
Intel® Array Building Blocks

Hans Pabst
Software Engineer TCE

Software and Services Group
Intel

Introduction to Intel® Array Building
Blocks

3

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction: Objectives

• Understand the motivation for Intel® Array Building Blocks

– Also known as Intel® ArBB

• Understand the Intel® ArBB C++ API-as-a-language

• Understand the basic syntax of the Intel® ArBB API

• Review the available operators

• Be able to write a first “Hello World” application w/ ArBB

• Work through a few example applications

4

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or
components and reflect the approximate performance of Intel products as measured by those
tests. Any difference in system hardware or software design or configuration may affect actual
performance. Buyers should consult other sources of information to evaluate the performance
of systems or components they are considering purchasing. For more information on
performance tests and on the performance of Intel products, reference
www.intel.com/software/products.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

http://www.intel.com/software/products

5

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Optimization Notice
Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options
that optimize for instruction sets that are available in both Intel® and non-Intel microprocessors (for
example SIMD instruction sets), but do not optimize equally for non-Intel microprocessors. In
addition, certain compiler options for Intel compilers, including some that are not specific to Intel
micro-architecture, are reserved for Intel microprocessors. For a detailed description of Intel
compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options." Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors
than for other microprocessors. While the compilers and libraries in Intel® compiler products offer
optimizations for both Intel and Intel-compatible microprocessors, depending on the options you
select, your code and other factors, you likely will get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to
the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include Intel® Streaming SIMD Extensions 2 (Intel® SSE2),
Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and Supplemental Streaming SIMD Extensions 3
(Intel® SSSE3) instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best
performance on Intel® and non-Intel microprocessors, Intel recommends that you evaluate other
compilers and libraries to determine which best meet your requirements. We hope to win your
business by striving to offer the best performance of any compiler or library; please let us know if
you find we do not.

Notice revision #20101101

6

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

What‟s Wrong with Parallel Programming?

CPU
Future

Intel®
SSE**

Intel®
AVX**

• Parallel programming is hard
• Deadlocks

• Data races

• Synchronization
• Load imbalance

• Errors inhibit productivity
• No uniform programming model for

• Intel SSE, Intel AVX

• Multi-threading

• IA manycore

• Parallel programmers lose single code
base for their applications

** Intel® Streaming SIMD Extensions
Intel® Advanced Vector Extensions

7

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® Array Building Blocks

CPU
Future

Intel®
SSE**

Intel®
AVX**

Single source Productivity
 Integrates with existing tools

 Applicable to many problem domains
 Safe by default maintainable

Performance
 Efficient and scalable

 Harnesses both vectors and threads

 Eliminates modularity overhead of C++

Portability
 High-level abstraction

 Hardware independent

 Forward scaling

** Intel® Streaming SIMD Extensions
Intel® Advanced Vector Extensions

8

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Productivity

• Integrates
with existing IDEs, tools, and compilers: no new compiler needed

• Interoperates
with other Intel parallel programming tools and libraries

• Incremental
allows selective and targeted modification of existing code bases

• Expressive
syntax oriented to application experts

• Safe by default
deterministic semantics avoid race conditions and deadlock by construction

• Easy to learn
serially consistent semantics and simple interface leverage existing skills

• Widely applicable
Generalized data parallel model applicable to many types of computations

9

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Performance

• Scalable to large problems
manages data to directly address memory bottlenecks

• Unified thread and vector parallelization
single specification targets multiple mechanisms

• Elimination of modularity overhead
automatically fuses multiple operations

• Wide and deep
developers can choose level of abstraction
can drill down to detail if needed

10

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Portability

• High-level
avoids dependencies on particular hardware mechanisms or
architectures

• ISA extension independent
common binary can exploit different ISA extensions transparently

• Allows choice of deployment hardware today
including scaling to many cores

• Allows migration and forward-scaling
will support future hardware roadmap

ISA: Instruction Set Architecture

11

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Mathematical structure

Data organization
Mathematical structure

Data organization

Where’s my data race?

What caused that deadlock?

Why do I get different answers

every time I run this?

How many threads should I use?

How big is my cache?

How do I deal with different ISAs

and vector widths?

Where’s the guy who originally

wrote this thing – I can’t figure

out what the code is supposed

to be computing!

Goal: increasing the efficiency of the

expert application developer

Productivity via a High Level of Abstraction
“Specify what to do, not how to do it!”

12

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB
vs. Intel® SSE intrinsics

#define NCO 4

#if (NCO==2)

#define fptype double

#define SIMD_WIDTH 2

#define _MMR __m128d

#define _MM_LOAD _mm_load_pd

#define _MM_STORE _mm_store_pd

#define _MM_MUL _mm_mul_pd

#define _MM_ADD _mm_add_pd

#define _MM_SUB _mm_sub_pd

#define _MM_DIV _mm_div_pd

#define _MM_SQRT _mm_sqrt_pd

#define _MM_SET(A) _mm_set_pd(A,A)

#define _MM_SETR _mm_set_pd

#endif

#if (NCO==4)

#define fptype float

#define SIMD_WIDTH 4

#define _MMR __m128

#define _MM_LOAD _mm_load_ps

#define _MM_STORE _mm_store_ps

#define _MM_MUL _mm_mul_ps

#define _MM_ADD _mm_add_ps

#define _MM_SUB _mm_sub_ps

#define _MM_DIV _mm_div_ps

#define _MM_SQRT _mm_sqrt_ps

#define _MM_SET(A) _mm_set_ps(A,A,A,A)

#define _MM_SETR _mm_set_ps

#endif

__forceinline void CNDF (fptype * OutputX, fptype * InputX)

{

_MM_ALIGN16 int sign[SIMD_WIDTH];

int i;

_MMR xInput;

_MMR xNPrimeofX;

_MM_ALIGN16 fptype expValues[SIMD_WIDTH];

_MMR xK2;

_MMR xK2_2, xK2_3, xK2_4, xK2_5;

_MMR xLocal, xLocal_1, xLocal_2, xLocal_3;

for (i=0; i<SIMD_WIDTH; i++) {

// Check for negative value of InputX

if (InputX[i] < 0.0) {

InputX[i] = -InputX[i];

sign[i] = 1;

} else

sign[i] = 0;

}

xInput = _MM_LOAD(InputX);

// Compute NPrimeX term common to both four & six decimal

accuracy calcs

for (i=0; i<SIMD_WIDTH; i++) {

expValues[i] = exp(-0.5f * InputX[i] * InputX[i]);

// printf("exp[%d]: %f\n", i, expValues[i]);

}

xNPrimeofX = _MM_LOAD(expValues);

xNPrimeofX = _MM_MUL(xNPrimeofX, _MM_SET(inv_sqrt_2xPI));

xK2 = _MM_MUL(_MM_SET((fptype)0.2316419), xInput);

xK2 = _MM_ADD(xK2, _MM_SET((fptype)1.0));

xK2 = _MM_DIV(_MM_SET((fptype)1.0), xK2);

// xK2 = _mm_rcp_pd(xK2); // No rcp function for double-precision

xK2_2 = _MM_MUL(xK2, xK2);

xK2_3 = _MM_MUL(xK2_2, xK2);

xK2_4 = _MM_MUL(xK2_3, xK2);

xK2_5 = _MM_MUL(xK2_4, xK2);

xLocal_1 = _MM_MUL(xK2, _MM_SET((fptype)0.319381530));

xLocal_2 = _MM_MUL(xK2_2, _MM_SET((fptype)-0.356563782));

xLocal_3 = _MM_MUL(xK2_3, _MM_SET((fptype)1.781477937));

xLocal_2 = _MM_ADD(xLocal_2, xLocal_3);

xLocal_3 = _MM_MUL(xK2_4, _MM_SET((fptype)-1.821255978));

xLocal_2 = _MM_ADD(xLocal_2, xLocal_3);

xLocal_3 = _MM_MUL(xK2_5, _MM_SET((fptype)1.330274429));

xLocal_2 = _MM_ADD(xLocal_2, xLocal_3);

xLocal_1 = _MM_ADD(xLocal_2, xLocal_1);

xLocal = _MM_MUL(xLocal_1, xNPrimeofX);

xLocal = _MM_SUB(_MM_SET((fptype)1.0), xLocal);

_MM_STORE(OutputX, xLocal);

// _mm_storel_pd(&OutputX[0], xLocal);

// _mm_storeh_pd(&OutputX[1], xLocal);

for (i=0; i<SIMD_WIDTH; i++) {

if (sign[i]) {

OutputX[i] = ((fptype)1.0 - OutputX[i]);

}

}

}

void BlkSchlsEqEuroNoDiv (fptype * OptionPrice, int numOptions, fptype *

sptprice,

fptype * strike, fptype * rate, fptype * volatility,

fptype * time, int * otype, float timet)

{

int i;

// local private working variables for the calculation

_MMR xStockPrice;

_MMR xStrikePrice;

_MMR xRiskFreeRate;

_MMR xVolatility;

_MMR xTime;

_MMR xSqrtTime;

_MM_ALIGN16 fptype logValues[NCO];

_MMR xLogTerm;

_MMR xD1, xD2;

_MMR xPowerTerm;

_MMR xDen;

_MM_ALIGN16 fptype d1[SIMD_WIDTH];

_MM_ALIGN16 fptype d2[SIMD_WIDTH];

_MM_ALIGN16 fptype FutureValueX[SIMD_WIDTH];

_MM_ALIGN16 fptype NofXd1[SIMD_WIDTH];

_MM_ALIGN16 fptype NofXd2[SIMD_WIDTH];

_MM_ALIGN16 fptype NegNofXd1[SIMD_WIDTH];

_MM_ALIGN16 fptype NegNofXd2[SIMD_WIDTH];

xStockPrice = _MM_LOAD(sptprice);

xStrikePrice = _MM_LOAD(strike);

xRiskFreeRate = _MM_LOAD(rate);

xVolatility = _MM_LOAD(volatility);

xTime = _MM_LOAD(time);

xSqrtTime = _MM_SQRT(xTime);

for(i=0; i<SIMD_WIDTH;i ++) {

logValues[i] = log(sptprice[i] / strike[i]);

}

xLogTerm = _MM_LOAD(&(logValues[0]));

xPowerTerm = _MM_MUL(xVolatility, xVolatility);

xPowerTerm = _MM_MUL(xPowerTerm, _MM_SET(0.5));

// xPowerTerm = _mm_div_pd(xPowerTerm, _MM_SET(2.0, 2.0));

xD1 = _MM_ADD(xRiskFreeRate, xPowerTerm);

xD2 = _MM_SUB(xRiskFreeRate, xPowerTerm);

xD1 = _MM_MUL(xD1, xTime);

xD2 = _MM_MUL(xD2, xTime);

xD1 = _MM_ADD(xD1, xLogTerm);

xD2 = _MM_ADD(xD2, xLogTerm);

xDen = _MM_MUL(xVolatility, xSqrtTime);

xD1 = _MM_DIV(xD1, xDen);

// VL: 10/15/06. An optimization is not to recompute xD2, but to derive it

from xD1

// xD2 = _MM_DIV(xD2, xDen);

xD2 = _MM_SUB(xD1, xDen);

_MM_STORE(d1, xD1);

_MM_STORE(d2, xD2);

CNDF(NofXd1, d1);

CNDF(NofXd2, d2);

for (i=0; i<SIMD_WIDTH; i++) {

FutureValueX[i] = strike[i] * (exp(-(rate[i])*(time[i])));

NegNofXd1[i] = ((fptype)1.0 - (NofXd1[i]));

NegNofXd2[i] = ((fptype)1.0 - (NofXd2[i]));

OptionPrice[i] = (FutureValueX[i] * NegNofXd2[i]) - (sptprice[i] *

NegNofXd1[i]);

}

}

void sseBlackScholes(fptype *option_price,

int num_options,

fptype *stkprice,

fptype *strike,

fptype *rate,

fptype *volatility,

fptype *time)

{

for (int i = 0; i < num_options; i += NCO) {

// Calling main function to calculate option value based on Black &

Sholes's

// equation.

BlkSchlsEqEuroNoDiv(&(option_price[i]), NCO, &(stkprice[i]),

&(strike[i]),

&(rate[i]), &(volatility[i]), &(time[i]), NULL/*&(otype[i])*/, 0);

}

}

186 lines
• vectorized
• not threaded
• machine dependent

42 lines
• vectorized
• threaded
• machine independent

template <typename T>

dense<T> CND(dense<T> x)

{

dense<T> l = abs(x);

dense<T> k = 1.0f / (1.0f + 0.2316419f * l);

dense<T> w =

0.31938153f * k -

0.356563782f * k * k +

1.781477937f * k * k * k -

1.821255978f * k * k * k * k +

1.330274429f * k * k * k * k * k;

w = w * inv_sqrt_2xPI * exp(l * l * -0.5f);

w = select(x > 0, 1.0f - w, w);

return w;

}

template <typename T>

void ctBlackScholesKern(dense<T> s,

dense<T> x,

dense<T> r,

dense<T> v,

dense<T> t,

dense<T>& result)

{

dense<T> sqrt_value = v * sqrt(t);

dense<T> d1 = ln(s / x) + (r + v * v * 0.5f) * t) / sqrt_value;

dense<T> d2 = d1 - sqrt_value;

result = x * exp(0f - r * t) * (1.0f - CND(d2)) + (-s) * (1.0 - CND(d1));

}

template <typename T>

void ctBlackScholes(T *option_price, int num_options,

T *stkprice, T *strike, T *rate, T *volatility,

T *time)

{

dense<T> s(stkprice, num_options);

dense<T> x(strike, num_options);

dense<T> r(rate, num_options);

dense<T> v(volatility, num_options);

dense<T> t(time, num_options);

dense<T> result(option_price, num_options);

call(ctBlackScholesKern<T>)(s,x,r,v,t,result);

}

ArBB SSE

13

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Fixed
Function
Libraries

Established
Standards

Research and
Exploration

MPI
Intel®

Concurrent
Collections

OpenMP*
OpenCL*

Intel®

Cilk Plus

Intel® Math
Kernel

Library (MKL)

Intel®

Integrated
Performance

Primitives
(IPP)

Intel® Parallel
Building Blocks (PBB)

Intel®

Threading
Building

Blocks (TBB)

Intel® Array
Building

Blocks (ArBB)

Intel‟s Family of Parallel Models

14

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

How does it work?

ArBB kernels in
“serial” C++ app

Standard C++
compiler

ArBB Runtime

• Templates

• Overloaded
operators

• Links with
dynamic library

• Dynamic compiler

• Threading and
heterogeneous
runtime

Sequentially consistent semantics CPU

Future

Future

14

15

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Containers

regular containers

dense<T,3>

irregular containers

nested<T>

dense<T>

dense<T, 2>

dense<array<…>>

dense<user_type>

array<…>

struct user_type {..};

class user_type { };

16

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Vector Processing or Scalar Processing

Vector Processing

dense<f32> A, B, C, D;
A = A + B/C * D;

Scalar Processing

void kernel(f32& a, f32 b, f32 c, f32 d) {
a = a + (b/c)*d;

}
…
dense<f32> A, B, C, D;
map(kernel)(A, B, C, D);

17

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB Virtual Machine

• Generalized data-parallel
programming model

• Supports wide variety of
patterns and collections

• Supports explicit dynamic
generation and
management of code

• Implementation targets
both threads and vector
code

– Machine independent
optimization

– Offload management

– Machine specific code generation
and optimizations

– Scalable threading runtime

Virtual Machine

Virtual
ISA

Debug/
Svcs

Memory
Manager

Backend
JIT

Compiler

Threading
Runtime

CPU Accelerator Future

Application
calling ArBB
APIs

C++ API Other Language
Bindings

18

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Interface: The API as a Language
Syntax and semantics that extend C++

Adds parallel collection objects and methods to C++

– Uses standard C++ features (classes, simple templates, and operator
overloading) to create new types and operators

– Sequences of API calls are fused and optimized by a JIT compiler

Works with standard C++ compilers

– Intel® C++ Compiler

– Microsoft* Visual* C++ Compiler

– GNU Compiler Collection*

Express algorithms using mathematical notation

– Developers focus on what to do, not how to do it

Uses sequential semantics

– Developers do not use threads, locks or other lower-level constructs and
can avoid the associated complexity

– Programmers can reason and debug as if the program were serial.

19

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

What can it be used for?

Visual computing

• Digital content creation (DCC)

• Physics engines and advanced rendering

• Visualization

• Compression/decompression

Signal and image processing

• Computer vision

• Radar and sonar processing

• Microscopy and satellite image processing

Science and research

• Machine learning and artificial intelligence

• Climate and weather simulation

• Planetary exploration and astrophysics

Enterprise

• Database search

• Business information

Bioinformatics

• Genomics and sequence analysis

• Molecular dynamics

Engineering design

• Finite element and finite difference simulation

• Monte Carlo simulation

Financial analytics

• Option and instrument pricing

• Risk analysis

Oil and gas

• Seismic reconstruction

• Reservoir simulation

Medical imaging

• Image and volume reconstruction

• Analysis and computer aided detection (CAD)

20

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction to Intel® Array Building Blocks

How to add it to your project…

21

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB in a Visual Studio* Project

Screenshots taken from Microsoft* Visual Studio 2008*

22

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB in a Visual Studio* Project

Screenshots taken from Microsoft* Visual Studio 2008*

23

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Including ArBB in a Visual Studio* Project

Screenshots taken from Microsoft* Visual Studio 2008*

Debug Mode Release Mode

24

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB in a Visual Studio* Project

Screenshots taken from Microsoft* Visual Studio 2008*

25

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB in a Visual Studio* Project

Screenshots taken from Microsoft* Visual Studio 2008*

26

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB in a Makefile-based Project

• Make available ArBB include (header) files:

-I/opt/intel/arbb/include

(modify compiler search path for include files)

• Make available ArBB libraries
-L/opt/intel/arbb/lib/{ia32,intel64}

(modify linker search path for libraries)

• Include ArBB libraries in linker process
-larbb –ltbb

27

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Using the Intel® ArBB API

• Include the definitions

#include <arbb.hpp>

• Import the namespace or specific identifiers

using namespace arbb;

using namespace arbb::add_reduce;

• Good practice:

– To not pollute the name spaces, restrict scope of “using”
statement as much as possible, especially in headers

– Selectively include ArBB names only if used

28

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Code Skeleton for Intel® ArBB Applications

• Use the following code skeleton for ArBB applications
int main(int argc, char* argv[]) {

int ret_code;

try {

// call into ArBB code

ret_code = EXIT_SUCCESS;

}

catch(const std::exception& e) {

ret_code = EXIT_FAILURE;

}

catch(...) {

cerr << "Error: Unknown exception caught!" << endl;

ret_code = EXIT_FAILURE;

}

return ret_code;

}

• ArBB indicates runtime
errors through standard
C++ exceptions

• Existing top-level entry
points do not need to
change if they already
catch std::exception

29

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction to Intel® Array Building Blocks

Programming Constructs and Data Types

30

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Overall Syntax Conventions

• All Identifiers are lower-case with underscores

– some_type

– some_class::some_member_function()

• Chosen to align with C++ standard library conventions

31

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

• Scalar types

– Equivalent to primitive C++ types

• Vector types

– Parallel collections of (scalar) data

• Operators

– Scalar operators

– Vector operators

• Functions

– User-defined code fragments

• Control flow constructs

– Conditionals, iteration, etc.

– These are for serial control flow only

– Vector operations and “map” are used for expressing parallelism

Intel® ArBB Constructs

32

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Scalar types

• Scalar types provide equivalent functionality to the scalar
types built into C/C++

Types Description C++ equivalents

f32, f64 32/64 bit floating point
number

float, double

i8, i16, i32, i64 8/16/32 bit signed integers char, short, int

u8, u16, u32, u64 8/16/32 bit unsigned integers unsigned
char/short/int

boolean Boolean value (true or false) bool

usize, isize Signed/unsigned integers
sufficiently large to store
addresses

size_t (eqv. usize)

33

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Scalar Types

Use scalar types for ArBB scalar computation
i32 int_scalar; // a scalar 32-bit integer value

f32 fp_scalar = (f32)int_scalar; // cast a scalar to new type

Casting to/from C/C++ types
float f = (float)fp_scalar; // NOT supported

f32 fp_scalar2(f); // immediate copy

f32 fp_scalar3 = f; // immediate copy

float x = value(fp_scalar); // retrieve value

Constant values are supported (types must match)
f32 fp_scalar = (f32)int_scalar + 0.5f;

f32 r = 2.0f;

fp_scalar = 3.14f * r * r;

34

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Containers

regular containers

dense<T,3>

irregular containers

nested<T>

dense<T>

dense<T, 2>

dense<array<…>>

dense<user_type>

array<…>

struct user_type {..};

class user_type { };

35

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Dense Containers

template<typename T, std::size_t D = 1>
class dense;

• This is the equivalent to std::vector or C arrays

• Dimensionality is optional, defaults to 1

Property Restrictions Can be set at

Element type Must be an ArBB scalar or
user-defined type

Compile time

Dimensionality 1, 2, or 3 Compile time

Size Only restricted by free
memory

Runtime

36

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Declaration and Construction

Declaration Element type Dimensionality Size

dense<f32> a1; f32 1 0

dense<f32, 1> a2; f32 1 0

dense<i32, 2> b; i32 2 0, 0

dense<f32> c(1000); f32 1 1000

dense<f32> d(c); f32 1 1000

dense<i8, 3> e(5, 3, 2); i8 3 5, 3, 2

37

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Operations on dense Containers

• All scalar operations can be applied element-wise

–Arithmetic and bit operations, transcendentals, etc.

• Additionally provides container operations:

– Indexing, e.g. operator[]

–Reordering, e.g. shift(), section()

–Reductions, e.g. sum(), any(), all()

–Prefix sums, packs, and other data-parallel primitives

–Property access, e.g. num_rows()

• Most of these operations run in parallel

–For example, if you add two dense containers together, all

the individual additions can run in parallel

38

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Moving Data into and out of Containers

• Dense containers provide two ways to access data:

– Iterators

– read_only_range iterator to read from the container

– write_only_range iterator to write into the container

– read_write_range iterator to write/read a container

– Binding

– On construction, dense containers can be bound (associated) to a
particular data location

– Moves data into and out of that location when required

39

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Creating “dense” Containers

Declaration of a dense container:
// create an empty container whose values will be assigned later

dense<f32> temp;

vector objects of different base types cast into each other:
dense<i32> vi = …;

dense<f32> v = (dense<f32>)vi;

40

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Filling “dense” Containers

// request write-only access to container

dense<f32> a(1024);

range<f32> range_a = a.write_only_range();

std::fill(range_a.begin(),

range_a.end(),

static_cast<f32>(1));

// request read/write access to container

dense<f32> b(1024);

range<f32> range_b = b.read_write_range();

std::fill(range_b.begin(),

range_b.end(),

static_cast<f32>(2));

41

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Fixed-size Arrays

• Typical usages: pairs of data, RGBA data, CYMK data, etc.

• Use std::array look-a-like

– std::array is a C++ TR1/C++0x type

– Will support std::array operations

– You can manipulate with element-wise, horizontal, swizzling, and
other utility operations

array<f32, 3> p1, p2, p3;

f32 r = p1[0]; // std::array operations

p1 = p2 + p3; // element-wise operations

f32 sum_p1 = sum(p1); // horizontal operations

p1 = cat(p2, p3); // utility operations

42

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Structured Types

• C++ classes and structures can be used relatively
normally within ArBB

– Requires that primitive types be classes in ArBB types (f32, etc.)

– Supports member functions, class members, overloaded operators,
etc.

– However, virtual functions and pointers are resolved during
“capture time” only

– Overloaded operators are automatically lifted over collections

– Lifting member functions over collections requires an additional
declaration (a macro is provided to help with this)

43

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Structure/Class Example

class my_class {

public:

my_class(f32 location, i32 count);

my_class operator+(const my_class& other) {

return my_class(location + other.location,

max(count, other.count));

}

// other code…

private:

f32 m_location;

i32 m_count;

};

dense<my_class> A, B, C;

A = B + C; // This will use the user-defined operator+!

my_class m = A[5]; // Other interactions work naturally.

44

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

A First Example: Vector Addition
Plain C version

void vecsum(float* a, float* b, float* c, int size) {

for (int i=0; i<size; i++) {

c[i] = a[i] + b[i];

}

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

vecsum(a, b, c, SIZE);

}

Add two vectors a and b
of length SIZE into vector c.

45

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Step 1: Figure out Kernel Signature

void vecsum(float* a, float* b,

float* c, int size)

{

for (int i=0; i<size; i++) {

c[i] = a[i] + b[i];

}

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

vecsum(a, b, c, SIZE);

}

void vecsum(dense<f32> a,

dense<f32> b,

dense<f32>& c) {

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

}

46

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Step 2: Allocate, Size, and Bind Containers

void vecsum(float* a, float* b,

float* c, int size)

{

for (int i=0; i<size; i++) {

c[i] = a[i] + b[i];

}

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

vecsum(a, b, c, SIZE);

}

void vecsum(dense<f32> a,

dense<f32> b,

dense<f32>& c) {

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

dense<f32> va; bind(va, a, SIZE);

dense<f32> vb; bind(vb, b, SIZE);

dense<f32> vc; bind(vc, c, SIZE);

}

47

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Step 3: Invoke Kernel Through Call

void vecsum(float* a, float* b,

float* c, int size)

{

for (int i=0; i<size; i++) {

c[i] = a[i] + b[i];

}

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

vecsum(a, b, c, SIZE);

}

void vecsum(dense<f32> a,

dense<f32> b,

dense<f32>& c) {

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

dense<f32> va; bind(va, a, SIZE);

dense<f32> vb; bind(vb, b, SIZE);

dense<f32> vc; bind(vc, c, SIZE);

call(vecsum)(va, vb, vc);

}

48

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Step 4: Implement Kernel

void vecsum(float* a, float* b,

float* c, int size)

{

for (int i=0; i<size; i++) {

c[i] = a[i] + b[i];

}

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

vecsum(a, b, c, SIZE);

}

void vecsum(dense<f32> a,

dense<f32> b,

dense<f32>& c) {

c = a + b;

}

int main(int argc, char** argv) {

#define SIZE = 1024;

float a[SIZE]; float b[SIZE];

float c[SIZE];

dense<f32> va; bind(va, a, SIZE);

dense<f32> vb; bind(vb, b, SIZE);

dense<f32> vc; bind(vc, c, SIZE);

call(vecsum)(va, vb, vc);

}

49

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction to Intel® Array Building Blocks

Operators

50

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Intel® ArBB Operators

• ArBB operators can be categorized into the following classes:

– Element-wise:

– Apply the same operation to all elements of a vector,
or to the corresponding elements of a set of vectors

– Vector-scalar:

– Promote a scalar to a vector by replication,
then apply element-wise operations

– Collectives:

– Output depends on the entire input vector

– Ex: reduce a vector to a single, scalar value, e.g. via summation.

– Permutation operators:

– Reorganize elements of a vector

– Facility functions:

– Generic data access

51

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Element-wise & Vector-scalar Operators

• Arithmetic operators:
+, +=, ++ (prefix and postfix), addition, increment

-, -=, -- (prefix and postfix), subtraction, decrement
*, *=, multiplication
/, /=, division
%, %= modulo

• Bitwise operators:
&, &=, bitwise AND

|, |=, bitwise OR
^, ^=, bitwise XOR
~, ~=, bitwise NOT
<<, <<=, shift left
>>, >>= shift right

• Logical / comparison operators:

==, !=, equals

>, >=, greater than
<, <=, less than
&&, ||, ! logical AND/OR/NOT

52

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Element-wise & Vector-scalar Operators

• Unary operators:

Operator Description

abs absolute value

acos arccosine

asin arcsine

atan arctangent

ceil round towards infinity

cos cosine

cosh hyperbolic cosine

exp exponent

floor round towards neg. infinity

log10 common logarithm

Operator Description

log natural logarithm

rcp reciprocal

round round to nearest integer

rsqrt reciprocal square root

sin sine

sinh hyperbolic sine

sqrt square root

tan tangent

tanh hyperbolic tangent

53

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Element-wise & Vector-scalar Operators

a = select(b <= 1.0, c, d)

Operator Description

atan2 arctangent

clamp compare and cut at lower/upper bound

max element-wise maximum

min element-wise minimum

pow power

select “cond ? x : y" for each element of x and y

<=1.0?

54

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Element-wise & Vector-scalar Operators

a = select(b <= 1.0, c, d)

Note:

We have to use this syntax since the current C++ standard does not allow

overloading of the ?: operator.

<=1.0?

55

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Collective Operators

• Computations over entire vectors.

– The output(s) can in theory depend on all the inputs

• 2 kinds of collective primitives:

– Reductions apply an operator over an entire vector to compute a
distilled value (or values depending on the type of vector):

add_reduce([1 0 2 -1 4]) yields
6

– Scans compute reductions on all prefixes of a collection, either
inclusively or exclusively:

add_iscan([1 0 2 -1 4]) yields
[1 (1+0) (1+0+2) (1+0+2+(-1)) (1+0+2+(-1)+4)]

[1 1 3 2 6]

add_scan([1 0 2 -1 4]) yields
[0 1 (1+0) (1+0+2) (1+0+2+(-1))]

[0 1 1 3 2]

56

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Collective Operators

op_reduce op_iscan op_scan

Default

57

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Collective Operators

Reductions Scans

NOTE: “*_reduce” operations on

multidimensional collections

operate a dimension at a time.

Operator Description

add_reduce add all elements

sum add over all dimensions

and_reduce logical AND all elements

all AND over all dimensions

mul_reduce multiply all elements

ior_reduce logical OR on all elements

any OR over all dimensions

max_reduce maximum of all elements

min_reduce minimum of all elements

xor_reduce XOR on all elements

Operator Description

add_scan prefix sum

add_iscan inclusive prefix sum

and_scan prefix logical and

and_iscan inclusive prefix logical and

ior_scan prefix logical or

ior_iscan inclusive prefix logical or

max_scan prefix maximum

max_iscan inclusive prefix maximum

min_scan prefix minimum

min_iscan inclusive prefix minimum

mul_scan prefix multiply

mul_iscan inclusive prefix multiply

xor_scan prefix exclusive-or

xor_iscan inclusive prefix exclusive-or

58

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Permutation Operators

a = shift(b, -1, def_value); // right if positive; left if negative

a = shift_sticky(b, 1); // shift with duplicated boundary value

a = rotate(b, -1); // shift with rotated boundary values

def_value

59

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Permutation Operators

a = b[{1,2,1,0}]; x = b[2];

a = gather(b, {1,2,1,0}) x = gather(b, 2);

a = scatter(b, {3,0,1,4}, 5, 42);

42

60

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Permutation Operators

a = pack(b, {0, 1, 1, 0, 1});

a = unpack(b, {0, 1, 1, 0, 1}, 42);

42

61

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Facility Functions

• Facility function provide data processing features

Operator Dim Description

cat 1, 2, 3 concatenate dense containers

() 1, 2, 3 positional access of a scalar value

row 2, 3 retrieve row of a dense container

col 2, 3 retrieve column of a dense container

section 1, 2, 3 retrieve sub-section of a dense container

replace 1, 2, 3 replace sub-section of a dense container

replace_row 2, 3 replace row of a dense container

replace_col 2, 3 replace column of a dense container

page 3 retrieve slice of a dense container

replace_page 3 replace slice of a dense container

62

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction to Intel® Array Building Blocks

Control Flow Constructs

63

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Loops

For loop
_for (begin, end, step) { // note use of commas, not semicolons!

/* code */

} _end_for; // note use of termination keyword

Example
_for (i32 i=0, i<=N, i++) {

/* code */

} _end_for;

All loop constructs in ArBB, including _for, are used to describe

serial control flow that depend on dynamically computed data

(that is, values computed by ArBB types).

THEY DO NOT THEMSELVES EXPRESS PARALLELISM

64

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Loops

While loop
_while (condition) {

/* code */

} _end_while;

Supporting statements:
• Exit loop with _break

• Skip remainder of current iteration with _continue

• Return from Intel® ArBB function with _return

65

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Conditionals

if statement
_if (condition){

/* code */

} _end_if;

if statement with “else if”
_if (condition1){

/* code */

}

_else_if (condition2) {

/* code */

}

_else {

/* code */

} _end_if;

if statement with else
_if (condition){

/* code */

}

_else {

/* code */

} _end_if;

66

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Function Calls

Function calls
call(function_ptr)(arg1, arg2, ..., argn);

• Regular function call

• Transfers control from the caller to the callee

Applying functions to every element of a collection
map(function_ptr)(arg1, arg2, ..., argn);

• Arguments should match formal type exactly OR be a

collection with an element type that matches exactly

• Converts a scalar function into a parallel operation

67

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners. Optimization
Notice

Introduction to Intel® Array Building Blocks

Example: Mandelbrot using an Elemental Function

Example: Mandelbrot Set

void doit(dense<i32,2>& D, dense<std::complex<f32>,2> C)
{
map(mandel)(D,C);

}

call(doit)(dest, pos);

int max_count = . . .;
void mandel(i32& d, std::complex<f32> c) {
i32 i;
std::complex<f32> z = 0.0f;
_for (i = 0, i < max_count, i++) {
_if (abs(z) >= 2.0f) {
_break;

} _end_if;
z = z*z + c;

} _end_for;
d = i;

}

69

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Introduction to Intel® Array Building Blocks

Example: Monte Carlo with Vector Computation

70

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Monte Carlo Computation of Pi

double computepi() {

int cnt = 0;

for(int i = 0; i < NEXP; i++) {

float x = float(rand()) /

float(RAND_MAX);

float y = float(rand()) /

float(RAND_MAX);

float dst = sqrtf(x*x + y*y);

if (dst <= 1.0f) {

cnt++;

}

}

return 4.0 *

((double) cnt) / NEXP;

}

Picture courtesy of Wikimedia
http://upload.wikimedia.org/wikipedia/de/1/1f/Pi_statistisch.png

71

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Monte Carlo Computation of Pi (C/C++)

double computepi() {

int cnt = 0;

for(int i = 0; i < NEXP; i++) {

float x = float(rand()) / float(RAND_MAX);

float y = float(rand()) / float(RAND_MAX);

float dst = sqrtf(x*x + y*y);

if (dst <= 1.0f) {

cnt++;

}

}

return 4.0 * ((double) cnt) / NEXP;

}

Run NEXP
experiments.

Pick a random x
coordinate [0,1].

Pick a random y
coordinate [0,1].

If distance from (0,0)
is less than 1, count
the needle as within
the unit circle.

72

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Monte Carlo Computation of Pi (Intel® ArBB)

void computepi(f64& pi) {

random_generator rng;

dense<f32> x = rng.randomize(NEXP);

dense<f32> y = rng.randomize(NEXP);

dense<f32> dist = sqrt(x*x + y*y);

dense<boolean> mask = (dist <= 1.0f);

dense<i32> cnt = select(mask, 1, 0);

pi = 4.0 * add_reduce(cnt) / NEXP;

}

User-defined random
number generator.

Initialize NEXP
experiments and store
coordinates in vectors.

Compute distance of
(x,y) vectors.

Generate mask
vector.

Map mask to vector
with 1s and 0s.

“Count” elements
with value 1.

Intel® Array Building Blocks
Execution Engine

74

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Objectives

• Understand the semantics of the ArBB execution model

• Understand how ArBB generates code

• Understand how to control the code generation process

• Understand ArBB‟s way of calling functions

75

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
Execution Engine

Execution Model

76

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Execution Model

• Container objects represent collections of data

• Vector operations and elemental functions represent a set of data-
parallel operations that operate on these containers

– Container objects are passed by value or by const reference

– Operator application logically returns a new container

(single assignment)

– Assignment always behaves “as if” data was copied into destination

– but unnecessary copies are optimized away internally

• ArBB programs can be compiled by any ISO-compatible C++ compiler

– object code is linked with the ArBB library

– debugging through a standard C++ debugger

• Binaries distributed as normal IA32/Intel64 applications

77

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Execution Model

Compiled by C++

Compiler

Linked with ArBB

Library incl.

Emulation

Debug using C++

Debugger

Binary for Distribution

Loaded on Client

Platforms

Trigger

Compilation

ArBB Source Code

Execution

debugging

performance tests and
release

78

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

ArBB Execution Model

• Binaries are loaded on to the client‟s platform

– ArBB dynamic runtime triggers 2nd stage compilation

(aka adaptive compilation)

– Compilation is dependent on characteristics of target architecture

• The ArBB dynamic execution model provides advantages

– Performance transparency

– Predictable performance to varying degrees of accuracy.

– Translation of seemingly sequential and scalar based codes into highly efficient,

SIMD-ized and parallelized codes, depending on the low-level architecture.

– Forward scalability

– Architectural portability closely related to the requirements of forward-scaling multi-

core applications.

– Increase core count -> necessary for portable program execution models to deliver

this advantage.

79

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
Execution Engine

The Runtime System

80

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB VM

Intel® ArBB has a high-level,

standards compliant C++ interface

to a Virtual Machine (VM)

Can be used with a broad range of
ISO standard C++ compilers

VM both manages threads and

dynamically generates optimized

vector code

Code is portable across different

SIMD widths and different core

counts, even in binary form

Intel® ArBB “extern C” API

Intel® ArBB Virtual Machine

Virtual
ISA

Debug
Services

Memory
Manager

Vector
JIT

Compiler

Threading
Runtime

CPU MIC Future

Intel® ArBB C++ API Other Languages

81

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

ArBB
Dynamic

Engine

82

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

83

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

84

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

V1 1

+
V2

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

85

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

V1 1

+
V2

JIT
Trigger JIT

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

86

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

IR Builder

V1 1

+
V2

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

Intel® SSE Intel® AVX

ArBB
Dynamic

Engine

87

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

V1 1

+
V2

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

Intel® SSE Intel® AVX

Parallel Runtime

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

88

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

V1 1

+
V2

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

Parallel Runtime

Data
Partition

Thread Scheduler

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

Intel® SSE Intel® AVX

89

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

IR Builder

V1 1

+
V2

JIT

High-Level Optimizer

Low-Level Optimizer

CVI Code Gen

Parallel Runtime

Data
Partition

Thread Scheduler

All Intel Platforms

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

Intel® SSE Intel® AVX

90

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

Code Manager

Parallel Runtime

Thread Scheduler

Emitted Code for „work‟

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

Compute
kernel
again

91

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Dynamic Engine Execution

Memory Manager

a
b

ArBB
Dynamic

Engine

Code Manager

Parallel Runtime

Thread Scheduler

Code Cache

Emitted Code for „work‟

Data
Partition

All Intel Platforms

int ar_a[1024],

ar_b[1024]

dense<i32> a();

bind(a, ar_a, 1024);

dense<i32> b();

bind(b, ar_b, 1024);

call(work)(a, b);

void work(dense<i32> c,

dense<i32>& d)

{

c = d + 1;

}

Compute
kernel
again

92

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Modifying Runtime Behavior

• Control behavior through O/S-level environment variables:

Variable Values Description

ARBB_OPT_LEVEL O0, O2, O3 Set the level of optimization
O0 immediate mode
O2 enable vectorization
O3 enable vectorization and

multi-threading
ARBB_VERBOSE 1 (y) or 0 (n) Instruct JIT compiler and runtime

system to emit diagnostic
messages during execution.

ARBB_NUM_CORES Positive integer number Set the number of threads for
multi-threaded execution.

ARBB_DUMPJIT 1 (y) or 0 (n) Instruct runtime system to emit
generated code into working
directory.

93

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
Execution Engine

Controlling Dynamic Compilation

94

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• A call() expression works like this:

– If it‟s never seen the function passed in before, it
captures the function into a closure, then executes it

– Otherwise, it executes the previously captured
closure

Capturing
Capturing

function pointer

captures or returns

previously capture closure
executes closure

returned from call()

call(my_function)(arg1, arg2);

95

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Closures

• Concept originating in functional programming languages

– But extended to include references to mutable objects in
imperative languages

• Closures are made of

– A piece of code to be executed

– Captured state of bound variables (C++ non-locals)

– References to mutable non-local variables (ArBB non-locals)

• Once constructed, closures in ArBB are immutable

• Similar concepts used in other programming models

– Threading Building Blocks: thunk classes

– C++0x: lambda functions

96

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

How Capturing Works

• Capturing simply executes the C/C++ function

–Any operations on ArBB types will be captured

–Any non-ArBB C++ operations just execute immediately

• capture() explicitly captures a given function

–call() only captures a function the first time it sees it

–capture() captures (re-executes) a function every time

• Using capture() is usually not necessary

–But understanding the process is helpful

• Best illustrated with an example…

97

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Closure Interaction with call

• template: closure<ret_t(arg1_t, arg2_t, …9)>

– Represents a function that has been captured and can then be called

– Has a related non-template type, auto_closure, that performs run-time type

checking instead of static type checking

• call() returns a closure<…>

• call() of same function pointer calls capture the first time

• after that always returns same closure

• Provides predictable behavior but simple usage for new users

void my_function(f32& out, f32 in);

f32 f1, f2;

auto_closure c1 = call(my_function);

auto_closure c2 = call(my_function);

assert(c1 == c2);

call(my_function)(f1, f2); // works as expected.

c1(f1, f2); // equivalent to previous line

98

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

a b c

console output

99

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

b c

console output

a

100

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

a b c

console output

101

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

a b c

console output

tmp = add(input, 1.0);
result = tmp;

102

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

a c

console output

tmp = add(input, 1.0);
result = tmp;

b

103

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

Hello, world!

a b c

console output

tmp = add(input, 1.0);
result = tmp;

104

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

Hello, world!

a b c

console output

tmp = add(input, 1.0);
result = tmp;

tmp = add(input, 1.0);
result = tmp;

105

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

Hello, world!

a b c

console output

tmp = add(input, 1.0);
result = tmp;

tmp = add(input, 1.0);
result = tmp;

106

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Capturing: an Example

void my_function(f32& result, f32 input) {

std::cout << “Hello, world!” << std::endl;

result = input + 1.0f;

}

int main() {

typedef closure<void (f32&, f32)> mfc;

mfc a = capture(my_function);

mfc b = call(my_function);

mfc c = call(my_function);

}

Hello, world!

Hello, world!

a b c

console output

tmp = add(input, 1.0);
result = tmp;

tmp = add(input, 1.0);
result = tmp;

107

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

C++ Control Flow

• Regular C++ control flow works during capture

– When a function is captured into a closure, the closure contains the

effect of the control flow at the time it was captured

positive = true;

void my_function(f32& result, f32 input) {

if (positive) {

result = input + 1.0f;

} else {

result = input – 1.0f;

}

}

int main() {

closure<void (f32&, f32)> closure_pos = capture(my_function);

positive = false;

closure<void (f32&, f32)> closure_neg = capture(my_function);

}

108

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB Control Flow

• ArBB provides its own control flow constructs

– They can be used on ArBB types (e.g. boolean)

– The control flow will be captured, not just its effects

boolean positive = true;

void my_function(f32& result, f32 input) {

_if (positive) {

result = input + 1.0f;

} _else {

result = input – 1.0f;

} _end_if;

}

int main() {

closure<void (f32&, f32)> closure = capture(my_function);

positive = false;

// No need to re-capture

}

109

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
Execution Engine

Function Calls

110

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Function Calls in Intel® ArBB

C++ Space

• No call operator

– Standard C/C++ function call

– Compiler decides on inlining,
or can use inline keyword

• call operator
– call() to invoke an C++

function w/ ArBB code

– Triggers on-demand code
compilation

Intel® ArBB Space

• No operator

– Standard C/C++ function call

– Full inlining of function body

• call operator
– call() to invoke an C++

function w/ ArBB code

– True function call involving a
branch

• map operator

– Replicates function over
index space of array

111

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Map Operator: How it Works…

• Conceptually, the map function runs in 3 steps:

1. For each parameter, the argument is copied in.

2. The map function executes in parallel

with one instance for every element in containers passed in.

3. For each reference parameter, the result is copied out.

• This means:

– Map instances are completely independent

– The effects of one instance is not visible until after all have executed

• Execution follows the “as-if rule”:

– Normally, copies are avoided completely

– as long as the semantics are the same

– Instances of a map execution will be blocked into larger tasks

– rather than spawning a task for every instance

112

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Syntax of the map() operator:

• The map function must be compatible with the dense containers
given as arguments

– A map function takes and returns ArBB scalars and structured types

– At the map() operator, dense containers must be of the same scalar types
or a structured type

Map Operator: map()

function pointer

captures or returns

previously capture closure
executes closure
returned from map()

map(my_function)(arg1, arg2);

113

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

chunk 0 chunk 1 chunk 2 chunk 3

Map Operator: map()

• Example:

void fct(f32 a, f32 b, f32& c) {

c = a + b;

}

void func(dense<f32> a, dense<f32> b, dense<f32>& c) {

map(fct)(a, b, c);

}

fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct fct

114

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Vector Processing vs. Scalar Processing

Vector Processing

dense<f32> A, B, C, D;
A = A + B/C * D;

Scalar Processing

void kernel(f32& a, f32 b, f32 c, f32 d) {
a = a + (b/c)*d;

}
…
dense<f32> A, B, C, D;
map(kernel)(A, B, C, D);

115

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Map Functions: Argument Types

• Map functions can take two kinds of arguments

– Map functions are polymorphic and can be applied to any combination

• Fixed arguments:

– Are values whose type exactly matches those of the parameters to

which they are being passed

– Values are replicated over every instance of the map

• Varying arguments:

– Are containers being passed to parameters corresponding to their

element type

– Map is applied to every element individually

116

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Map Functions: Argument Types

void mad(i64 base, i64 offset, i64 scale, i64& result) {

result = base + offset * scale;

}

void apply_mad() {

i64 base = 0xDEADBEEF;

dense<i64> offsets;

i64 scale = 8;

dense<i64> result;

map(mad)(base, offsets, scale, result);

}

Color code:

Fixed argument

Varying argument

117

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Stencils in Map Functions

• Use neighbor() for stencil codes:
void fun3x3<f32 a,

f32 w0, f32 w1, f32 w2, f32 w3, f32 w4,

f32& r) {

r = w0 * a +

w1 * neighbor(a, -2) + w2 * neighbor(a, -1) +

w3 * neighbor(a, 1) + w4 * neighbor(a, 2);

};

0-1 1-2 2

118

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® Array Building Blocks
Execution Engine

Using the Virtual Machine Interface

119

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB VM

Intel® ArBB has a high-level,

standards compliant C++ interface

to a Virtual Machine (VM)

Can be used with a broad range of
ISO standard C++ compilers

VM both manages threads and

dynamically generates optimized

vector code

Code is portable across different

SIMD widths and different core

counts, even in binary form

Intel® ArBB “extern C” API

Intel® ArBB Virtual Machine

Virtual
ISA

Debug
Services

Memory
Manager

Vector
JIT

Compiler

Threading
Runtime

CPU MIC Future

Intel® ArBB C++ API Other Languages

120

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Virtual Machine Functionality

Data management

– Declare new types

– Allocate containers

– Move/bind data between the application and the VM

Function definition

– Generate functions at runtime

– Using sequences of both scalar and collective operations

Execution management

– Execute functions

– Including remote and parallel execution

121

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Virtual Machine Interface

• The VM interface is a C-only interface
– C calling convention wide-spread

– Almost all modern programming languages can call into C functions

– Very generic applicability of the VM interface

• Requirements
– No assumptions about host language

– No assumptions about memory management

– Easily bind as DLL or dynamic library

– Fixed ABI, i.e., simple to update without recompilation

• API
– All internal types are opaque, no data is exposed publicly

– Consistent error handling through opaque error structure
– No use of exceptions

– Suitable for any language frontend

– Stateless, using context objects for thread-safety

122

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Example: Dot Product

void arbb_sprod(dense<f32> a,

dense<f32> b,

f32& result) {

result = add_reduce(a * b);

}

Structure of the code

– Get a handle to the ArBB VM

– Create the input/output types
needed (scalars, dense container)

– Create a function called “dot”

– Define the input and output
parameters of “dot”

– Create local variables

Structure of the code

– Create a function called “dot”

– Do a element-wise multiplication
between the input containers

– Do an add_reduce on the result of
the multiplication

– … store the result in the output
argument

• The next slides will show how
this can be done with the VM API

arbb_function_t generate_dot() {

arbb_context_t context;

arbb_get_default_context(&context, NULL);

arbb_type_t base_type;

arbb_get_scalar_type(context, &base_type, arbb_f32, NULL);

arbb_type_t dense_1d_f32;

arbb_get_dense_type(context, &dense_1d_f32, base_type, 1, NULL);

arbb_type_t inputs[] = { dense_1d_f32, dense_1d_f32 };

arbb_type_t outputs[] = { base_type };

arbb_type_t fn_type;

arbb_get_function_type(context, &fn_type, 1, outputs, 2, inputs, NULL);

arbb_function_t function;

arbb_begin_function(context, &function, fn_type, "dot", 0, NULL);

arbb_variable_t a, b, c;

enum { is_input, is_output };

arbb_get_parameter(function, &a, is_input, 0, NULL);

arbb_get_parameter(function, &b, is_input, 1, NULL);

arbb_get_parameter(function, &c, is_output, 0, NULL);

arbb_variable_t tmp[1];

arbb_create_local(function, tmp, dense_1d_f32, 0, NULL);

arbb_variable_t in[] = { a, b };

arbb_op(function, arbb_op_mul, tmp, in, 0, NULL);

arbb_variable_t result[] = { c };

arbb_op_dynamic(function, arbb_op_add_reduce, 1, result, 1, tmp, 0, NULL);

arbb_end_function(function, NULL);

arbb_compile(function, NULL);

return function;

}

124

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB VM Code for Dot Product

arbb_function_t generate_dot() {

arbb_context_t context;

arbb_get_default_context(&context, NULL);

arbb_type_t base_type;

arbb_get_scalar_type(context, &base_type, arbb_f32, NULL);

arbb_type_t dense_1d_f32;

arbb_get_dense_type(context, &dense_1d_f32, base_type, 1, NULL);

arbb_type_t inputs[] = { dense_1d_f32, dense_1d_f32 };

arbb_type_t outputs[] = { base_type };

arbb_type_t fn_type;

arbb_get_function_type(context, &fn_type, 1, outputs, 2, inputs, NULL);

// continue on the next slide

}

125

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB VM Code for Dot Product

arbb_function_t generate_dot() {

// continued from previous slide

arbb_function_t function;

arbb_begin_function(context, &function, fn_type, "dot", 0, NULL);

arbb_variable_t a, b, c;

enum { is_input, is_output };

arbb_get_parameter(function, &a, is_input, 0, NULL);

arbb_get_parameter(function, &b, is_input, 1, NULL);

arbb_get_parameter(function, &c, is_output, 0, NULL);

arbb_variable_t tmp[1];

arbb_create_local(function, tmp, dense_1d_f32, 0, NULL);

// continue on the next slide

}

126

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Intel® ArBB VM Code for Dot Product

arbb_function_t generate_dot() {

// continued from previous slide

arbb_variable_t in[] = { a, b };

arbb_op(function, arbb_op_mul, tmp, in, 0, NULL);

arbb_variable_t result[] = { c };

arbb_op_dynamic(function, arbb_op_add_reduce,

1, result, 1, tmp, 0, NULL);

arbb_end_function(function, NULL);

arbb_compile(function, NULL);

return function;

}

127

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Using the Generated “dot” Function

As an example, serialize the generated code
void print_generated_code() {

arbb_function_t function = generate_dot();

arbb_string_t serialized;

arbb_serialize_function(function, &serialized, NULL);

const char *cstring = arbb_get_c_string(serialized);

printf("%s", cstring);

arbb_free_string(serialized);

}

Generated code
function _dot(out $f32 _0, in dense<$f32> _1,

in dense<$f32> _2) {

_3 = mul<dense<$f32>>(_1, _2);

_0 = add_reduce<$f32>(_3);

}

Advanced Intel® ArBB Programming

129

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Topics

• Templates

• Generative metaprogramming

• User-defined data types

• User-defined functions

• Debugging

• Optimizing for performance

130

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

Templates

131

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Basic Templates

• C++ functions with ArBB code may be subject to template
type arguments

• Programmers can write ArBB code as templated code:

template <typename T>

void foo(...) {

/* ArBB code */

}

call(foo<f32>)(...);

call(foo<f64>)(...);

call(foo<array<i32,4>>)(...);

132

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Template Usages

• Standard C++ templates may often be re-used as ArBB
templates

– if (and only if) template instantiation yields a valid ArBB code
sequence

• Example:

template<typename T>

void double_it(const T& a, T& result) {

result = a * 2;

}

133

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Template Usages

template<typename T>

void double_it(const T& a, T& result) {

result = a * 2;

}

use as a standard C++ function (non-ArBB):

void caller() {

double a = 2.0;

double r;

double_it(a, r); // T := double

}

134

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Template Usages

template<typename T>

void double_it(const T& a, T& result) {

result = a * 2;

}

use as function on dense containers:

void caller() {

dense<f64> a = fill(1.0, 1024);

dense<f64> r;

double_it(a, r); // T := dense<f64>

}

135

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Template Usages

template<typename T>

void double_it(const T& a, T& result) {

result = a * 2;

}

use as kernel (mapped function) on containers:

void caller() {

dense<f64> a = fill(1.0, 1024);

dense<f64> r;

map(double_it)(a, r); // T := f64

}

136

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

Generative Metaprogramming

137

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Function Calls

• No call operator

– Standard C/C++ function call

– Full inlining of function body

• call operator

– call() to invoke an C++ function w/ ArBB code

– True function call involving a branch

void func() {

statement_1();

statement_2();

}

void example() {

call(func)();

func();

func();

call(func)();

}

void example() {

call(func)();

statement_1();

statement_2();

statement_1();

statement_2();

call(func)();

}

138

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Control Flow vs Generative Programming

_if statement
boolean flag = true;

void my_function(f32& result,
f32 input) {

_if (flag) {

result = sin(input);

} _else {

result = cos(input);

} _end_if;

}

void my_function(f32& result,
f32 input) {

_if (flag) {

result = sin(input);

} _else {

result = cos(input);

} _end_if;

}

if statement
bool flag = true;

void my_function(f32& result,
f32 input) {

if (flag) {

result = sin(input);

} else {

result = cos(input);

}

}

void my_function(f32& result,
f32 input) {

result = sin(input);

}

capture(my_function) capture(my_function)

139

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Closures and Capturing Example
unsigned int unroll_factor;

void foo(dense<f32>& out, dense<f32> in)

{

_for(index i = 0, i < in.size()/unroll_factor, ++i) {

for (unsigned int j = 0; j < unroll_factor; ++j) {

// …perform some unrolled operation…

}

} _end_for;

}

int main() {

unroll_factor = 1;

closure<void(dense<f32>&, dense<f32>)> not_unrolled = capture(foo);

unroll_factor = 4;

closure<void(dense<f32>&, dense<f32>)> unrolled_4_times = capture(foo);

dense<f32> input(…), result(…);

not_unrolled(result, input); // like call(foo)(result, input),

unrolled_4_times(result, input); // but with specialization

}

140

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Closures and Capturing Example

unsigned int unroll_factor;

void foo(dense<f32>& out, dense<f32> in)

{

_for(i32 i = 0, i < in.size()/unroll_factor, ++i) {

for (unsigned int j = 0; j < unroll_factor; ++j) {

// …perform some unrolled operation…

}

} _end_for;

}

void foo(dense<f32>& out, dense<f32> in)

{

_for(i32 i = 0, i < in.size(), ++i) {

// …perform some unrolled operation…

}

}

Closure “not_unrolled”

unroll_factor = 1

void foo(dense<f32>& out, dense<f32> in)

{

_for(i32 i = 0, i < in.size()/4, ++i) {

// …perform some unrolled operation…

// …perform some unrolled operation…

// …perform some unrolled operation…

// …perform some unrolled operation…

}

}

Closure “unrolled_4”

unroll_factor = 4

141

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

User-defined Data Types

142

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

User-defined Types

• C++ classes and structures can be used (mostly) normally
in ArBB, including:

– class members

– member functions

– overloaded operators

– …

• Requirements

– primitive types be classes in ArBB types (f32, etc.) or other ArBB
structured types

– Default constructible

– Copy construction not suppressed

– Operator implementation according to actual operator usage

– Virtual functions resolved at capture time

143

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

User-defined Data Types: Example

template<typename T>

struct interval {

typedef T value_type;

interval(): m_data(make_array<2, T>(0)) {}

interval(const T& a, const T& b) {

m_data[0] = a; m_data[1] = b;

}

interval& operator+=(const interval& rhs) {

m_data += rhs.m_data;

return *this;

}

private:

array<T, 2> m_data;

};

144

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Efficient Handling of Structured Types

• Structured types are automatically converted to allow for
vectorization

– Break up AoS (array of structures)

– Transform to SoA (structure of arrays)

• Involves copy operations for data layout conversion

– Needed for efficient vectorization

– Negligible for large problem sizes and more efficient vectorization
compensates copy overhead

struct interval { struct temp {

private: private:

array<T, 2> m_data; dense<T> m_data_elt0;

}; dense<T> m_data_elt1;

};

145

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

User-defined Functions

146

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

User-defined Functions: Example

template<typename T>

struct interval {

typedef T value_type;

interval(): m_data(make_array<2, T>(0)) {}

interval(const T& a, const T& b) {

m_data[0] = a; m_data[1] = b;

}

T width() const { return m_data[1] - m_data[0]; }

private:

array<T, 2> m_data;

};

How to invoke member function width for
a dense container of interval?

147

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Declaring User-defined Functions

Declarative macros for user-defined functions:

• Let N be the function arity (number of arguments)

• Extend user-defined functions into functions on dense:

– ARBB_ELTWISE_FUNCTION_N

F(T1, T2, ...) F(dense<T1>, dense<T2>, ...)

– ARBB_ELTWISE_METHOD_N

C::M(T1, T2, ...) M(dense<C>, dense<T1>, dense<T2>, ...)

– ARBB_ELTWISE_TMETHOD_N

C<T>::M(T1, T2, ...) M(dense<C<T>>, dense<T1>, dense<T2>, ...)

ARBB_ELTWISE_

FUNCTION 1
…
35

(ret_type, func, arg_types)METHOD class,

TMETHOD class<T>,

148

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

User-defined Functions: Example

template<typename T>

struct interval {

...

T width() const { return m_data[1] - m_data[0]; }

...

ARBB_ELTWISE_TMETHOD_0(T, const interval<T>, width)

};

149

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

Debugger Integration

150

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugging Intel® ArBB Applications

• Debugging of ArBB code possible through standard
debugger, e.g.

– Visual Studio* debugger

– GNU Debugger (gdb)

• ArBB supplies a script for debugger integration

– Introspection of ArBB scalars and dense containers

– Visualization of values of scalars and data in dense containers

– Provides insight into ArBB‟s opaque types in the C++ space

• Debugging mode of ArBB

– Execution mode ARBB_OPT_LEVEL=0O

– Debugger integration relies on immediate mode of execution

151

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• Immediate mode triggers non-JIT execution of ArBB code

– No IR recording and JIT compilation involved

– ArBB execution directly happens in C++ space

• Standard debugger features work as expected
(e.g. breakpoints)

• Control flow can directly be monitored through Visual
Studio debugger commands

• Note: Capturing and closure creation is not (currently)
supported

152

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• SmartTags expose current state of ArBB scalars and
dense containers:

Screenshots taken from Microsoft* Visual Studio 2008*

153

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• Quick watches allow permanent monitoring of ArBB
objects

Screenshots taken from Microsoft* Visual Studio 2008*

154

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• Display of automatic variables and local variables possible

• Watch points on ArBB objects can be set as usual

• Execution can be stopped when condition becomes true

Screenshots taken from Microsoft* Visual Studio 2008*

155

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• The current state of a dense container can be monitored

– Helps track uninitialized data

– Introspect properties of the container

– Retrieve current data of a container

• Uninitialized dense containers do not contain any
metadata, m_members is empty.

Screenshots taken from Microsoft* Visual Studio 2008*

156

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• The current state of a dense container can be monitored

– Helps track uninitialized data

– Introspect properties of the container

– Retrieve current data of a container

• Constructed (but not initialized) containers are explicitly
indicated:

Screenshots taken from Microsoft* Visual Studio 2008*

157

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• The current state of a dense container can be monitored

– Helps track uninitialized data

– Introspect properties of the container

– Retrieve current data of a container

• Metadata and payload of a container can be visualized
once initialized (through copy in, binding, assignment)

Screenshots taken from Microsoft* Visual Studio 2008*

158

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• The current state of a dense container can be monitored

– Helps track uninitialized data

– Introspect properties of the container

– Retrieve current data of a container

• Metadata and payload of a container can be visualized
once initialized (through copy in, binding, assignment)

– 2D or 3D data is flattened

Screenshots taken from Microsoft* Visual Studio 2008*

159

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (Visual Studio*)

• ArBB automatically performs AoS-to-SoA conversions

– Explicitly visible in the debugging facilities

– Components of a structured type are scattered into difference
containers

Screenshots taken from Microsoft* Visual Studio 2008*

160

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Immediate mode triggers non-JIT execution of ArBB code

– No IR recording and JIT compilation involved

– ArBB execution directly happens in C++ space

• Standard debugger features work as expected
(e.g. breakpoints)

• Control flow can directly be monitored through GDB
debugger commands

• Note: Capturing and closure creation is not supported

• GDB extension based on Python

– Python script to pretty-print ArBB data objects

– Needs GDB version 7.0 or later

– Blends well with all GDB frontends (e.g. DDD, GNU Emacs)

161

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

162

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print values of scalars

163

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print dense containers

– Helps track uninitialized data

164

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print dense containers

– Inspect properties of the container

165

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print dense containers

– Retrieve current data in a container

166

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print dense containers

– Retrieve current data in a container

167

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Use the print command to print dense containers

– Retrieve current data in a container

168

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Debugger Integration (GNU Debugger*)

• Modify printing behavior standard GDB commands:

– set print array

– set print array-indexes

– set print elements

– set print pretty

• Please refer to the GDB documentation for a full list

169

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

Performance Optimization

170

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Scoped Timer Facility

• ArBB offers a platform-independent timer facility

– Measure runtime of ArBB kernels

– Easy means to profile ArBB code

• The scoped_timer class resembles the notion of RAII

– RAII: “Resource Acquisition Is Initialization”

– When constructed, the scoped_timer takes the current time

– Upon destruction, the scoped_timer takes the current time

again

– It then returns the time difference

171

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Scoped Timer Facility

#include <arbb.hpp>

#include <iostream>

using namespace arbb::scoped_time;

using namespace std;

void example() {

double time;

{

const scoped_timer timer(time);

// run some code in here

}

cout << "Time: " << time << "ms" << endl;

}

Tstart

Tend time=Tend - Tstart

172

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Shape Expectations

• Knowing data sizes at JIT compile time helps to generate
close to optimal code

– Avoid remainder loops when slicing data into chunks for
vectorization and multi-threading

– Find cache-optimal data distribution

– Statically pre-allocate memory at the memory manager

• The expect_size() call expects an integer expression
void fun1024(const dense<T>& a, T& result) {

expect_size(a,1024);

// ...

}

173

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Shape Expectations

• Constraints:

– Valid in an ArBB function only

– The expression needs to evaluate to an integer value

– The expression may not be an ArBB scalar value:

– it must be a C++ expression

• The expected size can be a C++ variable

– The variable is evaluated at IR recording

– The value is baked into the generated code as a JIT-compile time
constant

174

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

• Prefer memory managed by ArBB

– Use “range” interface rather than “bind” when possible

– This lets ArBB better manage data allocation, do proper alignment,
avoid unnecessary copies to/from managed memory, etc.

Best Practices: Memory Management

Binding
dense<f32> a, b;

bind(a, arr, SIZE);

bind(b, brr, SIZE);

// copy in of ‘a’

call(fun1)(a, b);

// sync; copy out of ‘b’

// copy in of ‘a’

call(fun2)(a, b);

// sync; copy out of ‘b’

Range interface
dense<f32> a(1024), b;

// initialize ‘a’ using write range

// copy in of ‘a’

call(fun1)(a, b);

// NO copy out of ‘b’

// NO copy in of ‘a’

call(fun2)(a, b);

// NO copy out of ‘b’

175

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Fusion

• ArBB fuses sequences of operations into single blocks

– Avoids barriers between operations on vectors

– Avoids expensive temporary containers for intermediate values

– Necessary intermediate copies can be kept in SIMD registers

At the barrier the intermediate result is ready in an intermediate container.

Original Code Fused Code

BarrierBarrierBarrier
Barrier

176

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Fusion

• ArBB internally uses Intel® Threading Building Blocks to
implement tasks on top of multi-threading

• Fused operations increase the portion of work per task

– Higher computational load per task

– Less task scheduling and threading overhead

– Less overhead due to synchronization at barriers

• Regularity of operations/primitives matters for fusion:

– Element-wise very regular

– Collective mostly regular, but subject to barrier

– Permute: irregular

– Facility: depends

177

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Global Operations

• Avoid global operations (collectives, permutes) if possible

• These operations MAY have barrier-like behavior

– Threads compute a partial result

– All partial results are collected into the global result

– Threads have to wait until the global result is ready

• Remember ArBB„s semantics:

– ArBB built-in primitives execute as serial code

– Parallelism semantically happens in the operation

• The JIT compiler tries to push collective operations to

– the begin of the fused code sequence

– or the end of the fused code sequence

→ avoid (frequent) intermediate barriers

178

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Global Operations

void foo(dense<f32> a, dense<f32> b, dense<f32> c,

dense<f32>& e) {

c = a + b;

f32 d = add_reduce(c);

e = a * d;

} c1 = a1+b1

_local_reduce(c1)

d = _global_reduce(c1,…, cn)

c2 = a2+b2

_local_reduce(c2)

cn = an+bn

_local_reduce(cn)

e1 = a1*d e2 = a2*d en = an*d

• Parts of a global operation can run in
parallel, but a barrier is involved

179

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Shift

• Shifting a container is unlikely to break fusion

• Shift can efficiently mapped to vectorized code without
copying the input container:

– Small scalar loop trip count < SIMD_WIDTH

– Large SIMD loop proportional to size of container

– Small scalar loop trip count < SIMD_WIDTH

• Prefer shifting original containers over shifting result
containers

– Introduces a barrier before the shift operation

– Breaks code fusion because of the barrier

– May require an intermediate copy for the result container

180

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Shift

• The following code can be fused:
dense<f32> in;

result1 = shift(in, i);

result2 = shift(in, j);

• The following code breaks fusion:
dense<f32> in;

result1 = shift(in, i);

result2 = shift(result1, j - i);

Introduces a
barrier here to wait
for completion of
the first shift.

• JIT compiler does not need
to create intermediate
copies.

• It is sufficient to only keep
the shift distance if in is
not changed.

181

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Avoid Gather / Scatter

• Avoid scatter() and gather() whenever possible

– Especially scatter

• Scatter always breaks fusion

– Scatter is a global and introduces a barrier synchronization

– It cannot be turned into a gather operation in all cases

• Gather might break fusion

– Some cases do not involve a barrier

– In general, a barrier is needed

182

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Large ArBB Functions

• Make ArBB functions as large as possible

• More opportunities for code fusion and other
optimizations

– Keep Amdahl„s law in mind (keep fraction of sequential code small)

– Fuse ArBB functions into a single function

– Do not transition between C++ space and ArBB space frequently

• Use generative programming to create ArBB kernels
– No reason to use the call() operator in ArBB code

– Use C++ standard calls to inline function calls

– Use C++ control flow constructs to generate ArBB kernels

– Large kernels give more rise to code fusion

183

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Large ArBB Functions

void sum_sq_diff(dense<f32> a, dense<f32>& b,

f64& result) {

dense<f64> c = (a - b) * (a - b);

result = add_reduce(c);

}

void compute_error(dense<f32> a, dense<f32> b,

f64& error) {

f32 sq_error;

call(sum_sq_diff)(a, b, sq_error);

error = sqrt(sq_error);

}

• Leaves a call instruction in
the IR and JIT code

• Less opportunities to fuse
code

void compute_error(dense<f32> a, dense<f32> b,

f64& error) {

f32 sq_error;

_ir_call(sum_sq_diff)(a, b, sq_error)

error = sqrt(sq_error);

}

Recorded code

184

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practices: Large ArBB Functions

void sum_sq_diff(dense<f32> a, dense<f32>& b,

f64& result) {

dense<f64> c = (a - b) * (a - b);

result = add_reduce(c);

}

void compute_error(dense<f32> a, dense<f32> b,

f64& error) {

f32 sq_error;

sum_sq_diff(a, b, sq_error);

error = sqrt(sq_error);

}

• Always inlines
sum_qs_diff

• More opportunities to
fuse code

void compute_error(dense<f32> a, dense<f32> b,

f64& error) {

f32 sq_error;

dense<f64> c = (a - b) * (a - b);

sq_error = add_reduce(c);

error = sqrt(sq_error);

}

Recorded code

185

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practice: Use Most Specific Function

• Use the most specific function possible to solve a problem

• Give rise to the JIT compiler and the runtime system for
better optimization

– More generic functions are more difficult to implement internally

– Very specific functions contain the most context knowledge
possible

• Use less operations to express the algorithm

– Higher computational load per operator application

– Better chance for code fusion

186

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practice: Use Most Specific Function

Example: Limit values of a container to a given range

dense<f32> x = …;

x = select(x < 0.0f, 0.0f, x); // Bad

x = select(x > 255.f, 255.f, x);

x = max(0.0f, x) // Better

x = min(255.f, x);

x = clamp(x, 0.0f, 255.f); // Optimal solution

187

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Advanced Intel® ArBB Programming

Final Example: A Stencil Code

188

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Heat Dissipation Example

Heating

Cooling

189

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Heat Dissipation Example (Algorithm)

• Data structure:

– 2D grid (N x M cells)

– Boundary cells

• Algorithm:

– Sweep over the grid

– Update non-boundary
cells

– Read cells N, S, E, and W
of the current cell

– Take the average of the
value

Boundary conditions

Solution cells
“Stencil”

190

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

void run(double** grid1, double** grid2) {

for (int iter = 0; iter < ITERATIONS; iter++) {

step(grid1, grid2);

tmp = grid1;

grid1 = grid2;

grid2 = tmp;

} }

void step(double** src, double** dst) {

for (int i = 1; i < SIZE-1; i++) {

for (int j = 1; j < SIZE-1; j++) {

dst[i][j] = 0.25*(src[i+1][j] + src[i-1][j]+

src[i][j+1] + src[i][j-1]);

} } }

Heat Dissipation Example (C/C++)

Run ITERATIONS
sweeps over the
2D grid.

After each
sweep, swap
source and
destination grid.

For each grid
cell…

… apply stencil.

191

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Heat Dissipation Example (ArBB)

void stencil(f32& value) {

f32 north = neighbor(value, 0, -1);

f32 south = neighbor(value, 0, +1);

f32 west = neighbor(value, -1, 0);

f32 east = neighbor(value, +1, 0);

value = 0.25f * (north + south + west + east);

}

• The stencil averages neighbors in north, south, east, and west.

• Note:

– The stencil uses a single parameter for both input and output

– The ArBB runtime and memory manager take care of the shadow copy

192

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Heat Dissipation Example (ArBB)

void apply_stencil(usize niterations,

dense<f32, 2>& grid) {

_for (usize i = 0, i != niterations, ++i) {

map(stencil)(grid);

} _end_for;

}

• An ArBB _for implements the iterative application of the sweeps on

the grid

• The map() operator applies the stencil for each solution cell

• Worth to repeat:

– The stencil uses a single parameter for both input and output

– The ArBB runtime and memory manager take care of the shadow copy

193

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Blur Filter Example

Original photo: Blurred photo:

194

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Blur Filter Example

• Blur filters usually are stencil computations

Pixels

Stencil

– A bitmap is a “2D grid of pixels”

– The heat dissipation example also
implemented a “blur” effect by
smoothing the heat distribution
over the solution grid

– A close look reveals that

– grid traversal

– stencil application

are orthogonal.

– What about code re-usage?

195

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Blur Filter Example (Pseudo C/C++)

void run(rbga** grid1, rbga** grid2, funcptr stencil) {

for (int iter = 0; iter < ITERATIONS; iter++) {

step(grid1, grid2, stencil);

tmp = grid1; grid1 = grid2; grid2 = tmp;

} }

void step(rbga** src, rbga** dst, funcptr stencil) {

for (int i = offset; i < SIZE-offset; i++) {

for (int j = offset; j < SIZE-offset; j++) {

stencil(i, j, src, dst);

} } }

void stencilA(int x, int y, rbga** src, rbga** dst) {

dst[i][j] = ...; // imagine a complicated stencil formula here

}

Usage: run(input, output, stencilA)

196

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Blur Filter Example (Pseudo C/C++)

void run(rbga** grid1, rbga** grid2, funcptr stencil) {

for (int iter = 0; iter < ITERATIONS; iter++) {

step(grid1, grid2, stencil);

tmp = grid1; grid1 = grid2; grid2 = tmp;

} }

void step(rbga** src, rbga** dst, funcptr stencil) {

for (int i = offset; i < SIZE-offset; i++) {

for (int j = offset; j < SIZE-offset; j++) {

stencil(i, j, src, dst);

} } }

void stencilA(int x, int y, rbga** src, rbga** dst) {

dst[i][j] = ...; // imagine a complicated stencil formula here

}

Usage: run(input, output, stencilA)

• Generally a bad idea…

• Compilers might not inline
the stencil function

• O(n2) function calls
→ overhead

What about…

1D, 2D, 3D…

CYMK…

197

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Data Abstraction through Template Type Arguments

• We can get rid of the explicit data type of the heat
dissipation example by using a template type argument:

template<typename T>

void stencil(T& value) {

const T north = neighbor(value, 0, -1);

const T south = neighbor(value, 0, +1);

const T west = neighbor(value, -1, 0);

const T east = neighbor(value, +1, 0);

// TODO: implicit type conversions and overflows

value = (north + south + west + east) / 4;

}

198

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Data Abstraction through Template Type Arguments

template<typename T>

void generic_stencil(usize niterations,

dense<T, 2>& grid) {

_for (usize i = 0, i != niterations, ++i) {

map(stencil<T, 2>)(grid, /* additional arguments */);

} _end_for;

}

Possible instantiations of the stencil code:

• Heat dissipation solver, T = f64: dense<f64, 2> grid;

generic_stencil(niter, grid);

• Blur filter, RGBA bitmap,T = rgba: typedef array<u8, 4> rgba;

dense<rgba, 2> grid;

generic_stencil(niter, grid);

Will be
become

important
later.

199

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Abstraction from Stencil Implementations

size_t radius;

template<typename T>

void stencil(T& value, usize height, usize width) {

array<usize, 2> p; position(p);

array<usize, 2> s; s[0] = width; s[1] = height;

_if (all(radius <= p && p < s - radius)) {

value -= value;

for (int w = 1; w <= radius; ++w) {

value += neighbor(value, 0, -w);

value += neighbor(value, 0, w);

}

for (int h = 1; h <= radius; ++h) {

value += neighbor(value, -h, 0);

value += neighbor(value, h, 0);

}

value /= (4 * radius);

} _end_if;

}

200

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Abstraction from Stencil Implementations

size_t radius;

template<typename T>

void stencil(T& value, usize height, usize width) {

array<usize, 2> p; position(p);

array<usize, 2> s; s[0] = width; s[1] = height;

_if (all(radius <= p && p < s - radius)) {

value -= value;

for (int w = 1; w <= radius; ++w) {

value += neighbor(value, 0, -w);

value += neighbor(value, 0, w);

}

for (int h = 1; h <= radius; ++h) {

value += neighbor(value, -h, 0);

value += neighbor(value, h, 0);

}

value /= (4 * radius);

} _end_if;

}

scalar or an array of scalars.

Without the center‟s
value.

Compute avg. on T type.

Create stencil pattern
along x and y pattern.

201

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Abstraction from Stencil Implementations

size_t radius;

Template<typename T, size_t D>

void stencil(T& value, array<usize, D> size) {

array<usize, D> p; position(p);

_if (all(radius <= p && p < size - radius)) {

value -= value;

array<isize, D> offset;

for (size_t d = 0; d != D; ++d) {

offset.fill(0);

for (int r = 1; r <= radius; ++r) {

offset[d] = r;

value += neighbor(value, offset);

value += neighbor(value, -offset);

} }

value /= (2 * D * radius);

} _end_if;

}

202

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Abstraction from Stencil Implementations

size_t radius;

Template<typename T, size_t D>

void stencil(T& value, array<usize, D> size) {

array<usize, D> p; position(p);

_if (all(radius <= p && p < size - radius)) {

value -= value;

array<isize, D> offset;

for (size_t d = 0; d != D; ++d) {

offset.fill(0);

for (int r = 1; r <= radius; ++r) {

offset[d] = r;

value += neighbor(value, offset);

value += neighbor(value, -offset);

} }

value /= (2 * D * radius);

} _end_if;

}

Dimensionality D of the grid.

The array contains the
stencil offset along all
dimensions from the
stencil‟s center.

Set all offsets to zero.

Assign offset along x, y
(2D), and z (3D).

203

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Generic Stencil Framework (ArBB)
Abstraction from Stencil Implementations

• Note:

– The given stencil does not compute a Gaussian blur on a bitmap

– For the sake of presentation, only a cross-shaped stencil was
implemented

– Approach can be extended to arbitrary (weighted) stencils

– Can even use C++ control flow to handle special cases (zero, one,
symmetry) for weights efficiently

• The global variable radius can be removed:

– Involves some more C++ magic for the current version of ArBB

– Future version of ArBB might support non-static class members

Questions?

205

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

206

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practice: Convert Branches to Masks

• Replace sequential control flow by mask
– Use select when possible instead of _if

– Avoid expensive global operations in _if statements with small

branch bodies

• The _if statement introduces control flow

– Branches can be expensive in tight loops

– Branches can be difficult to vectorize / parallelize

• Also try to use if instead of _if

– Avoid control at runtime

– Baked in control flow branches at JIT compilation time

207

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Best Practice: Convert Branches to Masks

Sequential code:

ArBB code:

for (int i = 0; i < SIZE; i++) {

if (src[i] < SOME_VALUE)

dst[i] = src[i] * 2;

else

dst[i] = src[i] / 2;

}

dense<T> src = …;

dense<boolean> mask = src < SOME_VALUE;

dst = select(mask, src * 2, src / 2);

• Select evaluates both
branches

• “Wasted” computation
proportional to container size

