
CHEP 2010
How to harness the performance potentialHow to harness the performance potential

of current Multi-Core CPUs and GPUs

Sverre Jarp

CERN
openlab

IT Dept.

CERNCERN

Taipei, Monday 18 October 2010

CHEP 2010, Taipei

ContentsContents

 The hardware situationThe hardware situation

 Current softwareCurrent software

Soft are protot pesSoft are protot pes Software prototypesSoftware prototypes

 Some recommendationsSome recommendations

 ConclusionsConclusions

Sverre Jarp - CERN2

CHEP 2010, Taipei

TheThe
h dhardware
situationsituation

Sverre Jarp - CERN3

CHEP 2010, Taipei

In the days of the PentiumIn the days of the Pentium

 Life was really simple:Life was really simple:

B i ll t di i
Pipeline

 Basically two dimensions
 The frequency of the pipeline

Th b f b
Superscalar

 The number of boxes

 The semiconductor industry
increased the frequency

 We acquired the right number of Nodes
 We acquired the right number of

(single-socket) boxes

Sverre Jarp - CERN4

Sockets

CHEP 2010, Taipei

Today:
Seven dimensions of multiplicative performanceSeven dimensions of multiplicative performance
 First three dimensions:
 Pipelined execution units
 Large superscalar design

Pipelining

 Large superscalar design
 Wide vector width (SIMD)

Superscalar

 Next dimension is a “pseudo”
dimension: Vector width

Superscalar

dimension:
 Hardware multithreading

Nodes

Multithreading

 Last three dimensions:
 Multiple coresp
 Multiple sockets
 Multiple compute nodes

Sockets

Sverre Jarp - CERN5

 Multiple compute nodes

SIMD = Single Instruction Multiple Data

Multicore

CHEP 2010, Taipei

Moore’s lawMoore s law

 We continue to double the number of We continue to double the number of
transistors every other year
 The consequences The consequences
 CPUs

Si l  M lti  M Single core  Multicore  Manycore
 Vectors

H d th di Hardware threading

 GPUs
 Huge number of FMA units

 Today we commonly acquire chips
with 1’000’000’000 transistors!

Sverre Jarp - CERN6

with 1’000’000’000 transistors!
Adapted from WikipediaFrom Wikipedia

CHEP 2010, Taipei

Real consequence of Moore’s lawReal consequence of Moore s law

 We are being “drowned” in transistors: We are being “drowned” in transistors:

 More (and more complex) execution units
 Hundreds of new instructions

 Longer SIMD vectors
 Large number of coresLarge number of cores
 More hardware threading

 In order to profit we need to “think parallel”p p

 Data parallelism

Sverre Jarp - CERN7
 Task parallelism

CHEP 2010, Taipei

Four floating-point data flavours (256b)Four floating point data flavours (256b)
 Longer vectors:Longer vectors:

 AVX (Advanced Vector eXtension) is coming:
 As of next year, vectors will be 256 bits in length
 Intel’s “Sandy Bridge” first (others are coming, also from AMD)

Si l i i E0 Single precision
 Scalar single (SS)
 Packed single (PS)

- - - E0----

E3 E2 E1 E0E4E5E6E7 Packed single (PS)

 Double precision

E3 E2 E1 E0E4E5E6E7

 Double precision
 Scalar Double (SD)
 Packed Double (PD)

- E0--

Packed Double (PD)
E1 E0E2E3

Without vectors in our software we will use

Sverre Jarp - CERN8

Without vectors in our software, we will use
1/4 or 1/8 of the available execution width

CHEP 2010, Taipei

The move to many-core systemsThe move to many core systems
 Examples of “CPU slots”: Sockets * Cores * HW-threads Examples of CPU slots : Sockets Cores HW-threads

 Basically what you observe in “cat /proc/cpuinfo”

 Conservative: Conservative:
 Dual-socket AMD six-core (Istanbul): 2 * 6 * 1 = 12
 Dual socket Intel six core (Westmere): 2 * 6 * 2 = 24 Dual-socket Intel six-core (Westmere): 2 6 2 = 24

 Aggressive:
 Quad-socket AMD Magny-Cours (12-core) 4 * 12 * 1 = 48
 Quad-socket Nehalem-EX “octo-core”: 4 * 8 * 2 = 64

 In the near future: Hundreds of CPU slots !
 Quad-socket Sun Niagara (T3) processors w/16 cores and 8Quad socket Sun Niagara (T3) processors w/16 cores and 8

threads (each): 4 * 16 * 8 = 512

 And by the time new software is ready: Thousands !!

Sverre Jarp - CERN9

 And, by the time new software is ready: Thousands !!

CHEP 2010, Taipei

Accelerators (1): Intel MICAccelerators (1): Intel MIC
 Many Integrated Core architecture:
 Announced at ISC10 (June 2010)
 Based on the x86 architecture, 22nm (in 2012?)Based on the x86 architecture, 22nm (in 2012?)
 Many-core (> 50 cores) + 4-way multithreaded + 512-bit

vector unit
 Limited memory: Few Gigabytes

In Order, 4
threads, SIMD-16

le
r

sp
la

y
er

fa
ce

le
r

Fi
xe

d
nc

tio
n

In Order, 4
threads, SIMD-16

I$ D$
In Order, 4

threads, SIMD-16

I$ D$



or
y

C
on

tro
llD
is

In
te

or
y

C
on

tro
ll F

Fu

L2 Cache

M
em

o

S
ys

te
m

In
te

rfa
ce

M
em

o

Te
xt

ur
e

Lo
gi

c

In Order, 4
threads, SIMD-16

I$ D$
In Order, 4

threads, SIMD-16

I$ D$

Sverre Jarp - CERN10

I$ D$ I$ D$

CHEP 2010, Taipei

Accelerators (2): Nvidia Fermi GPUAccelerators (2): Nvidia Fermi GPU

 Streaming Multiprocessing SchedulerScheduler SchedulerScheduler

Instruction CacheInstruction Cache

 Streaming Multiprocessing
(SM) Architecture

Register FileRegister File

DispatchDispatch DispatchDispatch

CoreCore CoreCore CoreCore CoreCore

 32 “CUDA cores” per SM (512 total)

 Peak single precision floating point

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCoreg p g p
performance (at 1.15 GHz”:
 Above 1 Tflop

CoreCore CoreCore CoreCore CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

 Double-precision: 50%

D l Th d S h d l

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

CoreCore

 Dual Thread Scheduler

 64 KB of RAM for shared memory and

Load/Store Units x 16
Special Func Units x 4

Interconnect NetworkInterconnect Network

64K C fi bl64K C fi bl

Lots of
interest in theL1 cache (configurable)

 A few Gigabytes of main memory

64K Configurable64K Configurable
Cache/Shared Cache/Shared MemMem

Uniform CacheUniform Cache

interest in the
HEP on-line
community

Sverre Jarp - CERN11

g y y

Adapted from Nvidia

y

CHEP 2010, Taipei

CurrentCurrent
softwaresoftware

Sverre Jarp - CERN12

CHEP 2010, Taipei

SW performance: A complicated story!SW performance: A complicated story!

 We start with a concrete real life problem to solve We start with a concrete, real-life problem to solve
 For instance, simulate the passage of elementary particles

through matterthrough matter

 We write programs in high level languages
 C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high level code to A compiler (or an interpreter) transforms the high-level code to
machine-level code

 We link in external libraries

 A sophisticated processor with a complex architecture andA sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases e ha e little cl e as to the efficienc of this

Sverre Jarp - CERN13

 In most cases, we have little clue as to the efficiency of this
transformation process

CHEP 2010, Taipei

We need forward scalabilityy
 Not only should a program be written in such a way that it

extracts maximum performance from today’s hardwareextracts maximum performance from today s hardware

 On future processors, performance should scale
automatically
 In the worst case, one would have to recompile or relink

 Additional CPU/GPU hardware, be it cores/threads or
vectors would automatically be put to good usevectors, would automatically be put to good use

 Scaling would be as expected:g p
 If the number of cores (or the vector size) doubled:

 Scaling would be close to 2x, but certainly not just a few percentg y j p

 We cannot afford to “rewrite” our software for every

Sverre Jarp - CERN14

hardware change!

CHEP 2010, Taipei

Concurrency in HEPConcurrency in HEP
 We are “blessed” with lots of it:

E ti t Entire events
 Particles, hits, tracks and vertices
 Physics processes
 I/O streams (ROOT trees branches)I/O streams (ROOT trees, branches)
 Buffer manipulations (also data compaction, etc.)
 Fitting variables
 Partial sums, partial histograms
 and many others …..

 Usable for both data and task parallelism!

 But fine grained parallelism is not well exposed in
Sverre Jarp - CERN15

 But, fine-grained parallelism is not well exposed in
today’s software frameworks

CHEP 2010, Taipei

HEP programming paradigmHEP programming paradigm
 Event-level parallelism has been used for decades Event-level parallelism has been used for decades

 And, we should not lose this advantage:
 Large jobs can be split into N efficient “chunks”, each

responsible for processing M events
 Has been our “forward scalability”

 Disadvantage with current approach:
 Memory must be made available to each process

 A dual-socket server with six-core processors needs 24 – 36 GB
(or more)
T d SMT i ft it h d ff i th BIOS (!) Today, SMT is often switched off in the BIOS (!)

 We must not let memory limitations decide our ability to

Sverre Jarp - CERN16

 We must not let memory limitations decide our ability to
compute!

CHEP 2010, Taipei

What are the multi-core options?What are the multi core options?
 There is a discussion in the community about the best

way(s) forward:way(s) forward:

1) Stay with event-level parallelism (and entirely1) Stay with event level parallelism (and entirely
independent processes)
 Assume that the necessary memory remains affordabley y
 Or rely on tools, such as KSM, to help share pages

2) Rely on forking:2) Rely on forking:
 Start the first process; Run through the first “event”
 Fork N other processes Fork N other processes
 Rely on the OS to do “copy on write”, in case pages are modified

3) M t f ll lti th d d di3) Move to a fully multi-threaded paradigm
 Still using coarse-grained (event-level) parallelism

B h f i d l i

Sverre Jarp - CERN17

– But, watch out for increased complexity

CHEP 2010, Taipei

Achieving an efficient memory footprint
Core 0 Core 1 Core 2 Core 3

Achieving an efficient memory footprint
 As follows:

Event
specific

Event-
specific

Event-
specific

Event-
specific

Global

specific
data

specific
data

specific
data

specific
data

Physics

data

y
processes Today:

Multithreaded
Slide shown
in my talk at

Magnetic
field

Geant4 prototype
developed at
Northeastern

y
CHEP2007

Reentrant
code

University

Sverre Jarp - CERN18

CHEP 2010, Taipei

PromisingPromising
softwaresoftware
examplesexamples

Sverre Jarp - CERN19

CHEP 2010, Taipei

Examples of parallelism:
CBM/ALICE track fitting

 Extracted from the High
Level Trigger (HLT) Code

I.Kisel/GSI: “Fast SIMDized Kalman filter based track fit”
http://www-linux.gsi.de/~ikisel/17_CPC_178_2008.pdf

gg ()
 Originally ported to IBM’s

Cell processor

 Tracing particles in a
magnetic fieldmagnetic field
 Embarrassingly parallel

code

 Re-optimization on x86-64
systemssystems
 Using vectors instead of

scalars

Sverre Jarp - CERN20

scalars
“Compressed Baryonic Matter”

CHEP 2010, Taipei

CBM/ALICE track fittingCBM/ALICE track fitting

 Details of the re optimization: Details of the re-optimization:
 Step 1: use SSE vectors instead of scalars

O t l di ll l h f d t t Operator overloading allows seamless change of data types
 Intrinsics (from Intel/GNU header file): Map directly to

instructions:instructions:
– __mm_add_ps corresponds directly to ADDPS, the instruction

that operates on four packed, single-precision FP numbers
● 128 bits in total

 Classes
P4 F32 4 k d i l l ith l d d t– P4_F32vec4 – packed single class with overloaded operators

● F32vec4 operator +(const F32vec4 &a, const F32vec4 &b) {
return mm add ps(a,b); }_ _ _p (,); }

 Result: 4x speed increase from x87 scalar to packed SSE

Sverre Jarp - CERN21

(single precision)

CHEP 2010, Taipei

Examples of parallelism:
CBM track fitting
 Re-optimization on x86-64 systems
 Step 1: Data parallelism using SIMD instructions
 Step 2: use TBB (or OpenMP) to scale across cores

Sverre Jarp - CERN22 From H.Bjerke/CERN openlab, I.Kisel/GSI

CHEP 2010, Taipei

Examples of parallelism: GEANT4p p
 Initially: ParGeant4 (Gene Cooperman/NEU)
 implemented event-level parallelism to simulate separate implemented event-level parallelism to simulate separate

events across remote nodes.

 New prototype re-implements thread-safe event-level
parallelism inside a multi-core node

D b NEU PhD t d t Xi D U i F llCMS d T tEM Done by NEU PhD student Xin Dong: Using FullCMS and TestEM
examples
 Required change of lots of existing classes (10% of 1 MLOC): Required change of lots of existing classes (10% of 1 MLOC):

– Especially global, “extrn”, and static declarations
– Preprocessor used for automating the work.Preprocessor used for automating the work.

 Major reimplementation:
– Physics tables, geometry, stepping, etc.y g y pp g

 Additional memory: Only 25 MB/thread (!)

Sverre Jarp - CERN23

Dong, Cooperman, Apostolakis: “Multithreaded Geant4: Semi-Automatic
Transformation into Scalable Thread-Parallel Software”, Europar 2010

CHEP 2010, Taipei

Multithreaded GEANT4 benchmarkMultithreaded GEANT4 benchmark
 Excellent scaling on 32 (real) cores

With 4 k t With a 4-socket server

Sverre Jarp - CERN24 From A.Nowak/CERN openlab

CHEP 2010, Taipei

Example: ROOT minimization and fittingExample: ROOT minimization and fitting
 Minuit parallelization is independent of user codeu t pa a e at o s depe de t o use code

 Log-likelihood parallelization (splitting the sum) is quite efficient

 Example on a 32-core server:

complex
BaBar fitting
provided by p y
A. Lazzaro
and
parallelized p
using MPI

 In principle, we can have combination of:
 parallelization via multi-threading in a multi-core CPU

Sverre Jarp - CERN25

 multiple processes in a distributed computing environment

CHEP 2010, Taipei

AthenaMP: event level parallelism
$> Athena.py --nprocs=4 -c EvtMax=100 Jobo.py

AthenaMP: event level parallelism
py p py

co

WORKER 0:

Random event order

output-
tmp
files

Maximize the
shared

memory!

re-0

WORKER 0:
Events: [0, 4, 5,…]

c

firstEvnts
output
tmp
files

i it

memory! core-1

WORKER 1:
Events: [1, 6, 9,…]

endOS-fork merge
Output
tmp
files

init core-2

WORKER 2:
Events: [2, 8, 10,…]

Input
Files Output

Files

files

Output
tmp

core WORKER 3:
E t [3 7 11] Filestmp

files

SERIAL SERIAL:

-3 Events: [3, 7, 11,…]

Sverre Jarp - CERN26

PARALLEL: workers event loopSERIAL:
parent-init-fork

SERIAL:
parent-merge and finalize

26
From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

Memory footprint of AthenaMPMemory footprint of AthenaMP

From
~1 5 GB1.5 GB

To
G~1.0 GB

Sverre Jarp - CERN27
27

AthenaMP ~0.5 GB physical memory saved per process
From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

Scalability plots for Athena MPScalability plots for Athena MP

AthenaMP

 Surprisingly good scaling with SMT on server
with 8 physical cores (16 logical)

Sverre Jarp - CERN28
28

From: Mous TATARKHANOV/May 2010

CHEP 2010, Taipei

R d iRecommendations
(based on observations in openlab)

Sverre Jarp - CERN29

CHEP 2010, Taipei

ShortlistShortlist

1) Broad Programming Talent

2) Holistic View with a clear split:
P t t C tPrepare to compute – Compute

3) C t ll d M U3) Controlled Memory Usage

4) C f P f4) C++ for Performance

5) B t f b d T l5) Best-of-breed Tools

Sverre Jarp - CERN30

CHEP 2010, Taipei

Broad Programming TalentBroad Programming Talent
 In order to cover as many layers as possible

P blProblem
Algorithms, abstractionSolution

i li t Source program
Compiled code libraries

specialists

System architecture
Compiled code, libraries

Technology
Instruction set
-architecture

specialists


Circuits

Electrons

Sverre Jarp - CERN31

Electrons
Adapted from Y.Patt, U-Austin

CHEP 2010, Taipei

Performance guidance (cont’d)g ()
 Take the whole program and its execution behaviour

into accountinto account
 Get yourself a global overview as soon as possible

Via early prototypes Via early prototypes
 Influence early the design and definitely the implementation

 Foster clear split:
 Prepare to compute Heavy compute Prepare to compute
 Do the heavy computation

Wh ft th il bl ll li
PostPre

 Where you go after the available parallelism

 Post-processing

 Consider exploiting the entire server
U i ffi it h d li

Sverre Jarp - CERN32

 Using affinity scheduling

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)
 Control memory usage (both in a multi-core and an

accelerator environment)accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !

Optimi e the cache hierarch Optimize the cache hierarchy
 NUMA: The “new” blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

Sverre Jarp - CERN33

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS

CHEP 2010, Taipei

C++ parallelization supportC++ parallelization support
 Large selection of tools (inside the Large selection of tools (inside the

compiler or as additions):
 Native: pthreads/Windows threadsNative: pthreads/Windows threads
 Forthcoming C++ standard: std::thread

O MP OpenMP
 Intel Array Building Blocks (beta version

from Intel; integrating RapidMind)
 Intel Threading Building Blocks (TBB)
 TOP-C (from NE University)
 MPI (from multiple providers) etc MPI (from multiple providers), etc.
 . . .

We must also keep a close eye on

Sverre Jarp - CERN34

We must also keep a close eye on
OpenCL (www.khronos.org/opencl)

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)
 Control memory usage (both in a multi-core and an

accelerator environment)accelerator environment)
 Optimize malloc/free
 Forking is good; it may cut memory consumption in half Forking is good; it may cut memory consumption in half
 Don’t be afraid of threading; it may perform miracles !

Optimi e the cache hierarch Optimize the cache hierarchy
 NUMA: The new blessing (or curse?)

 C++ for performance
 Use light-weight C++ constructs
 Prefer SoA over AoS
 Minimize virtual functions
 Inline whenever important
 Optimize the use of math functions

Sverre Jarp - CERN35

– SQRT, DIV; LOG, EXP, POW; ATAN2, SIN, COS

CHEP 2010, Taipei

Organization of data: AoS vs SoAOrganization of data: AoS vs SoA

I l il In general, compilers
and hardware prefer
the latter!the latter!

 Arrays of Structures:

SP1
X Y Z

SP2
X Y Z

SP3
X Y Z

SP4
X Y Z

SP5
X Y Z

SP6
X Y ZX,Y, Z X,Y, Z X,Y, Z X,Y, Z X,Y, Z X,Y, Z

 Structure of Arrays:

Spacepoints X X X X X XSpacepoints

Y1 Y2 Y3 Y4 Y5 Y6

X1 X2 X3 X4 X5 X6

Sverre Jarp - CERN36
Z1 Z2 Z3 Z4 Z5 Z6

CHEP 2010, Taipei

Performance guidance (cont’d)Performance guidance (cont d)

 Surround yourself with good tools:
 Compilers

Lib i Libraries
 Profilers Profilers
 Debuggersgg
 Thread checkers
 Thread profilers

Sverre Jarp - CERN37

CHEP 2010, Taipei

Lots of related presentations during this
CHEP conference (Sorry if I missed some!)
 Evaluating the Scalability of HEP Software and Multi-core Hardware [77]g y []

 ng: What Next-Gen Languages Can Teach Us About HENP Frameworks in the Manycore Era [114]

 Multicore-aware Applications in CMS [115]pp []

 Parallelizing Atlas Reconstruction and Simulation: Issues and Optimization Solutions for Scaling
on Multi- and Many-CPU Platforms [116]

 Multi-threaded Event Reconstruction with JANA [117]

 Track Finding in a High-Rate Time Projection Chamber Using GPUs [163]

 Fast Parallel Tracking Algorithm for the Muon System and Transition Radiation Detector of the
CBM Experiment at FAIR [164]

 Real Time Pixel Data Reduction with GPUs And Other HEP GPU Applications [272]pp []

 Algorithm Acceleration from GPGPUs for the ATLAS Upgrade [273]

 Maximum Likelihood Fits on Graphics Processing Units [297]

 Partial Wave Analysis on Graphics Processing Units [298]

 Many-Core Scalability of the Online Event Reconstruction in the CBM Experiment [299]

Sverre Jarp - CERN38

 Adapting Event Reconstruction Software to Many-Core Computer Architectures [300]

 BOF 3 – GPUs: High Performance Co-Processors

CHEP 2010, Taipei

Concluding remarksConcluding remarks
 The hardware is getting more and more powerful
 But also more and more complex!

 Watch out for the transistor “tsunami”! Watch out for the transistor tsunami !

 In most HEP programming domains event-levelIn most HEP programming domains event level
processing will and should continue to dominate

W ill h f f d i l i l We can still move the software forward in multiple ways

 But it should be able to profit from ALL the availableBut it should be able to profit from ALL the available
hardware
 Accelerators with limited memory, as well asAccelerators with limited memory, as well as
 Conventional servers

Sverre Jarp - CERN39
 Holy grail: Forward scalability

CHEP 2010, Taipei

Thank you!Thank you!

Sverre Jarp - CERN40

CHEP 2010, Taipei

“Intel platform 2015” (and beyond)Intel platform 2015 (and beyond)
 Today’s silicon processes:Today s silicon processes:

 45 nm
 32 nm

We are here

32 nm

 On the roadmap:
22 (2011/12) 22 nm (2011/12)

 16 nm (2013/14)

 In research:

LHC data

 11 nm (2015/16)
 8 nm (2017/18)

S. S. BorkarBorkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

()
– Source: Bill Camp/Intel HPC

 Each generation will push the core count:

Sverre Jarp - CERN41

 Each generation will push the core count:
 We are already in the many-core era (whether we like it or not) !

CHEP 2010, Taipei

HEP and vectorsHEP and vectors

 Too little common ground
 And, practically all attempts in the past failed!

 w/CRAY, IBM 3090-Vector Facility, etc.

F ti t ti d t l From time to time, we see a good vector example
 For example: Track Fitting code from ALICE trigger

  See later

 Interesting development from ALICE (Matthias Kretz): Interesting development from ALICE (Matthias Kretz):
 Vc (Vector Classes)

htt // ki i h id lb d / k t /V / http://www.kip.uni-heidelberg.de/~mkretz/Vc/

 Other examples: Use of STL vectors; small matrices

Sverre Jarp - CERN42

 Other examples: Use of STL vectors; small matrices

