

The LHC Computing Challenge

- Signal/Noise: 10-9
- Data volume
 - High rate * large number of channels * 4 experiments

→ 15 PetaBytes of new data each year

- Compute power \bigcirc
 - Event complexity * Nb. events * thousands users
 - → 100 k of (today's) fastest CPUs
 - → 45 PB of disk storage
- Worldwide analysis & funding
 - Computing funding locally in major regions & countries
 - Efficient analysis everywhere
 - → GRID technology

WLCG - what and why?

- A distributed computing infrastructure to provide the production and analysis environments for the LHC experiments
- Managed and operated by a worldwide collaboration between the experiments and the participating computer centres

- The resources are distributed for funding and sociological reasons
- Our task is to make use of the resources available to us no matter where they are located
 - We know it would be simpler to put all the resources in 1 or 2 large centres
 - This is not an option ... today

Tier 0 at CERN: Acquisition, First pass processing Storage & Distribution

Tier 0 - Tier 1 - Tier 2

Tier-0 (CERN):
Data recording
Initial data reconstruction
Data distribution

Tier-1 (11 centres): • Permanent storage • Re-processing • Analysis

Tier-2 (~130 centres):SimulationEnd-user analysis

LHCOPN status

CERN**IT** Department

CERN + Tier 1 accounting - 2008

CMS Data Transfer History

10M files Test @ ATLAS

(From S. Campana)

M.C. Vetterli – LHCC review, CERN; Feb.'09 – #13

LCG

Main outstanding issues related to service/site reliability

	Alice	ATLAS	CMS	LHCb	Total	
Tier-1s	6.24	32.03	30.73	2.50	71.50	34.3%
Tier-2s	9.61	52.23	55.04	20.14	137.02	65.7%
Total	15.85	84.26	85.77	22.64	208.52	

From APEL accounting portal for Aug.'08 to Jan.'09; #s in MSI2k

Database replication LCG 3-D

- In full production
 - Several GB/day user data can be sustained to all Tier 1s
- ~100 DB nodes at CERN and several 10's of nodes at Tier 1 sites
 - Very large distributed database deployment
- Used for several applications
 - Experiment calibration data; replicating (central, read-only) file catalogues

Improvement during CCRC and later is encouraging

-Tests do not show full picture – e.g. Hide experiment-specific issues,

- "OR" of service instances probably too simplistic

a) publish VO-specific tests regularly;

b) rethink algorithm for combining service instances

lan.Bird@cern.ch

- Testing
- Task forces/challenges
- Monitoring
 - Appropriate
 - Followed up

M

🗅 GridMap

× D WLCG

http://www.intera.

FCR (Info

ATLAS CMS LHC

challenges

- Multi(many)-core:
 - Better memory use efficiency
 - Co-scheduling many similar processes onto a single box
 - Parallelizing (multi-thread, MPI, ...) the applications
- New technologies:
 - Clouds + virtualisation
 - Use as "overflow" resources for peak periods demonstrated
 - Running our facilities as "clouds" use of virtualisation, management tools, etc.
 - Buying resources directly ... needs education of the funding agencies
 - Lessons: simplicity of interfaces, usage patterns,...
 - Virtualisation helps improve service reliability; simplifies facility management (tbc) and leaves apps to deal with dependencies
 - Grid \rightarrow grid of "cloud-like" objects
 - Filesystems
 - Lustre, Hadoop, NFS4.1, etc
 - Can we use these to improve our service reliability? Usability?
 - Messaging systems
 - Use for integrating systems Web services across languages etc did not deliver

GGGGG Enabling Grids for E-sciencE What are the limitations & possible solutions?

Messaging Software Ecosystem Examples

- MRG Grid provides low latency scheduling via messaging
 - Useful pattern for other systems
- MRG/Qpid provides features people often build on top of messaging
 - XML Exchange, LVQ, Ring Queue, TTL, Federation, Management, etc.
- Open Source projects are building on AMQP Messaging
 - OpenIPA project is using AMQP Messaging for management and monitoring of Identity, Policy, Audit systems
 - LibVirt project is using AMQP messaging for management and monitoring
 - Wireshark supports AMQP

Challenges cont...

- Simplification of data management
 - Clouds don't help much here
 - Abstraction SRM has added complexity
 - How much is required? How can we simplify?
 - What are the lessons to learn?
 - Database access grid authn/authz would help ...
- New Tier 0 centre
 - We will run out of power, new centre planned, will it be ready when we need it???
- Moving from EGEE to a European sustainable grid infrastructure
 - Whilst maintaining a solid service

EGEE → EGI+NGIs

- EGI blueprint published in December; endorsed in January by 20 NGIs
- March policy board has selected Amsterdam as the location of EGI.org (body resp. for managing EGI)
- Initiation of transition process to create an EGI council
 - MoU to be prepared as an interim measure to identify NGIs prepared to commit as described in the blueprint (start with Letters of Intent)
 - Anticipate 1st council meeting in May
- Task force to be established for preparation of EGI proposals, for EC calls anticipated to close in November
- EGEE has outlined a fairly detailed transition plan for the final year of the project
 - But can only go so far

- WLCG cannot take the risk of assuming EGI will be in place at the end of EGEE-III
- We plan to ensure that services provided to use to day by EGEE are assured by our Tier 1 sites
 - Support the formation of a gLite consortium to support the middleware
- In parallel we work with EGI_DS and EC to try and ensure that EGI and the NGIs will deliver what we need

Conclusions

- We have built a working system that will be used for first data taking
 - But it has taken a lot longer than anticipated ... and was a lot harder ... and the reality of grids does not quite match the hype ...
- We now have an opportunity to rethink how we want this to develop in the future
 - Clearer ideas of what is needed
 - And must consider the risks, maintainability, reliability, and complexity
- Change of funding model and new technologies provide opportunities
- Challenges: data management and reliability, reliability, ...
- Should remember ... Our goal is to enable the experiments' computing, not necessarily to develop computer science (unless we have to ...)

WLCG timeline 2009-2010

