionality reduction + easy distance calculation

- Time Series Bitmaps
- Motif Detection with Random Projection
- VizTree analysis
### Time Series Bitmaps (I)

#### a b a a c b b d b a b c b b a b b a

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

#### aa ab ba bb

<table>
<thead>
<tr>
<th>aa</th>
<th>ab</th>
<th>ba</th>
<th>bb</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ac</th>
<th>ad</th>
<th>bc</th>
<th>bd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ca</th>
<th>cb</th>
<th>da</th>
<th>db</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cc</th>
<th>cd</th>
<th>dc</th>
<th>dd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Time Series Bitmaps (II)
Time Series Bitmaps (III)

But there are some issues...

Looks nice...
Motif Detection (II)

Random Projection

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>d</th>
<th>b</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>b</td>
<td>d</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3947</td>
<td>c</td>
<td>a</td>
<td>c</td>
<td>c</td>
</tr>
</tbody>
</table>

Collision Matrix

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th></th>
<th></th>
<th>3947</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>..</td>
</tr>
<tr>
<td>..</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>..</td>
</tr>
<tr>
<td>150</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3947</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3947</td>
</tr>
<tr>
<td>..</td>
<td>1</td>
<td>2</td>
<td>..</td>
<td>..</td>
<td>3947</td>
</tr>
</tbody>
</table>

SAX Representation
Motif Detection (III)
- Tool for graphical analysis of time series
- Simple and straightforward to use
- Helps identify motifs and anomalies
- Allows to compare two time series

**window size = 3**
**# of symbols = 3**
**Alphabet size = 2**

Picture from VizTree presentation by Huyen Dao and Chris Ackermann
VizTree demo at: [http://cs.gmu.edu/~jessica/viztree/viztree_demo.htm](http://cs.gmu.edu/~jessica/viztree/viztree_demo.htm)
Conclusions

- Still far away from parameter-free technique:
  - Sliding window size, PAA aggregation size, alphabet size, ...
- SAX seems a promising way to pre-process the time series
- We are investigating other recent time-series developments
- We want to prepare a technical report summarising our findings.