
11

The Future of Many Core Computing:
Software for many core processors

Tim Mattson
Intel Labs

January 2010

22

Disclosure

• The views expressed in this talk are those of the
speaker and not his employer.

• I am in a research group and know nothing about
Intel products. So anything I say about them is
highly suspect.

• This was a team effort, but if I say anything really
stupid, it’s all my fault … don’t blame my
collaborators.

33

Sources and Acknowledgments

• Slides from my work at Intel.

• Slides I created with “UC Berkeley ParLab
colleagues”. Most of these come from
courses I taught with Prof. Kurt Keutzer.

• Slides I developed with members of the
Khronos compute group (OpenCL).

44

Agenda

• The many core software challenge
• OpenCL: a brief overview
• Going beyond OpenCL

55

Heterogeneous computing

• Programmers need to make the best use of all the
available resources from within a single program:
– One program that runs well (i.e. reasonably close to

“hand-tuned” performance) on a heterogeneous mixture
of processors.

GMCHGPU

ICH

CPU CPU

DRAM

GMCH = graphics memory control hub, ICH = Input/output control hub

• A modern platform has:
– CPU(s)
– GPU(s)
– DSP processors
– … other?

66

… and many core chips make it worse

• Scalable architectures research:
– How should we connect the cores so we can scale as far as

we need (O(100’s to 1000) should be enough)?

Intel’s “TeraScale”
processor research

program is addressing the
question … What is the
architecture of future

many core chips, and how
will we use them.

80 core Research
processor 48 core SCC

processor

77

Parallel hardware trends
Top 500: total number of processors (1993-2000)

0

20000

40000

60000

80000

100000

120000

140000

1993 1994 1995 1996 1997 1998 1999 2000

The early years … SIMD MPP fades and
clusters take over.

Source: the “June lists” from www.top500.org

88

Parallel Hardware Trends
Top 500: total number of processors (1993-2009)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000
19

93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

Disruptive
technology

trend!

Source: the “June lists” from www.top500.org

99

The many-core challenge

• Result: a fundamental and dangerous mismatch
–Parallel hardware is ubiquitous.
–Parallel software is rare

Our challenge … make parallel software as
routine as our parallel hardware.

We have arrived at many-core solutions not
because of the success of our parallel

software but because of our failure to keep
increasing CPU frequency*.

*Tim Mattson … a famous-software-researcher wannabe

1010

Solution: Find A Good parallel
programming model, right?

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
PCN
PCP:
PH
PEACE
PCU
PET
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
XENOOPS
XPC
Zounds
ZPL

Third party names are the property of their owners.

Models from the golden age of parallel programming (~95)

1111

The only thing sillier than creating too
many models is using too many

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++
Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
PCN
PCP:
PH
PEACE
PCU
PET
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
XENOOPS
XPC
Zounds
ZPL

Third party names are the property of their owners.

Programming models I’ve worked with.

1212

Pe
rc

en
ta

ge

60

tr
y

40

tr
y

24 6

Choice overload:
Too many options can hurt you

• The Draeger Grocery Store
experiment consumer choice :
– Two Jam-displays with coupon’s

for purchase discount.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try
samples at the display?

– Of those who “tried”, how many
bought jam?

3

bu
y

30

bu
y

The findings from this study show that an extensive array of options can at first seem highly appealing to
consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.

The findings from this study show that an extensive array of options can at first seem highly appealing to
consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality
and Social Psychology, 76, 995-1006.

Programmers don’t need a glut of options … just give us something that works OK
on every platform we care about. Give us a decent standard and we’ll do the rest

1313

How to program the heterogenous platform?
Let History can be our guide … consider the
origins of OpenMP …

SGI

Cray

Merged,
needed
commonality
across
products

KAI ISV - needed
larger market

was tired of
recoding for
SMPs. Forced
vendors to
standardize.

ASCI

Wrote a
rough draft
straw man
SMP API

DEC

IBM

Intel

HP

Other vendors
invited to join

1997
Third party names are the property of their owners.

1414

OpenMP Release History

OpenMP
Fortran 1.1
OpenMP

Fortran 1.1

OpenMP
C/C++ 1.0
OpenMP
C/C++ 1.0

OpenMP
Fortran 2.0
OpenMP

Fortran 2.0

OpenMP
C/C++ 2.0
OpenMP
C/C++ 2.0

1998

20001999

2002

OpenMP
Fortran 1.0
OpenMP

Fortran 1.0

1997

OpenMP
2.5

OpenMP
2.5

2005

A single
specification
for Fortran, C
and C++

OpenMP
3.0

OpenMP
3.0

tasking,
other new
features

2008

1515

OpenCL: Can history repeat itself?

AMD

ATI

Merged,
needed
commonality
across
products

Nvidia
GPU vendor -
wants to steel mkt
share from CPU

Intel
CPU vendor -
wants to steel mkt
share from GPU

Wrote a
rough draft
straw man
API

was tired of recoding
for many core, GPUs.
Pushed vendors to
standardize.

Apple

Ericsson

Sony

Blizzard

Nokia

Khronos
Compute
group formed

Freescale

TI

IBM

+ many
more

As ASCI did for OpenMP, Apple is doing for
GPU/CPU with OpenCL

Dec 2008Third party names are the property of their owners.

1616

Agenda

• The many core software challenge
• OpenCL: a brief overview
• Going beyond OpenCL

1717

OpenCLOpenCL Working GroupWorking Group
•Diverse industry participation …

–HW vendors (e.g. Apple), system OEMs, middleware vendors,
application developers.

•OpenCL became an important standard “on release” by
virtue of the market coverage of the companies behind
it.

Third party names are the property of their owners.

1818

The The BIGBIG idea behind idea behind OpenCLOpenCL

•OpenCL execution model … execute a kernel at each point in a
problem domain.
–E.g., process a 1024 x 1024 image with one kernel invocation
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void
trad_mul(int n,

const float *a,
const float *b,
float *c)

{
int i;
for (i=0; i<n; i++)

c[i] = a[i] * b[i];
}

Traditional loops
kernel void
dp_mul(global const float *a,

global const float *b,
global float *c)

{
int id = get_global_id(0);

c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

1919

An N-dimension domain of work-items

•Define an N-dimensioned index space that is “best” for
your algorithm

– Global Dimensions: 1024 x 1024 (whole problem space)
– Local Dimensions: 128 x 128 (work group … executes

together)
1024

10
24

Synchronization between work-items
possible only within workgroups:
barriers and memory fences

Cannot synchronize outside
of a workgroup

2020

To use OpenCL, you must

• Define the platform
• Execute code on the platform
• Move data around in memory
• Write (and build) programs

2121

OpenCLOpenCL Platform Model Platform Model

• One Host + one or more Compute Devices
– Each Compute Device is composed of one or more

Compute Units
– Each Compute Unit is further divided into one or more

Processing Elements

2222

OpenCLOpenCL Execution ModelExecution Model

•An OpenCL application runs on a host which
submits work to the compute devices.
–Work item: the basic unit of work on an
OpenCL device.

–Kernel: the code for a work item. Basically
a C function

–Program: Collection of kernels and other
functions (Analogous to a dynamic library)

–Context: The environment within which
work-items executes … includes devices and
their memories and command queues.

Queue Queue
Contex

t

GPU CPU

•Applications queue kernel execution instances
–Queued in-order … one queue to a device
–Executed in-order or out-of-order

2323

OpenCLOpenCL Memory ModelMemory Model

Memory management is Explicit
You must move data from host -> global -> local

… and back

Memory management is Explicit
You must move data from host -> global -> local

… and back

•Private Memory
–Per work-item

•Local Memory
–Shared within a
workgroup

•Global/Constant
Memory
–Visible to all workgroups

•Host Memory
–On the CPU

Workgroup

WorkWork--ItemItem

Compute Device

WorkWork--ItemItem

Workgroup

Host

Private
Memory

Private
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

WorkWork--ItemItemWorkWork--ItemItem

Private
MemoryPrivate

Memory

2424

Programming kernels: Programming kernels:
the OpenCL C Language

•A subset of ISO C99
–But without some C99 features such as standard C99
headers, function pointers, recursion, variable length
arrays, and bit fields

•A superset of ISO C99 with additions for:
–Work-items and workgroups
–Vector types
–Synchronization
–Address space qualifiers

•Also includes a large set of built-in functions for
image manipulation, work-item manipulation,
specialized math routines, etc.

2525

Programming Kernels: Data TypesProgramming Kernels: Data Types
• Scalar data types

–char , uchar, short, ushort, int, uint, long, ulong, float
–bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void, half (storage)

• Image types
–image2d_t, image3d_t, sampler_t

• Vector data types
–Vector lengths 2, 4, 8, & 16 (char2, ushort4, int8, float16, double2, …)
–Endian safe
–Aligned at vector length
–Vector operations and built-in functions

2 3 -7 -7

-7 -7 -7 -7int4 vi0 = (int4) int4 vi0 = (int4) --7;7;

0 1 2 3int4 vi1 = (int4)(0, 1, 2, 3);int4 vi1 = (int4)(0, 1, 2, 3);

vi0.lo = vi1.hi;vi0.lo = vi1.hi;

int8 v8 = (int8)(vi0, vi1.s01, vi1.odd);int8 v8 = (int8)(vi0, vi1.s01, vi1.odd); 2 3 -7 -7 0 1 1 3

Double is an optional
type in OpenCL 1.0

2626

Building Program objects
• The program object encapsulates:

– A context
– The program source/binary
– List of target devices and build options

• The Build process … to create a program object
– clCreateProgramWithSource()
– clCreateProgramWithBinary()

Program
kernel void
horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst)
{
int x = get_global_id(0); // x-coord
int y = get_global_id(1); // y-coord
int width = get_image_width(src);
float4 src_val = read_imagef(src, sampler,

(int2)(width-1-x, y));
write_imagef(dst, (int2)(x, y), src_val);

}

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

Kernel Code

2727

Vector Addition - Kernel

__kernel void vec_add (__global const float *a,
__global const float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

2828

Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, srcA,

NULL);}
memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY

| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] =
clCreateBuffer(context,CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n,
NULL,

NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

2929

Vector Addition: Host Program

// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with
context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
NULL, &cb);

devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context,

devices[0], 0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY
| CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] =
clCreateBuffer(context,CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n,
NULL, NULL);

// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queuesDefine platform and queuesDefine platform and queues

Define Memory objectsDefine Memory objectsDefine Memory objects

Create the programCreate the programCreate the program

Build the programBuild the programBuild the program

Create and setup kernelCreate and setup kernelCreate and setup kernel

Execute the kernelExecute the kernelExecute the kernel

Read results on the hostRead results on the hostRead results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.

3030

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Time

GPU

CPU

En
qu

eu
e

K
er

ne
l 1

Kernel 1

En
qu

eu
e

K
er

ne
l 2

Kernel 2

Time

Kernel 2

Kernel 2 waits for an event
from Kernel 1 and does not

start until the results are
ready

Kernel 2 starts before the
results from Kernel 1 are

ready

•Events can be used to synchronize kernel executions between
queues

•Example: 2 queues with 2 devices

OpenCLOpenCL Synchronization: Queues & EventsSynchronization: Queues & Events

3131

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,

global const float *b,
global float *c)

{
int id = get_global_id(0);
c[id] = a[id] * b[id];

}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers
In

Order
Queue

Out of
Order
Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCLOpenCL summarysummary

Third party names are the property of their owners.

3232

IS OpenCL the solution to our parallel
programming problems?

• NO … OpenCL is ugly
– Its great for expert programmers mapping software onto

low level hardware features.
– Its great for programmers who want full control over the

hardware.
– Its terrible for end-user or domain expert programmers

We need to develop parallel programming
technologies that will change the world and make

every programmer a parallel programmer.

3333

Agenda

• The many core software challenge
• OpenCL: a brief overview
• Going beyond OpenCL

3434

Personal
Health

Image
Retrieval

Hearing,
Music Speech Parallel

Browser
Design Pattrern Language (OPL)

Sketching

Legacy
Code Schedulers Communication &

Synch. Primitives
Efficiency Language Compilers

UC Berkeley’s Par Lab Agenda
with lots of help from Intel, Microsoft, and others

Easy to write correct programs that run efficiently on manycore

Legacy OS

Multicore/GPGPU

OS Libraries & Services

RAMP Manycore

HypervisorOS

Arch.

Productivity

Layer

Efficiency

Layer C
or

re
ct

ne
ss

Applications

Composition & Coordination Language (C&CL)

Parallel
Libraries

Parallel
Frameworks

Static
Verification

Dynamic
Checking

Debugging
with Replay

Directed
Testing

Autotuners

C&CL Compiler/Interpreter

Efficiency
Languages

Type
Systems

3535

• SW architecture
– Is drastically more important than programming environments
– which is more important than programming languages
– Which is more important than compilers and debuggers
– Which is farm more important than hardware.

• Super-programmer:
– 10X productivity
– 10X speed of code
– 1/10th as many bugs

• Interview after interview with Synopsis’ super
programmers indicated …

Professor Keutzer’s experiences as
CTO of Synopsis

“give me the right architecture and you can keep your cool
languages and tools – but give me a bad architecture and

no amount of tools and languages will help.”

3636

Software architecture is the key

• Enforces modularity
– Good for design, management, and performance optimization.

• Clarifies interfaces
– Good for design, management, and debuggability

• Eases communication of design – benefits documentation
and future maintenance

We use Design Patterns to write down architectural ideas

3737

•Pipe-and-Filter
•Agent-and-Repository

•Event-based coordination
•Process Control

•Layered Systems

Garlan and Shaw Architectural Styles

These define the structure of our software but they do not
describe what is computed

3838

Computational Patterns

The Dwarfs from The Dwarfs from ““The Berkeley ViewThe Berkeley View”” (Asanovic et al.)(Asanovic et al.)
Dwarfs form our key computational patternsDwarfs form our key computational patterns

3939

Parallel algorithm patterns

A design pattern language
for parallel algorithm design
with examples in MPI,
OpenMP and Java.

This is our hypothesis for
how programmers think
about parallel programming.

We call this PLPP (Pattern
Language of Parallel
Programming)

Work started in 1997.
Book published 2004

13 dwarves

Influences on
the Berkeley

Pattern
language

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Applications

Structural Patterns Computational Patterns

OPL 2010 OPL 2010 (Keutzer and Mattson Intel Technology Journal, 2010)(Keutzer and Mattson Intel Technology Journal, 2010)

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.
Transactional memory

Thread-Pool
Task-Graph

Data structureProgram structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)
Memory sync/fence

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

42/17

42

Content-Based Image Retrieval Overview

Relevance
Feedback

ImageImage
DatabaseDatabase

Query by example

Similarity
Metric

Candidate
Results Final ResultFinal Result

Built around Key Characteristics of personal
databases

Very large number of pictures (1K 1M)
Non labeled images
Many pictures of few people
Complex pictures including people, events,
places, and objects

Piro: Personal Image
Retrieval Organizer

Joint project between
Berkeley and Intel

1000’s
1M images

4343

CBIR Application Framework

ResultsResults

Exercise ClassifierExercise Classifier

Train ClassifierTrain Classifier

Feature ExtractionFeature Extraction

User FeedbackUser Feedback

Choose ExamplesChoose Examples

New ImagesNew Images

??

??

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics Processors”, Int’l Conf. Machine Learning 2008

At the top level, this is the
Pipe-and-filter pattern

4444

Feature Extraction
Image is reduced to a set of low-dimensional
feature vectors

44"Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer IISWC '09

Build Scale-
Space

Representation

Build Scale-
Space

Representation

Select Interest
Points and Support

Regions

Select Interest
Points and Support

Regions

Build DescriptorsBuild Descriptors

Structured
Grid

Dense Linear
Algebra

Map Reduce Structured
Grid

Map Reduce

4545

Train Classifier:
SVM Training

45

Update
Optimality
Conditions

Update Update
Optimality Optimality
ConditionsConditions

Select
Working

Set,
Solve QP

Select Select
Working Working

Set, Set,
Solve QPSolve QP

Train ClassifierTrain Classifier iterate

Iterative Refinement Structural Pattern

MapReduce

MapReduce

4646

Exercise Classifier : SVM
Classification

Compute
dot

products

Compute
dot

products

Compute
Kernel values,
sum & scale

Compute
Kernel values,
sum & scale

OutputOutput

Test DataTest Data

SVSV

Exercise ClassifierExercise Classifier

MapReduce

Dense Linear
Algebra

Graph-Algorithms

Dynamic-Programming

Dense-Linear-Algebra

Sparse-Linear-Algebra

Unstructured-Grids

Structured-Grids

Model-View-Controller

Iterative-Refinement

Map-Reduce

Layered-Systems

Arbitrary-Static-Task-Graph

Pipe-and-Filter

Agent-and-Repository

Process-Control

Event-Based/Implicit-
Invocation

Puppeteer

Graphical-Models
Finite-State-Machines
Backtrack-Branch-and-
Bound
N-Body-Methods
Circuits
Spectral-Methods
Monte-Carlo

Applications

Structural Patterns Computational Patterns

Task-Parallelism
Divide and Conquer

Data-Parallelism
Pipeline

Discrete-Event
Geometric-Decomposition
Speculation

SPMD
Data-Par/index-space

Fork/Join
Actors

Distributed-Array
Shared-Data

Shared-Queue
Shared-map
Partitioned Graph

MIMD
SIMD

Parallel Execution Patterns

Parallel Algorithm Strategy Patterns

Implementation Strategy Patterns

Message-Passing
Collective-Comm.
Transactional memory

Thread-Pool
Task-Graph

Data structureProgram structure

Point-To-Point-Sync. (mutual exclusion)
collective sync. (barrier)
Memory sync/fence

Loop-Par.
Task-Queue

Transactions

Thread creation/destruction
Process creation/destruction

Concurrency Foundation constructs (not expressed as patterns)

Patterns travel together Patterns travel together …… and this informs framework designand this informs framework design

Turning Patterns into code
Frameworks:

Raise the level of abstraction .. help turn patterns into code.
Support a separation of concern … concurrency-experts build the
frameworks, domain programmers just use them.

Bryan Catanzaro UC Berkely, Michael Garland, Nvidia

Example:
copperhead, a
framework for
writing data
parallel code with
python. Maps onto
CUDA today,
OpenCL work in
progress

But what about performance?

Bryan Catanzaro, Armando fox, Yunsup Lee, mark Murphy and Kurt Ketuzer of UC Berkeley, Mickael Garland of NVIDIA

SEJITS: Scalable, embedded, just in time specialization
Write python annotated for data parallel programming.
SEJITS system to embed optimized kernels specialized at runtime
to flatten abstraction overhead and map onto hardware features.

Currently works with
copperhead and
Ruby→C/OpenMP

5050

Summary

• Many core chips are coming … 100’s or even 1000 cores
over the next 15 years.

• SW is not ready for these chips.

• The key is standards … and they will not become
established if programmers don’t demand them.

• OpenCL is a new standard for programming the
heterogeneous platform.

• But OpenCL is not enough … it addresses the needs of
“efficiency layer” programmers. We need something
more to address more typical “productivity layer”
programmers.

• We are mid-way through a research collaboration with
UC Berkeley to address this:
– Design patterns to guide our solutions
– Frameworks to make common patterns easy to code
– Embedded, dynamic specialization for performance

5151

Backup

• A simple example

5252

Example: vector addition

• The “hello world” program of data parallel
programming is a program to add two vectors

C[i] = A[i] + B[i] for i=1 to N

• For the OpenCl solution, there are two parts
– Kernel code
– Host code

5353

Platform Layer: Basic discovery

• Platform layer allows applications to query for
platform specific features

• Querying platform info Querying devices
– clGetDeviceIDs()

– Find out what compute devices are on the system
– Device types include CPUs, GPUs, or Accelerators

– clGetDeviceInfo()
– Queries the capabilities of the discovered compute

devices such as:
– Number of compute cores
– Maximum work-item and work-group size
– Sizes of the different memory spaces
– Maximum memory object size

5454

Platform Layer: Contexts

• Creating contexts
– Contexts are used by the OpenCL runtime to

manage objects and execute kernels on one
or more devices

– Contexts are associated to one or more
devices
– Multiple contexts could be associated to

the same device
– clCreateContext() and

clCreateContextFromType() returns a handle
to the created contexts

5555

Platform layer: Command-Queues
• Command-queues store a set

of operations to perform
• Command-queues are

associated to a context
• Multiple command-queues can

be created to handle
independent commands that
don’t require synchronization

• Execution of the command-
queue is guaranteed to be
completed at sync points

Queue Queue
Context

GPU CPU

5656

VecAdd: Context, Devices, Queue
// create the OpenCL context on a GPU device
cl_context context = clCreateContextFromType(

0, // platform ID
CL_DEVICE_TYPE_GPU, // Ask for a GPU
NULL, // error callback
NULL, // user data for callback
NULL); // error code

// get the list of GPU devices associated with context
size_t cb;
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, NULL, &cb);
cl_device_id *devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cl_cmd_queue cmd_queue = clCreateCommandQueue(context,

devices[0], // Use the first GPU device
0, // default options
NULL); // error code

5757

Memory ObjectsMemory Objects

• Buffers
–Simple chunks of memory
–Kernels can access however they like (array, pointers, structs)
–Kernels can read and write buffers

• Images
–Opaque 2D or 3D formatted data structures
–Kernels access only via read_image() and write_image()
–Each image can be read or written in a kernel, but not both

5858

Creating Memory Objects

•Memory objects are created within an
associated context
– clCreateBuffer(), clCreateImage2D(), and

clCreateImage3D()
•Memory can be created as read only, write
only, or read-write

•Where objects are created in the platform
memory space can be controlled
– Device memory
– Device memory with data copied from a host

pointer
– Host memory
– Host memory associated with a pointer

– Memory at that pointer is guaranteed to be
valid at synchronization points

5959

VecAdd: Create Memory Objects
cl_mem memobjs[3];
// allocate input buffer memory objects
memobjs[0] = clCreateBuffer(context,

CL_MEM_READ_ONLY | // flags
CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, // size
srcA, // host pointer
NULL); // error code

memobjs[1] = clCreateBuffer(context,
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
sizeof(cl_float)*n, srcB, NULL);

// allocate output buffer memory object
memobjs[2] = clCreateBuffer(context, CL_MEM_WRITE_ONLY,

sizeof(cl_float)*n, NULL, NULL);

6060

Build the Program object
• The program object encapsulates:

– A context
– The program source/binary
– List of target devices and build options

• The Build process … to create a program object
– clCreateProgramWithSource()
– clCreateProgramWithBinary()

Program
kernel void
horizontal_reflect(read_only image2d_t src,

write_only image2d_t dst)
{
int x = get_global_id(0); // x-coord
int y = get_global_id(1); // y-coord
int width = get_image_width(src);
float4 src_val = read_imagef(src, sampler,

(int2)(width-1-x, y));
write_imagef(dst, (int2)(x, y), src_val);

}

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

Kernel Code

6161

VecAdd: Create and Build the Program

// create the program
cl_program program = clCreateProgramWithSource(

context,
1, // string count
&program_source, // program strings
NULL, // string lengths
NULL); // error code

// build the program
cl_int err = clBuildProgram(program,

0, // device num within the device list
NULL, // device list
NULL, // options
NULL, // notifier callback function ptr
NULL); // user data for callback function

6262

Kernel Objects

• Kernel objects encapsulate
– Specific kernel functions declared in a program
– Argument values used for kernel execution

• Creating kernel objects
– clCreateKernel() - creates a kernel object for a single

function in a program
• Setting arguments

– clSetKernelArg(<kernel>, <argument index>)
– Each argument data must be set for the kernel function
– Argument values copied and stored in the kernel object

• Kernel vs. program objects
– Kernels are related to program execution
– Programs are related to program source

6363

// create the kernel
cl_kernel kernel = clCreateKernel(program, “vec_add”, NULL);

// set “a” vector argument
err = clSetKernelArg(kernel,

0, // argument index
(void *)&memobjs[0], // argument data
sizeof(cl_mem)); // argument data size

// set “b” vector argument
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));

// set “c” vector argument
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],

sizeof(cl_mem));

VecAdd: Create the Kernel and Set the
Arguments

6464

Kernel Execution
• A command to execute a kernel must be enqueued to the command-

queue
– Command-queue could be explicitly flushed to the device
– Command-queues execute in-order or out-of-order

– In-order - commands complete in the order queued and memory is
consistent

– Out-of-order - no guarantee of (1) when commands are executed or
(2) if memory is consistent … unless specific synchronization is
used.

• clEnqueueNDRangeKernel()
– Data-parallel execution model
– Describes the index space for kernel execution
– Requires information on NDRange dimensions and work-group

size
• clEnqueueTask()

– Task-parallel execution model (multiple queued tasks)
– Kernel is executed on a single work-item

• clEnqueueNativeKernel()
– Task-parallel execution model
– Executes a native C/C++ function not compiled using the

OpenCL compiler
– This mode does not use a kernel object so arguments must be

passed in

6565

size_t global_work_size[1] = n; // set work-item dimensions
// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel,

1, // Work dimensions
NULL, // must be NULL (work offset)
global_work_size,
NULL, // automatic local work size
0, // no events to wait on
NULL, // event list
NULL); // event for this kernel

VecAdd: Invoke Kernel

6666

Synchronization
• Synchronization

– Signals when commands are completed to the host or
other commands in queue

– Blocking calls
– Commands that do not return until complete
– clEnqueueReadBuffer() can be called as blocking and will

block until complete

– Event objects
– Tracks execution status of a command
– Some commands can be blocked until event objects signal a

completion of previous command
– clEnqueueNDRangeKernel() can take an event object as

an argument and wait until a previous command (e.g.,
clEnqueueWriteBuffer) is complete

– Queue barriers - queued commands that can block
command execution

6767

// read output array
err = clEnqueueReadBuffer(context, memobjs[2],

CL_TRUE, // blocking
0, // offset
n*sizeof(cl_float), // size
dst, // pointer
0, NULL, NULL); // events

VecAdd: Read Output

6868

OpenCL C for Compute Kernels

• Derived from ISO C99
– A few restrictions: recursion, function pointers, functions

in C99 standard headers ...
– Preprocessing directives defined by C99 are supported

• Built-in Data Types
– Scalar and vector data types, Pointers
– Data-type conversion functions:

convert_type<_sat><_roundingmode>
– Image types: image2d_t, image3d_t and sampler_t

• Built-in Functions — Required
– work-item functions, math.h, read and write image
– Relational, geometric functions, synchronization functions

• Built-in Functions — Optional
– double precision, atomics to global and local memory
– selection of rounding mode, writes to image3d_t surface

6969

Vector Addition Kernel

__kernel void vec_add (__global const float *a,
__global const float *b,
__global float *c)

{
int gid = get_global_id(0);
c[gid] = a[gid] + b[gid];

}

