
CHEP 2010
How to harness the performance potentialHow to harness the performance potential

of current Multi-Core CPUs and GPUs

Sverre Jarp

CERN
openlab

IT Dept.

CERNCERN

Taipei, Monday 18 October 2010

CHEP 2010, Taipei

ContentsContents

 The hardware situationThe hardware situation

 Current softwareCurrent software

Soft are protot pesSoft are protot pes Software prototypesSoftware prototypes

 Some recommendationsSome recommendations

 ConclusionsConclusions

Sverre Jarp - CERN2

CHEP 2010, Taipei

TheThe
h dhardware
situationsituation

Sverre Jarp - CERN3

CHEP 2010, Taipei

In the days of the PentiumIn the days of the Pentium

 Life was really simple:Life was really simple:

B i ll t di i
Pipeline

 Basically two dimensions
 The frequency of the pipeline

Th b f b
Superscalar

 The number of boxes

 The semiconductor industry
increased the frequency

 We acquired the right number of Nodes
 We acquired the right number of

(single-socket) boxes

Sverre Jarp - CERN4

Sockets

CHEP 2010, Taipei

Today:
Seven dimensions of multiplicative performanceSeven dimensions of multiplicative performance
 First three dimensions:
 Pipelined execution units
 Large superscalar design

Pipelining

 Large superscalar design
 Wide vector width (SIMD)

Superscalar

 Next dimension is a “pseudo”
dimension: Vector width

Superscalar

dimension:
 Hardware multithreading

Nodes

Multithreading

 Last three dimensions:
 Multiple coresp
 Multiple sockets
 Multiple compute nodes

Sockets

Sverre Jarp - CERN5

 Multiple compute nodes

SIMD = Single Instruction Multiple Data

Multicore

CHEP 2010, Taipei

Moore’s lawMoore s law

 We continue to double the number of We continue to double the number of
transistors every other year
 The consequences The consequences
 CPUs

Si l M lti M Single core Multicore Manycore
 Vectors

H d th di Hardware threading

 GPUs
 Huge number of FMA units

 Today we commonly acquire chips
with 1’000’000’000 transistors!

Sverre Jarp - CERN6

with 1’000’000’000 transistors!
Adapted from WikipediaFrom Wikipedia

CHEP 2010, Taipei

Real consequence of Moore’s lawReal consequence of Moore s law

 We are being “drowned” in transistors: We are being “drowned” in transistors:

 More (and more complex) execution units
 Hundreds of new instructions

 Longer SIMD vectors
 Large number of coresLarge number of cores
 More hardware threading

 In order to profit we need to “think parallel”p p

 Data parallelism

Sverre Jarp - CERN7
 Task parallelism

CHEP 2010, Taipei

Four floating-point data flavours (256b)Four floating point data flavours (256b)
 Longer vectors:Longer vectors:

 AVX (Advanced Vector eXtension) is coming:
 As of next year, vectors will be 256 bits in length
 Intel’s “Sandy Bridge” first (others are coming, also from AMD)

Si l i i E0 Single precision
 Scalar single (SS)
 Packed single (PS)

- - - E0----

E3 E2 E1 E0E4E5E6E7 Packed single (PS)

 Double precision

E3 E2 E1 E0E4E5E6E7

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

- E0--

Packed Double (PD)
E1 E0E2E3

Without vectors in our software we will use

Sverre Jarp - CERN8

Without vectors in our software, we will use
1/4 or 1/8 of the available execution width

CHEP 2010, Taipei

The move to many-core systemsThe move to many core systems
 Examples of “CPU slots”: Sockets * Cores * HW-threads Examples of CPU slots : Sockets Cores HW-threads

 Basically what you observe in “cat /proc/cpuinfo”

 Conservative: Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual socket Intel six core (Westmere): 2 * 6 * 2 = 24 Dual-socket Intel six-core (Westmere): 2 6 2 = 24

 Aggressive:
 Quad-socket AMD Magny-Cours (12-core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 = 64

 In the near future: Hundreds of CPU slots !
 Quad-socket Sun Niagara (T3) processors w/16 cores and 8Quad socket Sun Niagara (T3) processors w/16 cores and 8

threads (each): 4 * 16 * 8 = 512

 And by the time new software is ready: Thousands !!

Sverre Jarp - CERN9

 And, by the time new software is ready: Thousands !!

CHEP 2010, Taipei

Accelerators (1): Intel MICAccelerators (1): Intel MIC
 Many Integrated Core architecture:
 Announced at ISC10 (June 2010)
 Based on the x86 architecture, 22nm (in 2012?)Based on the x86 architecture, 22nm (in 2012?)
 Many-core (> 50 cores) + 4-way multithreaded + 512-bit

vector unit
 Limited memory: Few Gigabytes

In Order, 4
threads, SIMD-16

le
r

sp
la

y
er

fa
ce

le
r

Fi
xe

d
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$
In Order, 4

threads, SIMD-16

I$ D$

or
y

C
on

tro
llD
is

In
te

or
y

C
on

tro
ll F

Fu

L2 Cache

M
em

o

S
ys

te
m

In
te

rfa
ce

M
em

o

Te
xt

ur
e

Lo
gi

c

In Order, 4
threads, SIMD-16

I$ D$
In Order, 4

threads, SIMD-16

I$ D$

Sverre Jarp - CERN10

I$ D$ I$ D$

CHEP 2010, Taipei

Accelerators (2): Nvidia Fermi GPUAccelerators (2): Nvidia Fermi GPU

 Streaming Multiprocessing SchedulerScheduler SchedulerScheduler

Instruction CacheInstruction Cache

 Streaming Multiprocessing
(SM) Architecture

Register FileRegister File

DispatchDispatch DispatchDispatch

CoreCore CoreCore CoreCore CoreCore

 32 “CUDA cores” per SM (512 total)

 Peak single precision floating point

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCoreg p g p
performance (at 1.15 GHz”:
 Above 1 Tflop

CoreCore CoreCore CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

 Double-precision: 50%

D l Th d S h d l

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

 Dual Thread Scheduler

 64 KB of RAM for shared memory and

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K C fi bl64K C fi bl

Lots of
interest in theL1 cache (configurable)

 A few Gigabytes of main memory

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

interest in the
HEP on-line
community

Sverre Jarp - CERN11

g y y

Adapted from Nvidia

y

CHEP 2010, Taipei

CurrentCurrent
softwaresoftware

Sverre Jarp - CERN12

CHEP 2010, Taipei

SW performance: A complicated story!SW performance: A complicated story!

 We start with a concrete real life problem to solve We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matterthrough matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high level code to A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture andA sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases e ha e little cl e as to the efficienc of this

Sverre Jarp - CERN13

 In most cases, we have little clue as to the efficiency of this
transformation process

CHEP 2010, Taipei

We need forward scalabilityy
 Not only should a program be written in such a way that it

extracts maximum performance from today’s hardwareextracts maximum performance from today s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors would automatically be put to good usevectors, would automatically be put to good use

 Scaling would be as expected:g p
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percentg y j p

 We cannot afford to “rewrite” our software for every

Sverre Jarp - CERN14

hardware change!

CHEP 2010, Taipei

Concurrency in HEPConcurrency in HEP
 We are “blessed” with lots of it:

E ti t Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees branches)I/O streams (ROOT trees, branches)
 Buffer manipulations (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But fine grained parallelism is not well exposed in
Sverre Jarp - CERN15

 But, fine-grained parallelism is not well exposed in
today’s software frameworks

CHEP 2010, Taipei

HEP programming paradigmHEP programming paradigm
 Event-level parallelism has been used for decades Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with six-core processors needs 24 – 36 GB
(or more)
T d SMT i ft it h d ff i th BIOS (!) Today, SMT is often switched off in the BIOS (!)

 We must not let memory limitations decide our ability to

Sverre Jarp - CERN16

 We must not let memory limitations decide our ability to
compute!

CHEP 2010, Taipei

What are the multi-core options?What are the multi core options?
 There is a discussion in the community about the best

way(s) forward:way(s) forward:

1) Stay with event-level parallelism (and entirely1) Stay with event level parallelism (and entirely
independent processes)
 Assume that the necessary memory remains affordabley y
 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:2) Rely on forking:
 Start the first process; Run through the first “event”
 Fork N other processes Fork N other processes
 Rely on the OS to do “copy on write”, in case pages are modified

3) M t f ll lti th d d di3) Move to a fully multi-threaded paradigm
 Still using coarse-grained (event-level) parallelism

B h f i d l i

Sverre Jarp - CERN17

– But, watch out for increased complexity

CHEP 2010, Taipei

Achieving an efficient memory footprint
Core 0 Core 1 Core 2 Core 3

Achieving an efficient memory footprint
 As follows:

Event
specific

Event-
specific

Event-
specific

Event-
specific

Global

specific
data

specific
data

specific
data

specific
data

Physics

data

y
processes Today:

Multithreaded
Slide shown
in my talk at

Magnetic
field

Geant4 prototype
developed at
Northeastern

y
CHEP2007

Reentrant
code

University

Sverre Jarp - CERN18

CHEP 2010, Taipei

PromisingPromising
softwaresoftware
examplesexamples

Sverre Jarp - CERN19

CHEP 2010, Taipei

Examples of parallelism:
CBM/ALICE track fitting

 Extracted from the High
Level Trigger (HLT) Code

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

gg ()
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic fieldmagnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systemssystems
 Using vectors instead of

scalars

Sverre Jarp - CERN20

scalars
“Compressed Baryonic Matter”

CHEP 2010, Taipei

CBM/ALICE track fittingCBM/ALICE track fitting

 Details of the re optimization: Details of the re-optimization:
 Step 1: use SSE vectors instead of scalars

O t l di ll l h f d t t Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
P4 F32 4 k d i l l ith l d d t– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return mm add ps(a,b); }_ _ _p (,); }

 Result: 4x speed increase from x87 scalar to packed SSE

Sverre Jarp - CERN21

(single precision)

CHEP 2010, Taipei

Examples of parallelism:
CBM track fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

Sverre Jarp - CERN22 From H.Bjerke/CERN openlab, I.Kisel/GSI

CHEP 2010, Taipei

Examples of parallelism: GEANT4p p
 Initially: ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

D b NEU PhD t d t Xi D U i F llCMS d T tEM Done by NEU PhD student Xin Dong: Using FullCMS and TestEM
examples
 Required change of lots of existing classes (10% of 1 MLOC): Required change of lots of existing classes (10% of 1 MLOC):

– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.Preprocessor used for automating the work.

 Major reimplementation:
– Physics tables, geometry, stepping, etc.y g y pp g

 Additional memory: Only 25 MB/thread (!)

Sverre Jarp - CERN23

Dong, Cooperman, Apostolakis: “Multithreaded Geant4: Semi-Automatic
Transformation into Scalable Thread-Parallel Software”, Europar 2010

CHEP 2010, Taipei

Multithreaded GEANT4 benchmarkMultithreaded GEANT4 benchmark
 Excellent scaling on 32 (real) cores

With 4 k t With a 4-socket server

Sverre Jarp - CERN24 From A.Nowak/CERN openlab

CHEP 2010, Taipei

Example: ROOT minimization and fittingExample: ROOT minimization and fitting
 Minuit parallelization is independent of user codeu t pa a e at o s depe de t o use code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

complex
BaBar fitting
provided by p y
A. Lazzaro
and
parallelized p
using MPI

 In principle, we can have combination of:
 parallelization via multi-threading in a multi-core CPU

Sverre Jarp - CERN25

 multiple processes in a distributed computing environment

CHEP 2010, Taipei

AthenaMP: event level parallelism
$> Athena.py --nprocs=4 -c EvtMax=100 Jobo.py

AthenaMP: event level parallelism
py p py

co

WORKER 0:

Random event order

output-
tmp
files

Maximize the
shared

memory!

re-0

WORKER 0:
Events: [0, 4, 5,…]

c

firstEvnts
output
tmp
files

i it

memory! core-1

WORKER 1:
Events: [1, 6, 9,…]

endOS-fork merge
Output
tmp
files

init core-2

WORKER 2:
Events: [2, 8, 10,…]

Input
Files Output

Files

files

Output
tmp

core WORKER 3:
E t [3 7 11] Filestmp

files

SERIAL SERIAL:

-3 Events: [3, 7, 11,…]

Sverre Jarp - CERN26

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
parent-merge and finalize

26
From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

Memory footprint of AthenaMPMemory footprint of AthenaMP

From
~1 5 GB1.5 GB

To
G~1.0 GB

Sverre Jarp - CERN27
27

AthenaMP ~0.5 GB physical memory saved per process
From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

Scalability plots for Athena MPScalability plots for Athena MP

AthenaMP

 Surprisingly good scaling with SMT on server
with 8 physical cores (16 logical)

Sverre Jarp - CERN28
28

From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

R d iRecommendations
(based on observations in openlab)

Sverre Jarp - CERN29

CHEP 2010, Taipei

ShortlistShortlist

1) Broad Programming Talent

2) Holistic View with a clear split:
P t t C tPrepare to compute – Compute

3) C t ll d M U3) Controlled Memory Usage

4) C f P f4) C++ for Performance

5) B t f b d T l5) Best-of-breed Tools

Sverre Jarp - CERN30

CHEP 2010, Taipei

Broad Programming TalentBroad Programming Talent
 In order to cover as many layers as possible

P blProblem
Algorithms, abstractionSolution

i li t Source program
Compiled code libraries

specialists

System architecture
Compiled code, libraries

Technology
Instruction set
-architecture

specialists

Circuits

Electrons

Sverre Jarp - CERN31

Electrons
Adapted from Y.Patt, U-Austin

CHEP 2010, Taipei

Performance guidance (cont’d)g ()
 Take the whole program and its execution behaviour

into accountinto account
 Get yourself a global overview as soon as possible

Via early prototypes Via early prototypes
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute Heavy compute Prepare to compute
 Do the heavy computation

Wh ft th il bl ll li
PostPre

 Where you go after the available parallelism

 Post-processing

 Consider exploiting the entire server
U i ffi it h d li

Sverre Jarp - CERN32

 Using affinity scheduling

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)
 Control memory usage (both in a multi-core and an

accelerator environment)accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !

Optimi e the cache hierarch Optimize the cache hierarchy
 NUMA: The “new” blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

Sverre Jarp - CERN33

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS

CHEP 2010, Taipei

C++ parallelization supportC++ parallelization support
 Large selection of tools (inside the Large selection of tools (inside the

compiler or as additions):
 Native: pthreads/Windows threadsNative: pthreads/Windows threads
 Forthcoming C++ standard: std::thread

O MP OpenMP
 Intel Array Building Blocks (beta version

from Intel; integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 TOP-C (from NE University)
 MPI (from multiple providers) etc MPI (from multiple providers), etc.
 . . .

We must also keep a close eye on

Sverre Jarp - CERN34

We must also keep a close eye on
OpenCL (www.khronos.org/opencl)

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)
 Control memory usage (both in a multi-core and an

accelerator environment)accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !

Optimi e the cache hierarch Optimize the cache hierarchy
 NUMA: The new blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

Sverre Jarp - CERN35

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS

CHEP 2010, Taipei

Organization of data: AoS vs SoAOrganization of data: AoS vs SoA

I l il In general, compilers
and hardware prefer
the latter!the latter!

 Arrays of Structures:

SP1
X Y Z

SP2
X Y Z

SP3
X Y Z

SP4
X Y Z

SP5
X Y Z

SP6
X Y ZX,Y, Z X,Y, Z X,Y, Z X,Y, Z X,Y, Z X,Y, Z

 Structure of Arrays:

Spacepoints X X X X X XSpacepoints

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

Sverre Jarp - CERN36
Z1 Z2 Z3 Z4 Z5 Z6

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)

 Surround yourself with good tools:
 Compilers

Lib i Libraries
 Profilers Profilers
 Debuggersgg
 Thread checkers
 Thread profilers

Sverre Jarp - CERN37

CHEP 2010, Taipei

Lots of related presentations during this
CHEP conference (Sorry if I missed some!)
 Evaluating the Scalability of HEP Software and Multi-core Hardware [77]g y []

 ng: What Next-Gen Languages Can Teach Us About HENP Frameworks in the Manycore Era [114]

 Multicore-aware Applications in CMS [115]pp []

 Parallelizing Atlas Reconstruction and Simulation: Issues and Optimization Solutions for Scaling
on Multi- and Many-CPU Platforms [116]

 Multi-threaded Event Reconstruction with JANA [117]

 Track Finding in a High-Rate Time Projection Chamber Using GPUs [163]

 Fast Parallel Tracking Algorithm for the Muon System and Transition Radiation Detector of the
CBM Experiment at FAIR [164]

 Real Time Pixel Data Reduction with GPUs And Other HEP GPU Applications [272]pp []

 Algorithm Acceleration from GPGPUs for the ATLAS Upgrade [273]

 Maximum Likelihood Fits on Graphics Processing Units [297]

 Partial Wave Analysis on Graphics Processing Units [298]

 Many-Core Scalability of the Online Event Reconstruction in the CBM Experiment [299]

Sverre Jarp - CERN38

 Adapting Event Reconstruction Software to Many-Core Computer Architectures [300]

 BOF 3 – GPUs: High Performance Co-Processors

CHEP 2010, Taipei

Concluding remarksConcluding remarks
 The hardware is getting more and more powerful
 But also more and more complex!

 Watch out for the transistor “tsunami”! Watch out for the transistor tsunami !

 In most HEP programming domains event-levelIn most HEP programming domains event level
processing will and should continue to dominate

W ill h f f d i l i l We can still move the software forward in multiple ways

 But it should be able to profit from ALL the availableBut it should be able to profit from ALL the available
hardware
 Accelerators with limited memory, as well asAccelerators with limited memory, as well as
 Conventional servers

Sverre Jarp - CERN39
 Holy grail: Forward scalability

CHEP 2010, Taipei

Thank you!Thank you!

Sverre Jarp - CERN40

CHEP 2010, Taipei

“Intel platform 2015” (and beyond)Intel platform 2015 (and beyond)
 Today’s silicon processes:Today s silicon processes:

 45 nm
 32 nm

We are here

32 nm

 On the roadmap:
22 (2011/12) 22 nm (2011/12)

 16 nm (2013/14)

 In research:

LHC data

 11 nm (2015/16)
 8 nm (2017/18)

S. S. BorkarBorkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

()
– Source: Bill Camp/Intel HPC

 Each generation will push the core count:

Sverre Jarp - CERN41

 Each generation will push the core count:
 We are already in the many-core era (whether we like it or not) !

CHEP 2010, Taipei

HEP and vectorsHEP and vectors

 Too little common ground
 And, practically all attempts in the past failed!

 w/CRAY, IBM 3090-Vector Facility, etc.

F ti t ti d t l From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

 See later

 Interesting development from ALICE (Matthias Kretz): Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes)

htt // ki i h id lb d / k t /V / http://www.kip.uni-heidelberg.de/~mkretz/Vc/

 Other examples: Use of STL vectors; small matrices

Sverre Jarp - CERN42

 Other examples: Use of STL vectors; small matrices

