

CERN Achieves Database Scalability and Performance with Oracle and NetApp session S319046

Eric Grancher eric.grancher@cern.ch CERN IT department

Steve Daniel steve.daniel@netapp.com NetApp

https://edms.cern.ch/document/1093461/1

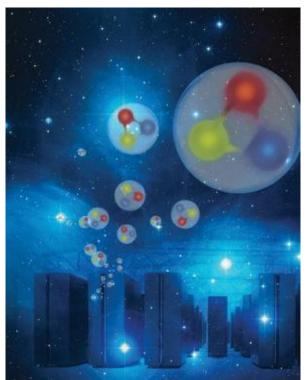


Image courtesy of Forschungszentrum Jülich / Seitenplan, with material from NASA, ESA and AURA/Caltech

Driving Storage as a Value Center

Reduce Complexity

- Unified infrastructure
 - Combines technology and process seamlessly

Maximize Asset Utilization

- Storage efficiency
 - Protect data while avoiding data duplication
 - Provide multi-use datasets without copying
 - Eliminate duplicate copies of data
 - Reduce power, cooling & space consumption

Control Hidden Costs

- Comprehensive data management
 - Complete data protection
 - Application-level end-to-end provisioning
 - Policy-based automation

Flexible Storage NetApp[•] A Single, Unified Platform

Single, Unified Storage Platform **Unified Management** Low-to-High Scalability Multiple Multiple Multiple Same tools and processes: Networks Protocols Disks learn once, run everywhere SAN FC Integrated management NAS SATA Integrated data protection 11111111 1111111 11111111 1111111 11111111 111111 11111111 1111111 11111111 11111111 11111111 11111111 1111111 1111111 11111111 1111111 111111 iSCSI SSD 1111111 11111111 1111111 1111111 11111111 11111111 11111111 11111111 **Unified Flash Unified Scale Out** Storage Virtualization [((((-)))]FlashCache Multi-vendor virtualization 111111111 11111111 SSD 11111111 0000-000 000 000 000 00 000 100 11111111 11111111 11111111 111111111 11111111 11111111 FlexCache 11111111 11111111 11111111 11111111 11111111 11111111 11111111

© 2010 NetApp. All rights reserved.

11111111

11111111

111111111

11111111

11111111

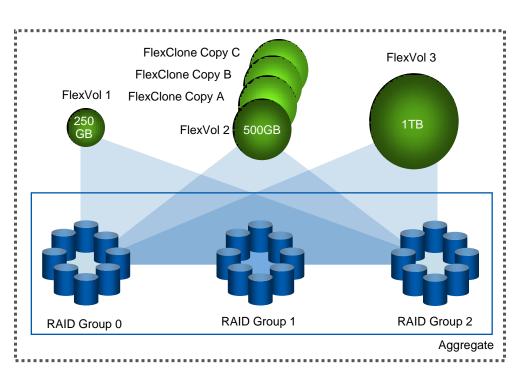
11111111

11111111

11111111

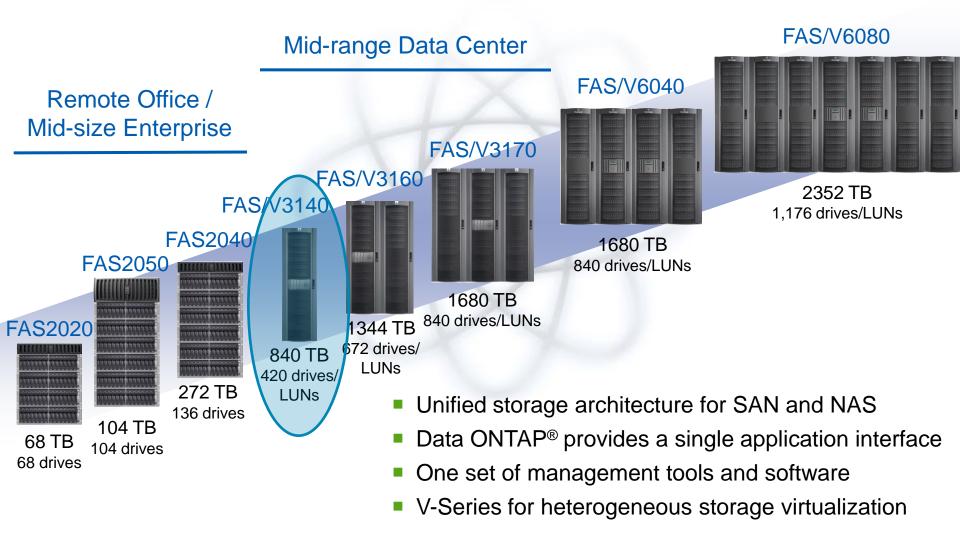
111111111

11111111


11111111

11111111

11111111


FlexClone Writable Copies

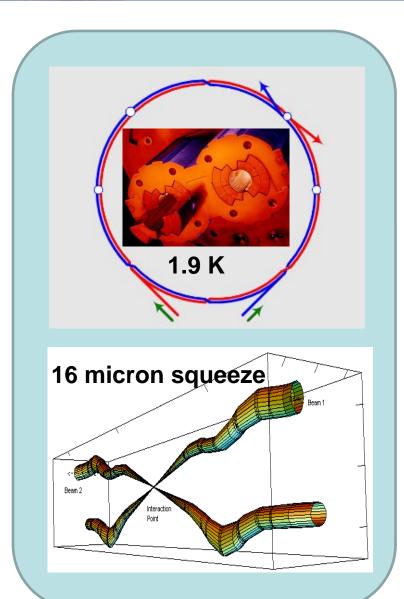
- Application development often requires substantial primary storage space for essential test operations such as platform and upgrade rollouts
- FlexClone[®] improves storage efficiency for applications that need temporary, writable copies of data volumes
- Creates a virtual "clone" copy of the primary dataset and stores only the data changes between parent volume and clone
- Multiple clones are easily created
- Resulting space savings of 80% or more

NetApp® Unified Storage Architecture

High-end Data Center

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

- Joined CERN in 1996 to work on Oracle database parallelism features
- OakTable member since April 2005
- Team leader for the Database Services section in the CERN IT department
- Specific interest in database application and storage performance

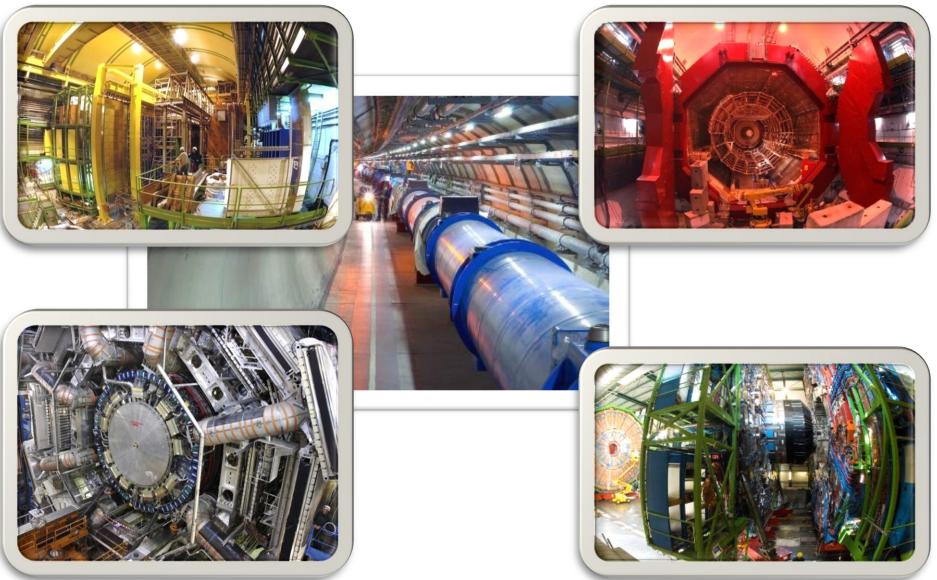

CERN Annual budget: ~1000 MSFr (~600 ME) Staff members: 2650 +270 Fellows, Member states: 20 +440 Associates

+ 8000 CERN users

Basic research Fundamental questions High E accelerator: Giant microscope $(p=h/\lambda)$ Generate new particles $(E=mc^2)$ Create Big Bang conditions

J. Knobloch/CERN: European Grid Initiative

Large Hadron Collider - LHC



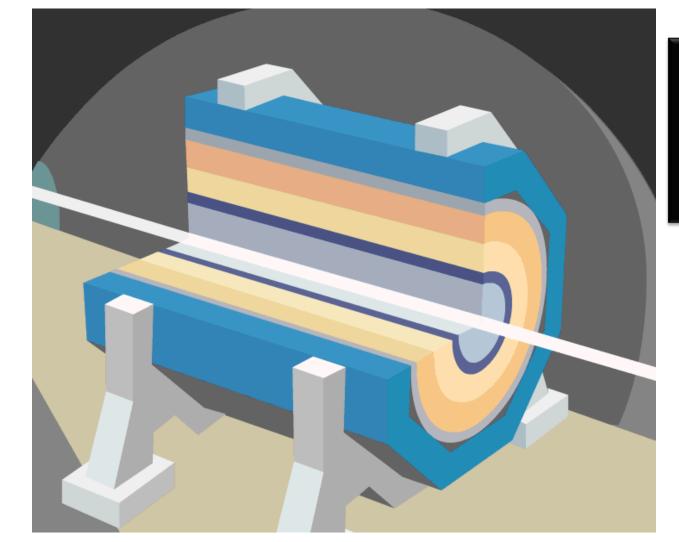
- 27 km circumference
- Cost ~ 3000 M€ (+ detectors)
- Proton-proton (or lead ion) collisions at 7+7 TeV
- Bunches of 10¹¹ protons cross every 25 nsec
- 600 million collisions/sec
- Physics questions
 - Origin of mass (Higgs?)
 - Dark matter?
 - Symmetry matter-antimatter
 - Forces supersymmetry
 - Early universe quark-gluon plasma

J. Knobloch/CERN: European Grid Initiative – EGI

LHC accelerator and experiments Department

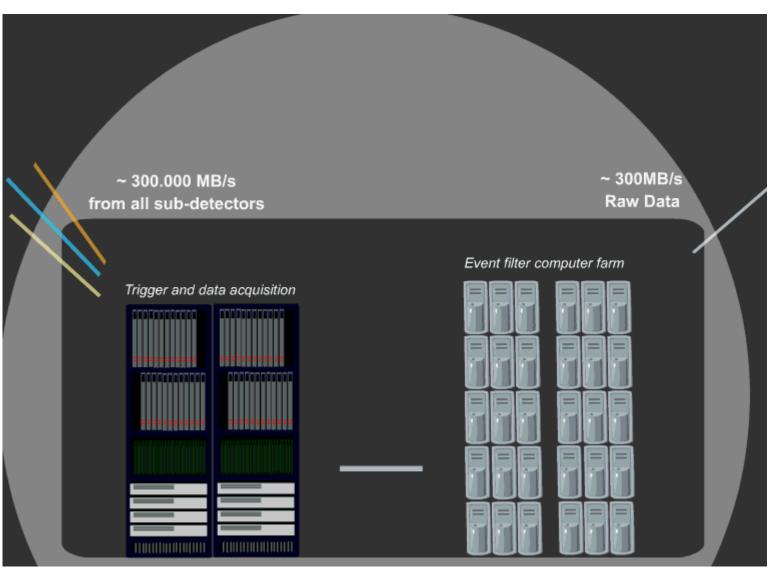
J. Knobloch/CERN: European Grid Initiative – EGI

LHC Instantaneous Luminosity: August Record



26-Aug-2010 04:24:46	Fill #: 1303	Energy: 3500 Ge\	/ I(B1): 5.51e+12	I(B2): 5.23e+12				
Experiment Status	ATLAS PHYSIC		CMS STANDBY	LHCb PHYSICS				
Instantaneous Lumi (ub.s)/	^ -1 10.45	6 0.138	10.719	8.882				
BRAN Luminosity (ub.s)^-	- 1 9.573	0.137	7.914	7.327				
Fill Lumiosity (nb)^-1	2.0	0.0	2.0	1.7				
BKGD 1	0.018	3 0.019	20.644	0.197				
BKGD 2	16.00	0 0.290	0.002	4.773				
BKGD 3	5.000	0.008	0.003	0.106				
LHCb VELO Position	Gap: 58.0 mm	STABLE BEA	MS TOTE	M: STANDBY				
FBCT History Beam Lifetime in h Updated: 04:31:								
625								
History Lifetime	maaa	and a second	man	man				
5 1 -9E5 -8E5	-7E5 -6E5	-5E5 -4E5 Time / ms	-3E5 -2E5	-1E5				

Slide from Ralph Assmann <u>http://op-webtools.web.cern.ch/op-webtools/vistar/vistars.php?usr=LHC1</u>

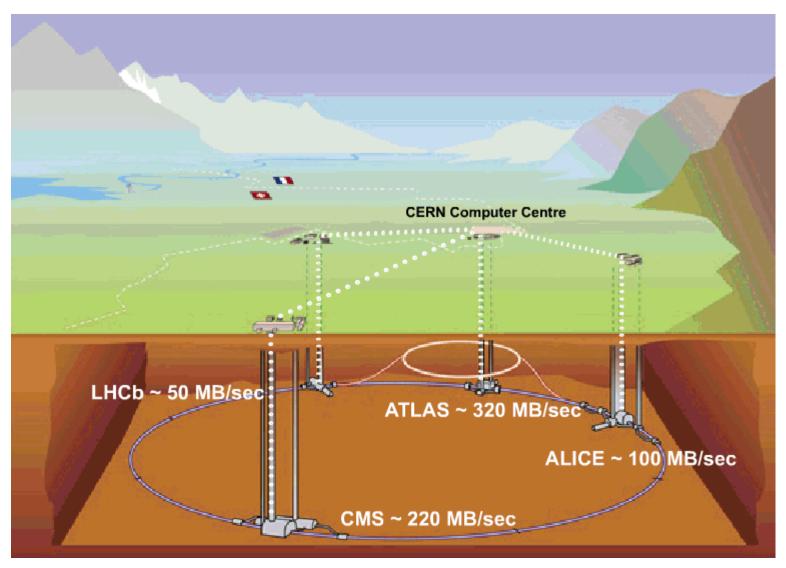

Luminosity : 10³⁴cm⁻² s⁻¹

40 MHz – every 25 ns

20 events overlaying

J. Knobloch/CERN: European Grid Initiative – EGI

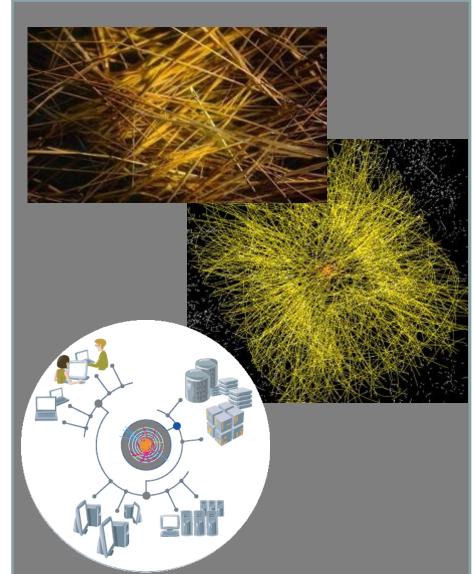
Trigger & Data Acquisition



J. Knobloch/CERN: European Grid Initiative – EGI

CERN

Data Recording



J. Knobloch/CERN: European Grid Initiative – EGI

LHC Computing Challenge

- Signal/Noise 10⁻⁹
- Data volume
 - High rate * large number of channels * 4 experiments
 - ➔ 15 PetaBytes of new data each year
- Compute power
 - >140 sites
 - ~150k CPU cores
 - >50 PB disk
- Worldwide analysis & funding
 - Computing funding locally in major regions & countries
 - Efficient analysis everywhere
 - → GRID technology

J. Knobloch/CERN: European Grid Initiative – EGI

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

CERN**|T** Department

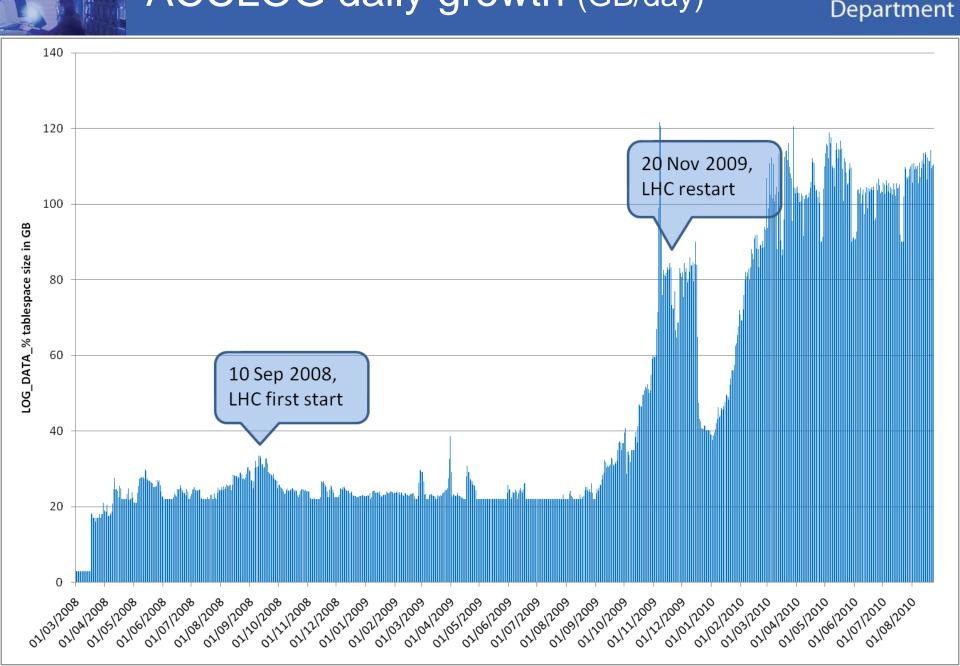
• 1982: Oracle at CERN

Conclusion

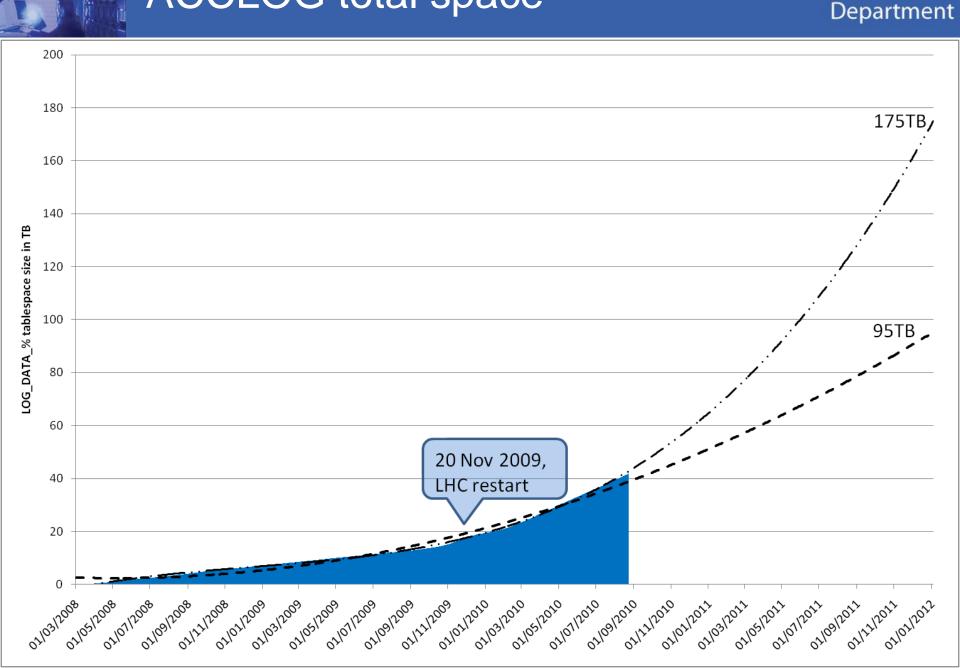
A database management system is a tool for storing, modifying and retrieving data. ORACLE has been chosen for the LEP project because very little training or computer experience is required before a user can effectively use the database.

- Solaris SPARC 32 and 64
- 1996: Solaris SPARC with OPS
- 2000: Linux x86 on single node, DAS
- 2005: Linux x86_64 / RAC / EMC with ASM
- >=2006: Linux x86_64 / RAC / NFS / NetApp

- (now, 96 databases)



Accelerator databases (1/2)


- Use cases
 - ACCCON
 - Accelerator Settings and Controls Configuration necessary to drive all accelerator installations, unavailability may require to stop accelerator operation
 - ACCLOG
 - Accelerator long-term Logging database
 - 3.5TB growth per month

ACCLOG daily growth (GB/day)

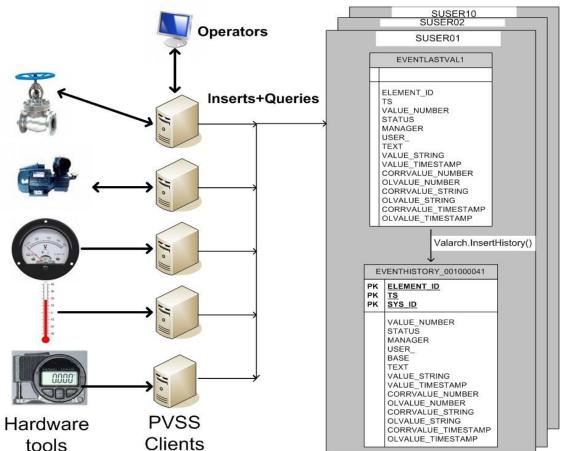
CERN

ACCLOG total space

CERN

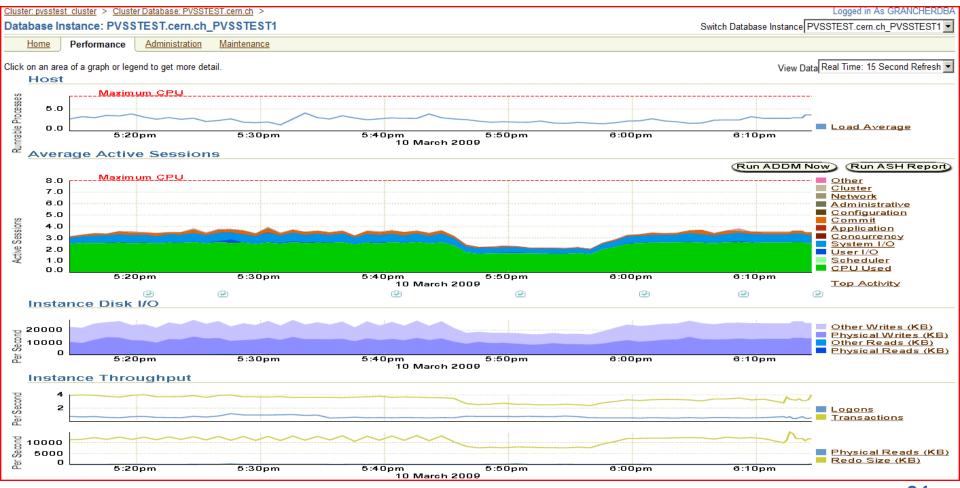
Accelerator databases (2/2)

- Implementation
 - Oracle RAC 10.2.0.5 with partitioning
 - Intel x86_64
 - NetApp 3040 and 3140 with Data OnTap8-7 mode
 - Example aggregate dbdska210
 - Data 12 August 2010 to ~mid July 2011
 - RAID-DP
 - 30 SATA disks, each "2TB"
 - 2 raid groups
 - 38 743GB usable



- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

PVSS Oracle scalability


- Target = 150 000 changes per second (tested with 160k)
- 3 000 changes per client
- 5 nodes RAC 10.2.0.4
- 2 NAS 3040, each with one aggregate of 13 disks (10k rpm FC)

CERN

PVSS Oracle scalability

Load on one of the instances, stable data loading

PVSS NetApp storage load

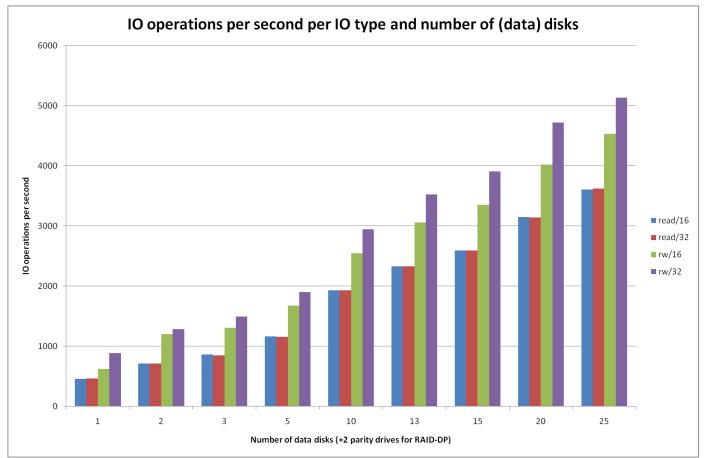
• NVRAM plays a critical role in order to have write operations happen quickly

Load Profile

	Per Second	Per Transaction				
Redo size:	12,245,111.95	3,701,088.03				
Logical reads:	64,352.96	19,450.70				
Block changes:	79,638.91	24,070.88				
Physical reads:	2.47	0.75				
Physical writes:	1,546.05	467.29				

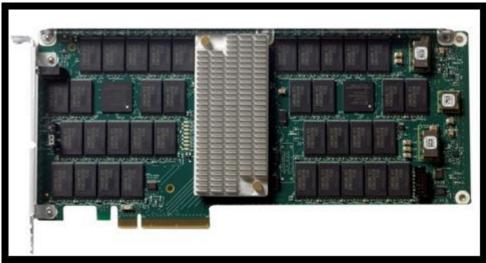
dbsrv	c235>-	RAC>-P	VSSTEST	[1:~/wor	ck/pvsst	est/ch	angest	orage\$:	ssh -2	root	dbnasc	210 sy	sstat	-x (1
CPU	NFS	CIFS	HTTP	Total	Net	kB/s	Disk 1	kB/s	Tape	kB/s	Cache	Cache	CP	CP I	Disk
					in	out	read	write	read	write	age	hit	time	ty 1	util
64 %	5506	0	0	5506	136147	1692	1568	207148	0	C) >60) 100%	82 %	Df	79%
58 %	5626	0	0	5626	139578	1697	1040	137420	0	C) >60) 100%	62 %	D	58 %
57%	5420	0	0	5420	127307	1618	1080	136384	0	Ç) >60) 100 %	5 79 %	D	62 %
61 %	5142	0	0	5142	130298	1562	1927	149545	0	C	>60) 100%	57%	Dn	57%

CERN



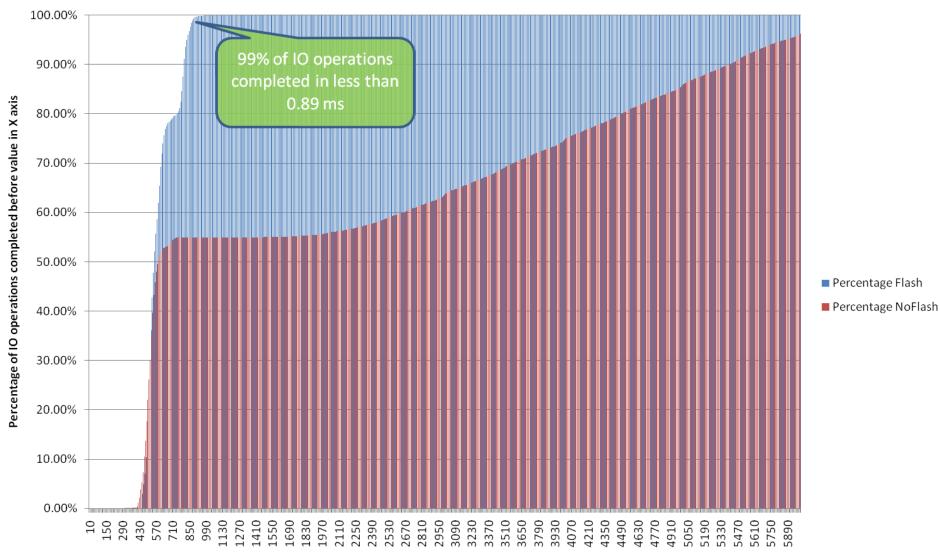
- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

- DataOntap 8 enables stripping over large number of disks (depends on FAS model and disk size)
- Enables very good scalability



- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

- Help to increase random IOPS on disks
- Warm-up effect will be an increasingly important issue (2 level of large caches is likely of help)
- For databases
 - select volumes for which caching will benefit (not archive redo logs for example)
 - set "flexscale.lopri_blocks on"

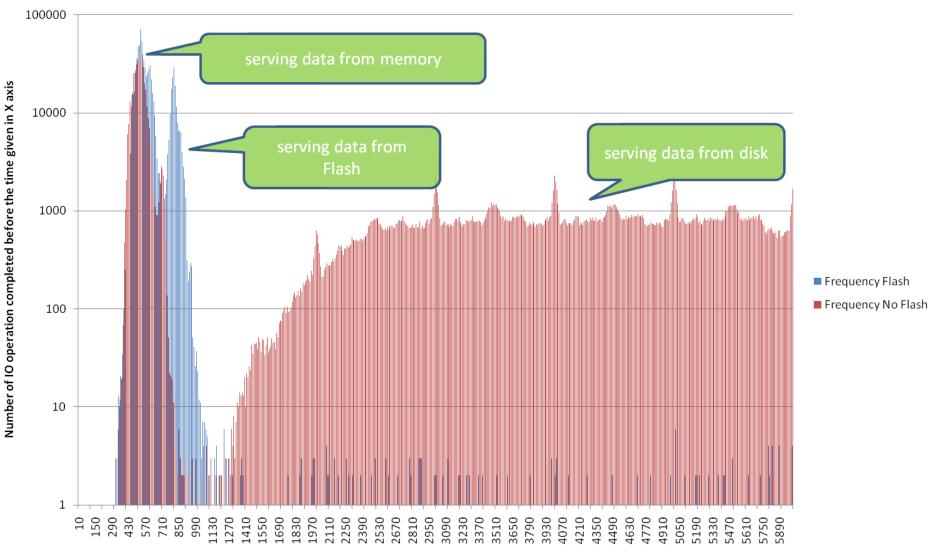


IOPS and flash cache

Histogram of percentage of IO completion time

CERN

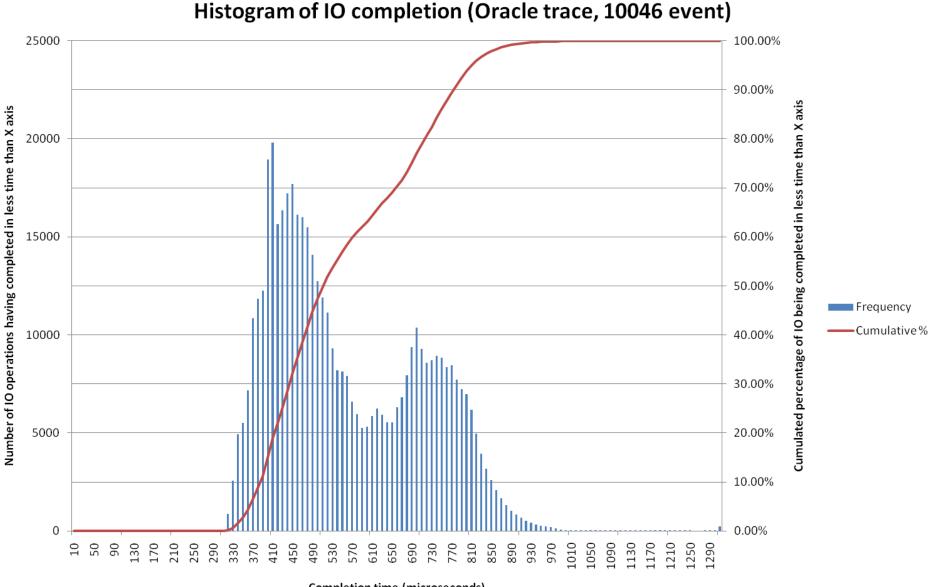
Department


Completion time (microseconds)

IOPS and flash cache

Distribution of IO operations completion time

CERN

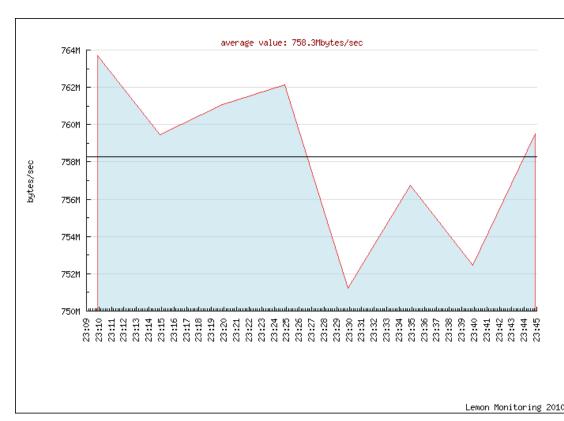

Department

Completion time (microseconds)

IOPS and flash cache

CERN**IT** Department

Completion time (microseconds)


- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache

- 10GbE

- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

Scalability: bandwidth 10GbE

- 10GbE is becoming mainstream (cards, switches) TX: 289Mb (/s), RX: 6.24Gb (/s) TOTAL:6.52Gb (/s) (19% CPU)
- CPU usage
- NAS: 3140 cluster
- Host: dual E5410 with Intel 82598EB 10-Gigabit card

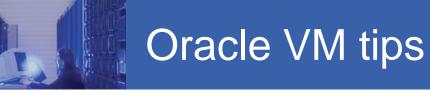
- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

- One of the nicest features of Oracle11g
 - Enables using multiple paths to storage
- Makes Oracle on NFS from simple to extremely simple
 - Just a symlink in \$ORACLE_HOME/lib
 - List of paths to be declared

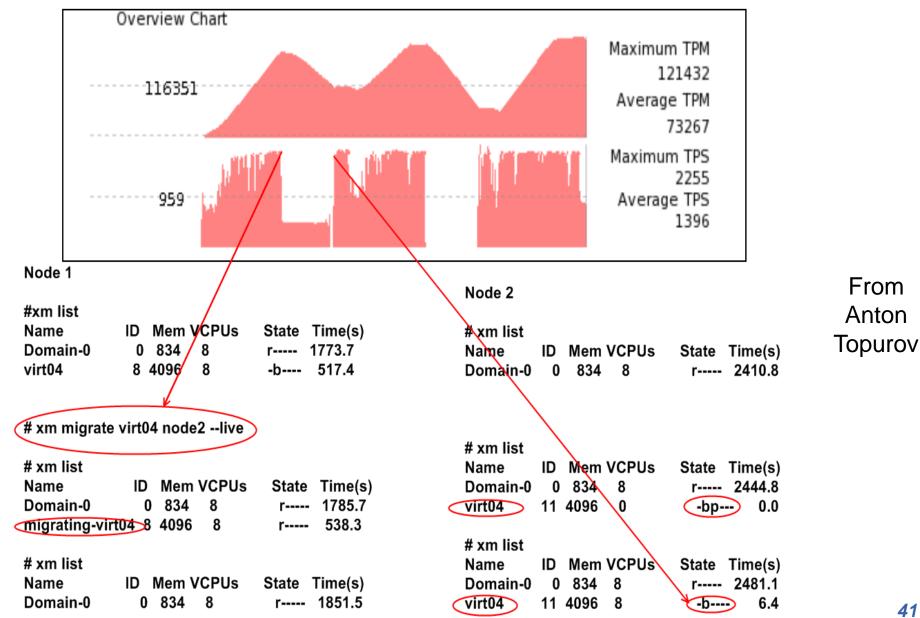
```
Oracle instance running with ODM: Oracle Direct NFS ODM Library Version 2.0 ...
Direct NFS: channel id [0] path [dbnasg301] to filer [dbnasg301] via local [] is UP
Direct NFS: channel id [1] path [dbnasg301] to filer [dbnasg301] via local [] is UP
```

- Promising with NFS 4.1/pNFS
 - Scalability, "on demand"
 - Move of volumes, upgrades

- Have reallocate enabled by default (backup!) and filesystem_options = setall (async+directIO)
- NetApp NVRAM makes writing fast (see PVSS testcase)
 - Key for OLTP commit time
- DataOntap 8 enables large aggregates (40TB on 3140, up to 100TB on 61xx)
 - Gain in management
 - Gain in performance
- NFS or TCP/IP overhead, CPU usage (large transfer): network roundtrip and disk access
- Scales much better than what many think


Oracle DB/NetApp tips

- CERN**IT** Department
- Use NFS/DNFS (11.1 see Note 840059.1 /11.2)
 - Resilient to errors
 - TCP/IP and NFS extremely stable and mature
 - Extremely simple, good productivity per DBA
 - Use different volumes for log files, archive redo logs and data files
 - Have several copies of control files and OCR on different aggregate / filer (at least different aggregates)
- Split storage network
 - Cost for the switches is not very high
 - Use MTU = 9000 on the storage network


- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

- CERN**IT** Department
- NFS is extremely well suited for virtualisation
- Mount database volumes from the guest
 - Separation OS/data
 - Scalability (add mount points if necessary)
 - Same as physical
 - can easily migrate from "physical" to/from "virtual"
- Disk access might more expensive than local
 - Limit swap (do you need any swap?)
 - Check for file inexistence (iAS SSL semaphores)
 - 5.4. 10⁻⁶ second per "stat" system call on local filesystem
 - 18.1.10⁻⁶ second per "stat" system call on NFS mounted filesystem

Oracle VM live migration

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

Simplicity and availability

- Simplicity
 - Shared log files for the database (tail alertSID*.log)
 - No need for ASM, day to day simpler operations
 - Operations under stress made easier (copy control file with RMAN)
 - Rename a file in ASM 10.2?
 - Install a 2 nodes RAC with NFS or ASM (multi-pathing, raw on 10.2, FC drivers, ASM ...)

- Reliability
 - Do a snapshot before upgrade
 - Simplicity is key for reliability (even experienced DBA do basic errors linked with complex storage)
 - More robust than ASM "normal" redundancy
 - RAID-DP (double parity)

- Disks are larger and larger
 - speed stay ~constant -> issue with speed
 - bit error rate stay constant (10⁻¹⁴ to 10⁻¹⁶), increasing issue with availability
- With x as the size and α the "bit error rate"

$$P_{failure}(mirror) = 1 - (1 - \alpha)^x$$

- $P_{failure}(raid5, n+1) = 1 (1 \alpha)^{nx}$
- $P_{failure}(raid6, n+2) = ((1-\alpha)^n + n\alpha(1-\alpha)^{n-1})^x$
- $P_{failure}(triplemirror) = 1 (1 \alpha^2)^x$

Disks, redundancy comparison (2/2)

	5	14	28		5	14	28
1 TB SATA desktop			Bit error rate 10^-14	1TB SATA enterprise			Bit error rate 10^-15
RAID 1		7.68E-02		RAID 1	(7.96E-03	
RAID 5 (n+1)	3.29E-01	6.73E-01	8.93E-01	RAID 5 (n+1)	3.92E-02	1.06E-01	2.01E-01
~RAID 6 (n+2)	1.60E-14	1.46E-13	6.05E-13	~RAID 6 (n+2)	1.60E-16	1.46E-15	6.05E-15
~triple mirror	8.00E-16	8.00E-16	8.00E-16	~triple mirror	8.00E-18	8.00E-18	8.00E-18
450GB FC			Bit error rate 10^-16	10TB SATA enterprise			Bit error rate 10^-15
RAID 1		4.00E-04		RAID 1		7.68E-02	
RAID 5 (n+1)	2.00E-03	5.58E-03	1.11E-02	RAID 5 (n+1)	3.29E-01	6.73E-01	8.93E-01
~RAID 6 (n+2)	7.20E-19	6.55E-18	2.72E-17	~RAID 6 (n+2)	1.60E-15	1.46E-14	6.05E-14
~triple mirror	3.60E-20	3.60E-20	3.60E-20	~triple mirror	8E-17	8E-17	8E-17

CERN

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150 000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions

NetApp platform benefits

- Well supported (recommendations at NetApp NOW and Oracle MOS)
- Well managed (AutoSupport, new DOT releases include firmware/...)
- Very good scalability in performance and size with Data Ontap 8
- Impressive stability, cluster failover "just works", non-disruptive upgrade (all upgrades since 2006)
- Checksum, scrubbing, multipathing...
- RAID-DP double parity (always more important)
- Snapshots and associated feature

 CERN has standardised part of its database infrastructure (all for accelerators, mass storage and administrative applications) on NetApp/NFS

Conclusion

- DataOntap 8 (7 mode) provides scalability, ease of maintenance and management
- Our experience is that Oracle/NFS on NetApp is a rock-solid combination, providing performance and scalability
- Scalability with 64bits aggregate, 10Gb/s Ethernet, Direct NFS, flash caching
- Oracle VM on NFS is simple, extensible and stable

Q&A

session S319046

Steve Daniel, <u>Steve.Daniel@netapp.com</u> Eric Grancher, <u>Eric.Grancher@cern.ch</u>

- Required Diagnostic for Direct NFS Issues and Recommended Patches for 11.1.0.7 Version <u>https://supporthtml.oracle.com/ep/faces/secure/km/DocumentDisplay.jspx?id=840059.1&h =Y
 </u>
- Oracle : The Database Management System For LEP
 <u>http://cdsweb.cern.ch/record/443114</u>
- Oracle 11g Release 1 Performance: Protocol Comparison on Red Hat Enterprise Linux 5 Update 1 <u>http://media.netapp.com/documents/tr-</u> <u>3700.pdf</u>