

Ideas for evolution of replication technology @ CERN

Openlab Minor Review December 14th, 2010

Zbigniew Baranowski, IT-DB

Outline

Summary

Replication use cases at CERN

Oracle replication technologies

Motivation for evolution of replication

Possible future replication solutions for LCG

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it Department

Ideas for evolution of replication technology @ CERN

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

- CONDITIONS (4M LCRs/day)
- PVSS (60M LCRs/day)
- CMS
 - CONDITIONS (6M LCRs/day)
 - PVSS (20M LCRs/day) ONLINE

DATABASE

- LHCb
 - CONDITIONS (6K LCRs/day)

ALICE

- PVSS (4M LCRs/day)
- COMPASS
 - PVSS (4M LCRs/day)

3

Replication use cases: OFFLINE - ONLINE

LHCb (in addition to ONLINE-OFFLINE)
 – CONDITIONS (8K LCRs/day)

Replication use cases: OFFLINE – T1s

- ATLAS

CONDITIONS (4M LCRs/day)

- LFC (235K LCRs/day)
- CONDITIONS (15K LCRs/day)

5

Ideas for evolution of replication technology @ CERN

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

T1 - OFFLINEATLAS

- AMI (800K LCRs/day)

Replication use cases:

- Muon (700K LCRs/day)

6

Motivation for evolution of replication CERNIT Solutions

- Need of stable and reliable replication service
- Streams 10g require frequent interventions (at least once per week)
 - Consistency problems
 - Blocking sessions
 - Memory pools shortage
 - Logminer crashes
 - Users unsupported changes
- Streams administration is time consuming and requires expert knowledge

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it • Migration to 11gR2 in 2012

Motivation for other replication solutions Department

- Is there a solution which can simplify maintenance of replication?
 - Satisfies physics data workload
 - Requires minimum maintenance effort
 - Is resilient to user's unsupported operations
 - Ensures replicated data consistency
 - Utilizes minimum amount of resources

CH-1211 Geneva 23 Switzerland www.cern.ch/it

Possible replication solutions

- Logical (SQL based) replication
 - Streams11gR2
 - GoldenGate
- Physical (block-level) replication
 - Active DataGuard11gR2
- Combinations of physical and logical replication

Streams 11gR2

Streams11gR2 solution

- Technology features
 - S Considerable maintenance effort
 - but in 11g should be less than in 10g
 - Over the second s
 - ③ Many improvements
 - stability, management, monitoring, verification of data consistency
 - ② Very good performance (30K-40K LCRs/s)
 - Best practices identified a lot of experience
 - Source and destination database fully accessible for reads and writes

Streams11gR2 solution

- As ONLINE OFFLINE replication

 - Streams processes may affect performance of online database
 - ② no extra hardware needed
 - ③ bi-directional replication

Streams11gR2

CERN IT Department CH-1211 Geneva 23

www.cern.ch/it

Switzerland

• As OFFLINE – T1s

- Recovery of replica requires
 - 😕 coordination between T1 and other T1, T0
 - expert knowledge of procedures
- Downstream capture
 - B additional hardware required
 - complete isolation from OFFLINE database
 - Standby database can be source of replication
- ③ T1s databases is read/write accessible
- Good monitoring for distributed streams deployment (strmmon, EM) TIS DATABASES

GoldenGate

CH-1211 Geneva 23 Switzerland www.cern.ch/it

GoldenGate

Technology features

- Source and destination database fully accessible for reads and writes
- ② good quality of software (very stable, free of locks, almost transparent for databases)
- good performance (comparable to Streams11g)
- 🙁 additional license required
- 😕 standby database cannot be used as source
- 🙁 no in-house experience
- 🙁 additional dedicated disk space required for trail files
- Additional software to be installed and maintained on database's machines

GoldenGate solution

- As ONLINE-OFFLINE replication
 - ② no extra hardware needed
 - ② possible loops back in replication
 - ③ minor impact on source database
 - Solution
 Solution
 Solution
 Solution

Ideas for evolution of replication technology @ CERN

16

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

GoldenGate solution

As OFFLINE – T1s

- ② easier maintenance
 - No side effects on source when target is down
 - No split of replication required
 - Trail files can be used for T1 recovery
- Second no remote administration access to nodes required
- (2) no monitoring for distributed environment
- Second constraints cannot use standby database (i.e. Active Dataguard) as a source of replication

Source: Oracle.com

CERN

Department

Active DataGuard 11gR2

- Technology features
 - Physical replication
 - identical copy
 - ③ Minimum maintenance effort
 - Outperforms other replication technologies
 - Oracle claims 200 MB/s of redo processing
 - —
 © Improved data reliability of primary database
 - failover
 - automatic recovery of corrupted blocks
 - ③ Fast recovery with RMAN
 - Additional license required

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Active DataGuard 11gR2

As ONLINE – OFFLINE replication

- 🙁 additional database installations needed for no replicated data (split of OFFLINE)
- Same version of software required (installation, upgrades)
- Online database is protected with another standby database
- further replication to T1s is possible in sequential standbys configuration
 DATABASES

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Active DataGuard 11gR2

As OFFLINE – T1s

- 🙁 same version required on all T1s DBs
 - Coordination of interventions becomes critical
- 😕 T1 database is read only
- (8) additional database installations needed for no replicated data (split of OFFLINE)
- Output Physical replication: lower maintenance effort
- ONO downstream needed

Streams11gR2 replication at all Tiers

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Possible solutions

CER Department

GoldenGate replication at all Tiers

T0

Possible solutions

T1S

- ONLINE -> OFFLINE: Active DataGuard
- OFFLINE -> T1s: Streams11g

CH-1211 Geneva 23 Switzerland www.cern.ch/it

CERN IT Department CH-1211 Geneva 23 Switzerland www.cern.ch/it

Possible solutions

- CERN**IT** Department
- ONLINE -> OFFLINE: Streams11g / GG
 OFFLINE > T1c: Streams11g
- OFFLINE -> T1s: Streams11g

Summary

 Migration to the new database versions (2012) gives an opportunity to re-design and improve the replication service

- Three candidate technologies are being investigated
 - Streams11gR 2
 - GoldenGate
 - Active DataGuard

Acknowledgements

- Many thanks to all Physics DBAs, especially:
 Luca
 Jacek
 - Dawid
 - Consultancy
 - Gancho
 - Stephen Balousek (Oracle)
 - Jagdev Dhillon (Oracle)

