

Summary of Technical Achievements

Sverre Jarp, CERN openlab CTO

April 2nd 2009

CERN openlab Board of Sponsors Meeting 2009

Both for openIab II and III: A set of Competence Centres

openlab-II openlab-III Grid Interoperability Centre Automation and Controls CC Communications Communications Database CC Database CC Management Management Networking/Security CC Networking/Security CC Platform CC Platform CC

Sverre Jarp – CERN openlab BoS 2009

Structure

People

The secret of success:

- Fellows
- Staff
- Technical students
- Summer students

Solid investment by all partners, contributors and CERN

Presentations/Publications/Reports

Presentations:

- A. Hirstius/CERN, CPU-Level Performance Monitoring with perfmon/pfmon, HEPIX, CERN, 5 May 2008
- S. Jarp/CERN, A Review of the Current Technical Activities in the CERN openlab, HEPiX, CERN, 7 May 2008
- S. Jarp/CERN, Faire face aux nouvelles architectures de processeurs : la physique des particules est-elle prête ?, LAPP Seminar, Annecy, France, 13 May 2008
- A. Nowak/CERN, High-throughput computing optimization issues at CERN, Bioinformatics in Torun, Torun, Poland, 14 June 2008
- H. Bjerke/CERN, High Throughput Computing for CERN's Large Hadron Collider, ISCA, Beijing, China, 22 June 2008
- S. Jarp/CERN, An Overview of CERN's Approach to Energy Efficient Computing, IDC 'Green IT' Conference, Milan, Italy, 25 June 2008
- X. Gréhant/CERN and S. Jarp/CERN, Lightweight Task Analysis for Cache-Aware Scheduling on Heterogeneous Clusters, PDPTA, WorldComp, Las Vegas, USA, July 2008
- H. Bjerke/CERN, Tools and Techniques for Managing Virtual Machine Images, VHPC'08, Gran Canaria, Spain, 26 August 2008
- M. Lally/Ingersoll Rand, C. Lambert/CERN, A. Oppenheim/Oracle, One-Stop Asset Tracking, Configuration Analytics, and Policy Compliance: Oracle Enterprise Manager Configuration Management, Oracle Open World Conference, San Francisco, USA, 22 September 2008
- D. Rodrigues/CERN, Messaging System for the Grid, EGEE'08, Istanbul, Turkey, 24 September 2008
- S. Jarp/CERN, Faire face aux nouvelles architectures de processeurs : la physique des particules est-elle prête ?, JI'08, Obernai, France, 30 September 2008
- A. Topurov/CERN, CERN Experience with Virtualization of Oracle RAC with Native Xen and Oracle VM, TrivadisOpen, Zurich, Switzerland, 22 October 2008
- S. Jarp/CERN, Forget multicore! The future is manycore: An outlook to the explosion of parallelism likely to occur in the LHC era, ACAT'08, Erice, Italy, 6 Nov. 2008
- E. Grancher/CERN, Oracle and storage IOs, explanations, experience at CERN and SSD tests, UKOUG conference, Birmingham, UK, 2 December 2008
- A. Topurov/CERN, CERN Experience with Virtualization of Oracle RAC with Native Xen and Oracle VM, UKOUG Conference, Birmingham, UK, 2 December 2008
- E. Grancher/CERN, Learning from failures, design errors, problematic recoveries and downtimes of Oracle databases, experience at CERN, UKOUG conference, Birmingham, UK, 3 December 2008
- L. Canali/CERN and D. Wojcik, Implementing ASM without HW RAID, a user's experience, UKOUG Conference, Birmingham, UK, December 2008
- J. M. Dana/CERN and W. A. Romero/Summer Student, Performance Monitoring of the Software Frameworks for LHC Experiments, EELA-2 Conference, Bogotá, Colombia, 25-26 February 2009
- M. Girone/CERN, Distributed Database Services a Fundamental Component of the WLCG Service for the LHC experiments Experience and Outlook, CHEP'09, Prague, Czech republic, 21-27 March 2009
- I. Demeure/ENST and X. Gréhant/CERN, Symmetric Mapping: an Architectural Pattern for Resource Supply in Grids and Clouds, SMTPS, IPDPS, Rome, Italy, May 2009

Publications:

- X. Gréhant/ENST&CERN and S. Jarp/CERN, Lightweight Task Analysis for Cache-Aware Scheduling on Heterogeneous Clusters, PDPTA, WorldComp, July 2008
- H. Bjerke/CERN, Tools and Techniques for Managing Virtual Machine Images, VHPC'08, August 2008
- A. Hirstius/CERN, The Large Hadron Collider, Physics World, November 2008
- J. M. Dana/CERN and W. A. Romero/Summer Student, Performance Monitoring of the Software Frameworks for LHC Experiments, EELA-2 Conference, Bogotá, Colombia, February 2009
- I. Demeure/ENST and X. Gréhant/ENST&CERN, Symmetric Mapping: an Architectural Pattern for Resource Supply in Grids and Clouds, SMTPS, IPDPS, May 2009

CERN openiab Reports:

- N. Basha/Summer Student, CINBAD Investigation of Different Packet Filters, August 2008
- X. Dong/Summer Student, Multi-Threaded Geant4 with Shared Detector, August 2008
- P-L. Hémery/Summer Student, Improving Display and Customization of Timetable in Indico, August 2008
- W. A. Romero/Summer Student, Performance Monitoring of the Software Frameworks for LHC Experiments, August 2008
- K. Sarnowska/Summer Student, The SNARL Service: Standards-based Naming for Accessing Resources in an LFC, August 2008
- A. D. Dumitru/Summer Student, Oracle RAC Virtualization, September 2008
- A. D. Dumitru/Summer Student, A. Topurov/CERN, Oracle RAC Virtualization Installation Guide, September 2008
- E. Grancher/CERN, A. Topurov/CERN, CERN PVSS Tests on SAGE/Exadata, November 2008
- G. Balazs/CERN. S. Jarp/CERN. A. Nowak/CERN. Is the Atom Processor Ready for High Energy Physics? An Initial Analysis of the Dual Core Atom N330 Processor.

Platform Competence Centre

It starts with the Platforms!

- As of October: 64 HP Blade Servers w/Intel 3.0 GHz Quad-core processors
 - Now, cornerstone of most of our activity, Performance Monitoring, Teaching, Benchmarking, Compiler Testing, etc.
- Itanium servers (also used by BE and EN/CV)
- Individual machines/boards/drives
 - Alpha-level Nehalem server; Atom N330 board
 - Dunnington (24-core system from HP) (short-term loan)
 - Desktop Nehalem i7 board; Solid State Drive X25-E drive
 - Production-level Nehalem server from E4
- Several Intel software tools for general usage at CERN
 - C/C++/Fortran compilers w/floating licenses
 - Thread Checker, Thread Profiler, VTUNE

Platform Competence Centre

PCC activities (in more detail)

Summary list:

- Intel's Energy whitepaper (issued at LHC start-up)
 - <u>http://download.intel.com/products/processor/xeon5000/CERN_Whitepaper_r04.pdf</u>
- Second Thermal Study (G.Balasz, Published Feb09)
- Atom N330 benchmark evaluation
 - Paper and CHEP09 presentation
- Solid Xeon benchmarking beta-programme
 - Harpertown, Dunnington, Nehalem, etc.
 - Results communicated directly to Intel
- Benchmarking repository w/HEP jobs from multiple domains
 - Initial contents shown in PCC Major Review, Sept08
- ALICE/CERN HLT (High-level trigger) benchmarks: Track Fitter & Track Finder
 - Many-core focus (together with Intel/Brühl team)
- Perfmon reports
 - Used in multiple environments, including HEPiX May meeting and HEPiX benchmarking Working Group; CHEP09 talk

PCC Activities (in more detail – part 2)

- Compiler project
 - Intel icc 11.0 and icc11.1; GNU g++ 4.3
 - Focus on comparisons icc versus g++ (Xeon and Itanium)
 - Autovectorization (new proposal from Brühl)
- New language: C-throughput collaboration
 - Early prototype version; Feedback directly to Intel's Technology Group
- CERN Technical Training (together w/Jeff Arnold)
 - Computer Architecture and Performance Tuning (Spring + Fall each year)
 - Multithreaded programming (Spring + Fall each year)
- Cross-fertilization with other CERN entities
 - PH Multicore project, G4 team, ROOT team, ALICE HLT team, etc.
- Solid State Drive study (Initial results published in January)
- 10 Gbit Network Cards (Initial test results at BoS 2008)
- TOP500 run (as burn-in test for production servers)
 - Listed #96 in June 08 list (ISC08); #186 in Nov.08 list (SC08)

DBCC – mass storage/technical/admin.

PVSS (control system for LHC and experiments) Oracle archiver scalability

Target achieved: 150'000 changes per second

Database virtualisation

- Target is to make better use of available infrastructure, ease management, improve security
 - Worked on "Oracle VM" and management pack, successful evaluation and tests, Oracle press-release

Monitoring and security

- Audit, control, improve database security
- Provide global management and empower CERN developers
- Validation of Oracle's high performance "database engine"
 - Optimisation provides stability for very high data loading (Exadata)

PVSS Archiver

- PVSS (ETM/Siemens) is CERN's chosen SCADA
- Target from experiment and LHC machine is ~150 000 changes per second (different workload)
 - Far higher than initial scalability
- Worked since 2006 on the Oracle archiver, in collaboration with Siemens, EN-ICE and IT-DM
- Provided new architecture and new code
- Siemens has now included the code in baseline code (PVSS 3.8)
- Validated March 2009, performance target exceeded with new hardware

Database Virtualisation

Target is ease of maintenance, lower cost

- hardware, power, cooling and space
- Oracle VM tested, performance gain over Xen
- Press release introduction Oracle VM Management Pack
- Live migration (demonstrated at last major review)
- Being introduced for some services

Monitoring and Security

CERN-

Security: centrally managed policies (hosts, databases, listeners), auditing of database actions, repository for consolidation of audits, alerts in case of non-compliance. Security policy made public.

Storage: feed back into Enterprise Manager the storage evolution, analysis and pro-active actions

Storage optimisation with Exadata

- Some of our workloads (data loading for accelerators) are data insertion intensive, for these the tablespace creation is a problem
- Exadata has a number of offload features, most well-known are row selection and column selection
- Successful tests organised with Oracle
- Validated the functionality and stability gains

Oracle and the Physics Database Services

Reliable and resilient database services are fundamental to all functional areas in the WLCG Computing Model

simulation, data acquisition, first pass reconstruction, data distribution, re-processing, analysis, etc.

Oracle 10g provides the Key Technologies to the Physics Database Services:

- Oracle RAC/ASM for availability, scalability, flexibility and consolidation
 - Building block architecture for the Distributed Database Services at CERN and Tier-1 sites
- Oracle Streams for data distribution between CERN and Tier-1 sites
 - PVSS, detector conditions and file bookkeeping:
 - key for data (re-)processing
- Oracle Data Guard for critical DB data protection

Sverre Jarp – CERN openlab BoS 2009

Major Areas of Work in 2008

RAC and ASM

- Standardized on coherent setups for LHC experiments online, offline and standby databases – minimize complexity and diversity
 - Oracle version (10.2.0.4, Red Hat EL4, x86, 64-bit)
- Coherent tool for database and streams monitoring/alerts integrated and extended to display Tier-1 status.
 - Feedback to EM developers
 - Streams Enhancements now in new EM version 10.2.0.5

Streams Replication

- Downstream cluster re-organization needed to increase space for spilled Logical Change Records (LCR)
 - Larger time window for sites to be down without need of splitting them
- Automatic Split & Merge procedures to isolate a site if it goes down for more than a few days
- Use of transportable tablespaces for site re-synchronization

Major Areas of Work in 2008 (cont'd)

Data Guard for critical databases

 physical standby deployed for all the mission critical production databases on the online and offline database clusters prior to the LHC start-up

• Limiting database downtime in the event of:

- Multi-point hardware failures
- Logical and physical corruptions
- Disasters
- Hardware upgrades
- Human errors
 - within configured redo apply lag (24 hours)
- Ad-hoc testing of major schema upgrades or data reorganization on the standby

CINBAD Achievements

- System for on-line collection and processing of the sFlow data has been implemented and tested with 500 HP switches and routers
- Encouraging results from initial data analysis
 influence on CERN security policies
- Strong interest from different parties at CERN and HP/Procurve in the CINBAD project

sFlow data collector has been designed, implemented and tested on a large scale

- Ieveraged CERN's data storage and analysis know-how:
 - LHC data experts, Oracle experts
- successfully tested last summer,
 - more than 1.5 Terabytes of data collected over a few days
- Initial data analysis
 - statistical approach
 - pattern based approach
 - using adapted Snort (Intrusion Detection System) with sampled data, appropriate traffic rules and signatures

Various network anomaly findings

- CERN security policy violations, e.g. p2p, icq (instant messaging)
- Trojans, viruses

GridMap

Interactive new monitoring visualization of the Grid

- Introduced at EGEE'07 (Oct'07), v2 in Feb'08, v3 in Mar'09
- <u>Visual correlation</u> of *importance* and *availability* status
- Top-level <u>live</u> management views of EGEE and WLCG grids
- Integrated with OSG sites
- Used in production by CERN to help manage the Grid
- Technology is reused for other applications at CERN and EDS
- Influential in other communities e.g. D4science project

http://gridmap.cern.ch

MSG (Messaging System for the Grid)

Flexible, reliable and scalable messaging infrastructure

Production service running for several months

Two ActiveMQ brokers (CERN and Croatia)

- > 440 topics; > 60 queues
- > 240 subscriptions (>20 of them are durable)
- > 950 enqueued messages per minute
- File Based Persistence for reliable delivery
- Failover pair
- Two protocols available: STOMP and OpenWire
- Testing Nagios bridges

- Offering support to different projects within the IT Grid groups
- Monitoring system for message brokers under heavy development (project started in mid-February)

Monitoring system for message brokers

Easy-to-use web interface for monitoring message broker activity

List of Topics Nagios Sites

(30/03/2009 - 19:00:02)

Sverre Jarp – CERN openlab BoS 2009

TYCOON: A market-based allocation system

~FR

Project concluded after two years of investigations in openIab II

- Close collaboration with HP Labs (Palo Alto), BalticGrid, and EGEE
- Integration of Tycoon with gLite
 - Automatic deployment of Compute Elements and Worker Nodes
- Multiple scalability tests performed
- Tycoon experience presented at several EGEE conferences in 07 and 08
- Reports with our experience
 - HP Labs, openIab Web site
- Tycoon now used in HP's Cloud Computing Initiative

Grid Resource Scheduling

Efficient and non-intrusive resource allocation in Grids

- Three years of PhD studies in collaboration with HP Labs (Bristol)
- Central point in thesis:
 - Cost effectiveness of a given resource allocation
 - With several independent participants
 - Based on separation of supply and usage

- Key paper recently submitted to SMTPS'09
 - "Symmetric Mapping: An Architectural Pattern for Resource Supply in Grids and Clouds"

Automation and Control Competence Centre

Projected signed last year

openlab

- Program of work: 1) PVSS 2) PLCs
- One staff and three fellows now in place
- First results will be reported by Siemens (today)

PVSS related program of work

CERN openiab

Open the PVSS development environment to Software Engineering

- Source code management
 - CVS, Subversion
 - Panels, files and data
- Configuration management
- Improvement of debugging facilities
- Toward a standard scripting language?
- PVSS deployment in large environments
 - Monitoring & deployment
- Security
 - Engineering & Operations

PLC related program of work

Security

- Definition of robustness & vulnerability tests
- Hardening of automation devices (Operation and engineering perspectives)

Opening Step 7 to software engineering

- Source code management
- 3rd party development tools

Deployment in large environment

- Step 7
- Simatic Net
- and others

Conclusions

Excellent collaborations between partners and CERN teams

In my eyes, an impressive set of contributions

- from each of the multiple openlab teams
- in most cases, the corresponding technologies are already deployed in production
 - Or, ready for wider deployment

CERN openlab III starts on strong footing

- Solid teams ready to invest effort into the agreed R&D domains
- I am optimistic that, also in openlab III, we will continue to deliver great results

Thanks to everybody who contributed to this slideset !