
11

The Future of Many Core Computing:
A tale of two processors

Tim Mattson
Intel Labs

January 2010

22

Disclosure

• The views expressed in this talk are those of the
speaker and not his employer.

• I am in a research group and know nothing about
Intel products. So anything I say about them is
highly suspect.

• This was a team effort, but if I say anything really
stupid, it’s all my fault … don’t blame my
collaborators.

33

A common view of many-core chips

An Intel
Exec’s slide
from
IDF’2006

44

Challenging the sacred cows

Shared
Cache

Local
Cache

Streamlined
IA Core

Assumes cache
coherent shared
address space!

• Is that the right choice?
– Most expert programmers do not

fully understand relaxed
consistency memory models
required to make cache coherent
architectures work.

– The only programming models
proven to scale non-trivial apps to
100’s to 1000’s of cores all based
on distributed memory.

– Coherence incurs additional
architectural overhead

… IA cores optimized for multithreading

55

The Coherency Wall
• As you scale the number of cores on a cache coherent system (CC), “cost” in

“time and memory” grows to a point beyond which the additional cores are not
useful in a single parallel program. This is the coherency wall.

*R. Kumar, T.G. Mattson, G. Pokam, R. van der Wijngaart, “The case for message passing on many-core chips, submitted to HotPar 2010

… each directory entry will be 128 bytes long for a 1024 core processor supporting fully-mapped directory-
based cache coherence. This may often be larger than the size of the cacheline that a directory entry is
expected to track.*

CC: O(Nα) 1≤ α ≤ 2

2D Mesh: O(4) to O(N)

Co
st

 (
tim

e
an

d/
or

 m
em

or
y)

Number of cores

For a scalable, directory based
scheme, CC incurs an N-body
effect … cost scales at best
linearly (Fixed memory size as
cores are added) and at worst
quadratically (memory grows
linearly with number of cores).

HW Dist. Mem. HW cost
scales at best a fixed
cost for the local
neighborhood and at
worst as the diameter of
the network.

Assume an app whose performance is not
bound by memory bandwidth

66

Isn’t shared memory programming
easier? Not necessarily.

Time

E
ffo

rt

Extra work upfront, but easier
optimization and debugging means

overall, less time to solution
Message passing

Time

E
ffo

rt

initial parallelization can be
quite easy

Multi-threading

But difficult debugging and
optimization means overall

project takes longer

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321–345, 2003

Proving that a shared address space program using
semaphores is race free is an NP-complete problem*

77

The many core design challenge
• Scalable architecture:

– How should we connect the cores so we can scale as far as we
need (O(100’s to 1000) should be enough)?

• Software:
– Can “general purpose programmers” write software that takes

advantage of the cores?
– Will ISV’s actually write scalable software?

• Manufacturability:
– Validation costs grow steeply as the number of transistors grows.

Can we use tiled architectures to address this problem?
– Validate a tile (M transistors) and the connections between tiles …

drops validation costs from K*O(N) to K’*O(M) (warning, K, K’ can be
very large).

Intel’s “TeraScale” processor
research program is addressing

these questions with a series of Test
chips … two so far.

80 core Research
processor

48 core SCC
processor

88

Agenda

• The 80 core Research Processor

– Max FLOPS/Watt in a tiled architecture

• The 48 core SCC processor

– Scalable IA cores for software/platform research

99

Agenda

• The 80 core Research Processor

– Max FLOPS/Watt in a tiled architecture

• The 48 core SCC processor

– Scalable IA cores for software/platform research

1010

• The software team
– Tim Mattson, Rob van der Wijngaart (Intel)
– Michael Frumkin (then at Intel, now at Google)

• Implementation
– Circuit Research Lab Advanced Prototyping team (Hillsboro, OR

and Bangalore, India)

• PLL design
– Logic Technology Development (Hillsboro, OR)

• Package design
– Assembly Technology Development (Chandler, AZ)

Acknowledgements

A special thanks to our “optimizing compiler” … Yatin
Hoskote, Jason Howard, and Saurabh Dighe of
Intel’s Microprocessor Technology Laboratory.

1111

Intel’s 80 core terascale processor
Die Photo and Chip Details

21
.7

2m
m

12.64mm
I/O Area

I/O Area
PLL

single tile
1.5mm

2.0mm

TAP

21
.7

2m
m

12.64mm
I/O Area

I/O Area
PLL

single tile
1.5mm

2.0mm

TAP

• Basic statistics:
– 65 nm CMOS process
– 100 Million transistors in 275 mm2

– 8x10 tiles, 3mm2/tile
– Mesosynchronous clock
– 1.6 SP TFLOP @ 5 Ghz and 1.2 V
– 320 GB/s bisection bandwidth
– Variable voltage and multiple sleep

states for explicit power management

1212

5 PORT
ROUTER
5 PORT

ROUTER

2KB DATA
MEMORY

2KB DATA
MEMORY

3KB INSTR.
MEMORY

3KB INSTR.
MEMORY

COMPUTE CORE:
2 FLOATING

POINT ENGINES

COMPUTE CORE:
2 FLOATING

POINT ENGINES

We’ve made good progress with the hardware:
Intel’s 80 core test chip (2006)

This is an architecture concept that may or may not be reflected in future products from Intel Corp.

1313

The “80-core” tile

2KB Data memory (DMEM)

3K
B

 In
st

. m
em

or
y

(IM
EM

)

6-read, 4-write 32 entry RF

32

64 64

32

64

R
IB

96

96

Mesochronous Interface

Processing Engine (PE)

Crossbar Router
M

SI
N

T
39

39

20 GB/s

FPMAC0

x

+

Normalize

32

32

FPMAC1

x

+
32

32

M
SIN

T

MSINT

MSINT

Normalize

Tile

5 port router
for a 2D
mesh and 3D
stacking

2 single precision FPMAC units

2 Kbyte Data Memory
(512 SP words)

3 Kbyte Instr.
Memory (256
96 bit instr)

40 GB/s

1414

Programmer’s perspective
• 8x10 mesh of 80 cores
• All memory on-chip

– 256 instructions operating
– 512 floating point numbers.
– 32 SP registers, two loads per cycle per tile

• Compute engine
– 2 SP FMAC units per tile → 4 FLOP/cycle/tile
– 9-stage pipeline

• Communication
– One sided anonymous message passing into instruction or data

memory
• Limitations:

– No division
– No general branch, single branch-on-zero (single loop)
– No wimps allowed! … i.e. No compiler, Debugger, OS, I/O …

SP = single precision, FMAC = floating point multiply accumulate, FLOP = floating point operations

1515

Full Instruction Set

Move a pair of floats between the register file and data
memory at address plus OFFSET.

LOADO, STOREO,
OFFSET

Move a pair of floats between register file & data memory. LOAD, STORE

Jump to the specified program counter address JUMP

INDEX sets a register for loop count. BRNE branches while
the index register is greater than zero

BRNE, INDEX

Accumulate with previous resultACCUM

Multiply operandsMULT

Stall program counter (PC), waiting for a new PC.STALL

Stall while waiting for data from any tile. WFD

Send Data header, address, data, and tailSENDD[H|A|D|T]

Send instr. header, address, data, and tailSENDI[H|A|D|T]

Wake FPUs from sleepWAKE

Put FPUs to sleepNAP

L
o

a
d

/
S

to
re

P
ro

g
ra

m

flo
w

S
N

D
/

R
C

V
F
P

U
S

le
e
p

1616

Instruction word and latencies

• 96-bit instruction word, up to 8 operations/cycle

1NAP/WAKE

1JUMP/BRANCH

2LOAD/STORE

2SEND/RECEIVE

9FPU

Latency (cycles)Instruction Type

FPU (2) SLEEPLOAD/STORE SND/RCV PGM FLOW

1717

What did we do with the chip?

These kernels were hand coded in assembly
code and manually optimized. Data sets

sized to fill data memory.

These kernels were hand coded in assembly
code and manually optimized. Data sets

sized to fill data memory.

• 4 applications kernels

– 2D FFT
– 2D FFT of dense array on an 8 by 8

subgrid.

– Stencil
– 2D PDE solver (heat diffusion equation)

using a Gauss Seidel algorithm

– SGEMM (Matrix Multiply)
– C = A*B with rectangular matrices

– Spreadsheet
– Synthetic benchmark … sum dense

array of rows and columns (local sums
in one D, reduction in the other D)

C
om

m
u

n
ication

 P
attern

s

1818

Programming Results

Theoretical numbers from operation/communication
counts and from rate limiting bandwidths.

Application Kernel Implementation
Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Stencil SGEMM Spread
Sheet

2D FFT

Si
ng

le
 P

re
ci

si
on

 T
FL

O
PS

 @
 4

.2
7

G
H

z
Actual Theoretical

Peak = 1.37

1.07V, 4.27GHz operation 80 C

1919

Why this is so exciting!

Intel’s ASCI Option Red

Intel’s ASCI Red Supercomputer
9000 CPUs

one megawatt of electricity.

1600 square feet of floor space.

Intel’s 80 core teraScale Chip
1 CPU

97 watt

275 mm2

First TeraScale* computer: 1997 First TeraScale% chip: 2007

10 years
later

Source: IntelSource: Intel

%Single Precision TFLOPS running stencil
*Double Precision TFLOPS running MP-Linpack

2020

Lessons: Part 1

• What should we do with our huge transistor counts
– A fraction of the transistor budget should be used for on-die

memory.
– The 80-core Terascale Processor with its on-die memory has

a 2 cycle latency for load/store operations … this compares
to ~100 nsec access to DRAM.

– As core counts increase, the need for on-chip memory will
grow!

– For Power/Performance, specialized cores rule!
• What role should Caches play?

– This NoC design lacked caches.
– Cache coherence limits scalability:

– Coherence traffic may collide with useful communication.
– Increases overhead ... Due to Amdahl’s law, A chip with on the

order of 100 cores would be severely impacted by even a small
overhead ~1%

2121

Lessons: Part 2

• Minimize message passing overhead.
– Routers wrote directly into memory without interrupting

computing … i.e. any core could write directly into the
memory of any other core. This led to extremely small
comm. latency on the order of 2 cycles.

• Programmers can assist in keeping power low if
sleep/wake instructions are exposed and if switching
latency is low (~ a couple cycles).

• Application programmers should help design chips
– This chip was presented to us a completed package.
– Small changes to the instruction set could have had a large

impact on the programmability of the chip.
– A simple computed jump statement would have allowed

us to add nested loops.
– A second offset parameter would have allowed us to

program general 2D array computations.

2222

Agenda

• The 80 core Research Processor

– Max FLOPS/Watt in a tiled architecture

• The 48 core SCC processor

– Scalable IA cores for software/platform research

2323

Acknowledgements

Michael RiepenBareMetalC workflow

Werner HaasTCP/IP network driver

Matthias SteidlSystem Interface FPGA development

Thomas Lehnig
Paul Brett

Linux for SCC

Michael RiepenManagement Console software
• SCC System software:

• SCC Application software:

Patrick KennedyDeveloper tools (icc and MKL)

Rob Van der Wijngaart
Tim Mattson

RCCE library and apps and
HW/SW co-design

• And the HW-team that worked closely with the SW group:

Jason Howard, Yatin Hoskote, Sriram Vangal, Nitin Borkar, Greg Ruhl

2424

SCC full chip

Technology 45nm
Process

Interconnect 1 Poly, 9
Metal (Cu)

Transistors Die: 1.3B,
Tile: 48M

Tile Area 18.7mm2

Die Area 567.1mm2

21.4mm

26.5mm

DDR3
MC

DDR3
MC

PLL +
I/O

VRC

DDR3
MC

DDR3
MC

JTAG

System Interface + I/O

SCC
TILE

SCC
TILE

•24 tiles in 6x4 mesh with 2 cores per tile (48 cores total).

2525

P54cL2$
+
CC

GCUMIU MPB

C
C
F

Router

P54c

P54cL2$
+
CC

GCUMIU MPB

L2$
+
CC

C
C

F
• 2 P54C cores (16K L1$/core)
• 256K L2$ per core
• 8K Message passing buffer
• Clock Crossing FIFOs b/w Mesh

interface unit and Router

• Tile area 18.7mm2

• Core are 3.9mm2

• Cores and uncore units @1GHz
• Router @2GHz

SCC Dual-core Tile

2626

Hardware view of SCC
• 48 P54C cores in 6x4 mesh with 2 cores per tile
• 45 nm, 1.3 B transistors, 25 to 125 W
• 16 to 64 GB total main memory using 4 DDR3 MCs

P54C
(16KB

each L1)

CC

256KB
L2

P54c FSB Mesh
I/F To router

Tile

Traffic
gen

P54C
(16KB

each L1)

CC

256KB
L2

Message
buffer

R = router, MC = Memory Controller, P54C = second generation Pentium core, CC = cache cntrl.

Tile area: ~17 mm2

SCC die area: ~567 mm2

RR
Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R
Tile

Tile

R
Tile

Tile

R

Tile Tile

Tile
R

Tile
R

Bus to
PCI

Tile

Tile

R
Tile

Tile

R

Tile Tile

Tile
R

Tile
R

R RR RR R

RRR RR R

RMC

MC MC

MC

2727

Input
Arbitration

Switch
Arbitration

FI
FO Route

Pre-compute
VC

Allocation

Cycle 1 Cycle 2 Cycle 3 Cycle 4
In-Port 0

Frequency 2GHz @ 1.1V

Latency 4 cycles

Link Width 16 Bytes

Bandwidth 64GB/s per link

Architecture 8 VCs over 2 MCs

Power Consumption 500mW @ 50°C

16B

16B

Router Architecture

27

2828

On-Die 2D Mesh
• 16B wide data links + 2B sideband

– Target frequency: 2GHz

– Bisection bandwidth: 1.5Tb/s to 2Tb/s, avg. power 6W to 12W

– Latency: 4 cycles (2ns)

• 2 message classes and 8 VCs

• Low power circuit techniques

– Sleep, clock gating, voltage control, low power RF

– Low power 5 port crossbar design

• Speculative VC allocation

• Route pre-computation

• Single cycle switch allocation

28

2929

Core Memory Management

• Each core has an address look up Table (LUT) extension
– Provides address translation and routing information.

PCI hierarchy

FPGA registers

Shared

APIC/boot

512MB
Private Maps to MC0

Maps to MPBs
Maps to MC2
Maps to MC1

256MB

Maps to MC3
Maps to VRCs
Maps to LUT

MC# = one of the 4 memory controllers, MPB = message passing buffer, VRC’s = Voltage Regulator control

• Table manages Memory space as
16MB pages marked as private or
shared
– Shared space seen by all cores …

but NO Cache coherency
– Private memory … coherent with a

cores L1 and L2 cache (P54C
memory model).

• User is responsible for setting up
pages to fit within the core and
memory controller constraints

• LUT boundaries are dynamically
programmed

3030

Package and Test Board

Technology 45nm Process
Package 1567 pin LGA package

14 layers (5-4-5)
Signals 970 pins

30

3131

SCC system overview

31

 tile tile

 tile tile

 tile tile

 tile tile

 tile tile

MC

MC

MC

MC

D
IM

M

D
IM

M
D

IM
M

D
IM

M

System Interface

R

R

R

R

R

R

R

R

 tile tile tile tile

 tile tile

 tile tile

 tile tile

 tile tile

 tile tile

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

System
FPGA

PCIe
Management Console PC

SCC die

JTAG
I/O JTAG

BUS

PLL

VRC

3232

Core & Router Fmax

0.01

0.1

1

10

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Vcc (V)

Fr
eq

 (G
H

z)

Core
Router

50°C 0.94V
1.4GHz

0.55V
60MHz

1.34V
2.6GHz

0.73V
300MHz

1.32V
1.3GHz0.94V

0.9GHz

32

3333

Measured full chip power

0

50

100

150

200

250

0.7 0.8 0.91 1 1.05 1.1 1.14 1.21 1.28

Vcc (V)

Po
w

er
 (W

) Active Power
Leakage Power

25W
51W

110W

201W50°C
125W @ 1GHz core,

2GHz mesh

33

3434

Power breakdown

Full Power Breakdown
Total -125.3W

Cores
69%MC &

DDR3-
800
19%

Routers
& 2D-
mesh
10%

Global
Clocking

2%

Low Power Breakdown
Total - 24.7W

Cores
21%

MC &
DDR3-

800
69%

Routers
& 2D-
mesh

5%
Global

Clocking
5%

Clocking: 1.9W Routers: 12.1W
Cores: 87.7W MCs: 23.6W

Clocking: 1.2W Routers: 1.2W
Cores: 5.1W MCs: 17.2W

Cores-125MHz, Mesh-250MHz, 0.7V, 50°CCores-1GHz, Mesh-2GHz, 1.14V, 50°C

34

3535

Programmer’s view of SCC

• 48 x86 cores with the familiar x86 memory model for Private DRAM
• 3 memory spaces, with fast message passing between cores

(/ means on/off-chip)

CPU_0

L
1

$

L
2

$Private
DRAM

CPU_47

L
1

$

L
2

$Private
DRAM

…

Shared on-chip Message Passing Buffer (8KB/core)

Shared off-chip DRAM (variable size)

t&s t&s

t&s Shared test and set register

3636

SCC Software research goals
• Understand programmability and application

scalability of many-core chips.

• Answer question “what can you do with a many-
core chip that has (some) shared non-cache-
coherent memory?”

• Study usage models and techniques for software
controlled power management

• Sample software for other programming model and
applications researchers (industry partners, Flame
group at UT Austin, UPCRC, YOU … i.e. the MARC
program)

Our research resulted in a light weight, compact, low latency
communication library called RCCE (pronounced “Rocky”)

Our research resulted in a light weight, compact, low latency
communication library called RCCE (pronounced “Rocky”)

3737

SCC Platforms

SCC

Apps

Linux

RCCE

PC or server with
Windows or Linux

Apps

OpenMP

SCC

Apps

Baremetal C

RCCE_EMU
Driver

RCCE RCCE

Functional emulator,
based on OpenMP.

• Three platforms for SCC and RCCE
– Functional emulator (on top of OpenMP)
– SCC board with two “OS Flavors” … Linux or Baremetal

(i.e. no OS)

SCC board – NO OpenMP

icc
ifort
MKL icc fort MKL icc fort MKL

RCCE supports greatest common denominator between the three platforms
Third party names are the property of their owners.

3838

High level view of RCCE
• RCCE is a compact, lightweight communication

environment.
– SCC and RCCE were designed together side by side:

– … a true HW/SW co-design project.

• RCCE is a research vehicle to understand how
message passing APIs map onto many core chips.

• RCCE is for experienced parallel programmers willing
to work close to the hardware.

• RCCE Execution Model:
– Static SPMD:

– identical UEs created together when a program starts (this is a
standard approach familiar to message passing programmers)

UE: Unit of Execution … a software entity that advances a
program counter (e.g. process of thread).

3939

How does RCCE work? Part 1

Consequences of MPBT properties:
If data changed by another core and image still in L1, read returns stale data.

Solution: Invalidate before read.
L1 has write-combining buffer; write incomplete line? expect trouble!

Solution: don’t. Always push whole cache lines
If image of line to be written already in L1, write will not go to memory.

Solution: invalidate before write.

Message passing buffer
memory is special … of
type MPBT

Cached in L1, L2
bypassed. Not coherent
between cores

Data cached on read, not
write. Single cycle op to
invalidate all MPBT in L1
… Note this is not a flush

Discourage user operations on data in MPB. Use only as a data
movement area managed by RCCE … Invalidate early, invalidate often

4040

How does RCCE work? Part 2
• Treat Msg Pass Buf (MPB) as 48 smaller buffers … one per core.

…
0 1 2 473

• Symmetric name space … Allocate memory as a collective op.
Each core gets a variable with the given name at a fixed offset
from the beginning of a core’s MPB.

2

A = (double *) RCCE_malloc(size)
Called on all cores so any core can
put/get(A at Core_ID) without
error-prone explicit offsets

Flags allocated
and used to
coordinate
memory ops

4141

How does RCCE work? Part 3
• The foundation of RCCE is a one-sided put/get interface.

• Symmetric name space … Allocate memory as a collective and
put a variable with a given name into each core’s MPB.

0

CPU_0

L
1

$

L
2

$Private
DRAM

t&s

CPU_47

L
1

$

L
2

$Private
DRAM

t&s

47…

Put(A,0)

… and use flags to make the put’s and get’s “safe”

Get(A, 0)

4242

The RCCE library
• RCCE API provides the basic message passing

functionality expected in a tiny communication
library:

– One + two sided interface (put/get
+ send/recv) with synchronization
flags and MPB management
exposed.
– The “gory” interface for

programmers who need the most
detailed control over SCC

– Two sided interface (send/recv)
with most detail (flags and MPB
management) hidden.
– The “basic” interface for typical

application programmers.
send() recv ()

put() get()

4343

Linpack and NAS Parallel benchmarks

3. LU: Pencil decomposition
– Define 2D-pipeline process.

– await data (bottom+left)
– compute new tile
– send data (top+right)

4

4

4

4

4

4

4

3

3 3

3

3

2 2

2
UE 0

UE 1

UE 2

UE 3

UE 3 UE 7 UE 15UE 11

1

x-sweep

y-s
wee

p

z-
sw

ee
p

1. Linpack (HPL): solve dense system of linear equations
– Synchronous comm. with “MPI wrappers” to simplify porting

2. BT: Multipartition decomposition
– Each core owns multiple blocks (3 in this case)
– update all blocks in plane of 3x3 blocks
– send data to neighbor blocks in next plane
– update next plane of 3x3 blocks

Third party names are the property of their owners.

4444

RCCE functional emulator vs. MPI
HPL implementation of
the LINPACK benchmark

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 101 121 141 161 181 201

G
Fl

op
s

Case Number

MPI
RCCE

RCCE 1-bit flags

Low overhead synchronous
message passing pays off
even in emulator mode
(compared to MPI)

Standard HPL algorithm variation case numbers

G
FL

O
PS

*3 GHz Intel® Xeon® MP processor in a 4 socket SMP platform (4 cores total), L2=1MB, L3=8MB, Intel® icc 10.1 compiler, Intel® MPI 2.0

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

These results provide a comparison of RCCE and MPI on an older 4 processor Intel® Xeon® MP
SMP platform* with tiny 4x4 block sizes. These are not official MP-LINPACK results.

Matrix Order fixed at 2200
4 Intel®Xeon® MP Processors

Third party names are the property of their owners.

4545

Linpack, on the Linux SCC platform

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

cores

G
Fl

op
s

Matrix order 1000

• Linpack (HPL)* strong scaling results:
– GFLOPS vs. # of cores for a fixed size problem (1000).
– This is a tough test … scaling is easier for large problems.

• Calculation Details:
– Un-optimized C-BLAS
– Un-optimized block size (4x4)
– Used latency-optimized whole

cache line flags
– Performance dropped ~10%

with memory optimized 1-bit
flags

• Calculation Details:
– Un-optimized C-BLAS
– Un-optimized block size (4x4)
– Used latency-optimized whole

cache line flags
– Performance dropped ~10%

with memory optimized 1-bit
flags

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official LINPACK benchmark results.

Third party names are the property of their owners.

4646

LU/BT NAS Parallel Benchmarks, SCC

0

400

800

1200

1600

2000

0 10 20 30 40

cores

M
Fl

op
s LU

BT

• Using latency
optimized,
whole cache
line flags

Problem size: Class A, 64 x 64 x 64 grid*

SCC processor 500MHz core, 1GHz routers, 25MHz system interface, and DDR3 memory at 800 MHz.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or
software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information
on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

* These are not official NAS Parallel benchmark results.

Third party names are the property of their owners.

4747
Frequency

Voltage

MC

MC MC

MC R
Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R

R
Tile

Tile
R

R
Tile

Tile
R

Tile

R
Tile

R

Tile Tile
R

Bus to
PCI

Tile

Tile

R

R
Tile

Tile
R

Tile

R
Tile

R

Tile

R
Tile

R RR

RR

R

RRR

RC package

Power and memory-controller domains

Power ~ F V2

–Power Control domains (RPC):
–7 voltage domains … 6 4-
tile blocks and one for on-
die network.
–1 clock divider register per
tile (i.e. 24 frequency
domains)
–One RPC register so can
process only one voltage
request at a time; other
requestors block

Memory

4848

• RCCE power management emphasizes safe control:
V/GHz changed together within each 4-tile (8-core)
power domain.
– A Master core sets V + GHz for all cores in domain.

– RCCE_istep_power():
– steps up or down V + GHz, where GHz is max for selected

voltage.

– RCCE_wait_power():
– returns when power change is done

– RCCE_step_frequency():
– steps up or down only GHz

• Power management latencies
– V changes: Very high latency, O(Million) cycles.
– GHz changes: Low latency, O(few) cycles.

RCCE Power Management API

4949

Independent tasks
(all different sizes)

Dependent, synchronized
subtasks; exchange
interface data each
iteration

Overall data space

Team
member

Team
member

Team
member

Team
lead

Power management test

xch xch xch

• A three-tier master-worker hierarchy,
– one overall master, one team-lead per power domain, Team-

members (cores) to do the work.

• Workload: A stencil computation to solve a PDE.

5050

5151

5252

5353

5454

SCC Demo ShowcaseSCC Demo Showcase
Financial Analytics
w/ shared virtual memory

Microsoft Visual Studio Advanced Power Management

JavaScript Physics Modeling HPC Parallel Workloads Hadoop Web Search

5555

Conclusions
• RCCE software works

– RCCE’s restrictions (Symmetric MPB memory model and blocking
communications) have not been a fundamental obstacle

– Functional emulator is a useful development/debug device
• SCC architecture

– The on-chip MPB was effective for scalable message passing
applications

– Software controlled power management works … but it’s
challenging to use because (1) granularity of 8 cores and (2) high
latencies for voltage changes

– The Test&set registers (only one per core) will be a bottleneck.
– Sure wish we had asked for more!

• Future work
– Add shmalloc() to expose shared off-chip DRAMM (in progress).
– Move resource management into OS/drivers so multiple apps can

work together safely.
– We have only just begun to explore power management

capabilities … we need to explore additional usage models.

5656

Backup Slides

• Details on 80 core processor
application kernels

• More on RCCE

5757

Stencil
• Five point stencil for Gauss Seidel relaxation to solve a heat

diffusion equation with Dirichlet/periodic boundary conditions.
• Flattened 2D array dimensions and unrolled fused inner and

outer loops to meet the single-loop constraint
• Periodic Boundary conditions relaxed so updates at iteration q

might use values from iteration q-1 off by one mesh width. This
reduces method to O(h) … answer’s correct but convergence
slows

• Parallelization:
– Solve over a long narrow strip. Copy

fringes between cores so fringes are
contiguous (1D communication loop) if
split vertically

Communication
Pattern

Stencil over NxM grid

M=2240, N= 16

5858

SGEMM
• Only one level of loops so we used a dot product algorithm …

unrolled loop for dot product
• Stored A and C by rows and B by column in diagonal wrapped

order

On core number i
Loop over j = 1, M
{

Cij = dot_product (row Ai * column Bj)
Circular shift column Bj to neighbor

}

• Treat cores as a ring and circular shift
columns of B around the ring.

• After they complete once cycle through
the full ring, the computation is done

Communication
Pattern

C(N,N) = A(N,M)*B(M,N)

N = 80, M = 206

5959

Spreadsheet
• Consider a table of data v and weights w, stored by columns
• Compute weighted row and column sums (dot products):

– Column sum: vi = Σk vi,k*wi,k = Σk vi+kN*wi+kN,
– Row sum: vk = Σi vi,k*wi,k = Σi vi+kN*wi+kN

• Data size on each tile small enough to unroll loop over rows

Linearize
array indices

• Column sums local to a tile.
• Row sums required a vector reduction across all rows.
• We processed many spread sheets at once so we could

pipeline reductions to manage latencies.
• 76 cores did local csum and passed results to one of

four accumulator nodes.
• The four nodes combined results to get final answer.

Communication
Pattern

LxN table of
value/weight pairs.
N = 10, L = 1600

6060

2D FFT

• 64 Point 2D FFT on an 8 by 8 Grid.
• Pease Algorithm

– “Peers” in each phase are constant … a
constant communication pattern
throughout the computation.

• Parallelization:
– Basic operation FFT of 64 long vector

along a column of 8 tiles
– FFT of 8-long vector in each tile
– Communication:

– Each cell communicates with each
cell in the column.

– When the column computations
are done, each cell communicates
with each cell in the row.

– Unrolled inner loops … this filled
instruction memory and limited overall
problem size

0

1

2

3

4

5

6

7

X
0

4

2

6

1

5

3

7

x

2D FFT (NxN) N = 64

Communication
Pattern

6161

Power Performance Results

0

1

2

3

4

5

6

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Vcc (V)

Fr
eq

ue
nc

y
(G

H
z) 80°C

N=80

(0.32 TFLOP)
1GHz

(1 TFLOP)
3.16GHz

(1.81 TFLOP)
5.67GHz

(1.63 TFLOP)
5.1GHz

Peak PerformancePeak Performance Average Power EfficiencyAverage Power Efficiency

LeakageLeakageMeasured PowerMeasured Power

0

25

50

75

100

125

150

175

200

225

250

0.70 0.80 0.90 1.00 1.10 1.20 1.30

Vcc (V)

Po
w

er
 (

W
)

Active Power

Leakage Power

78

15.6

152

26

1.33TFLOP @ 230W80°C, N=80

1TFLOP @ 97W

Stencil: 1TFLOP @ 97W, 1.07V; All tiles awake/asleep

0

5

10

15

20

200 400 600 800 1000 1200 1400

GFLOPS

GF
LO

PS
/W

80°C
N=80

5.8

19.4

394 GFLOPS

10.5

0%

4%

8%

12%

16%

0.70 0.80 0.90 1.00 1.10 1.20 1.30
Vcc (V)

%
 T

ot
al

 P
ow

er

Sleep disabled
Sleep enabled

80°C
N=80

2X

6262

Backup Slides

• Details on 80 core processor
application kernels.

• More on RCCE

6363

Richly

Restricted

Communicating Cores

Capability Communication Environment

Ecosystem

Radically Cool Coordination E-science

Research Cores Communication Environment

Rabble-of Communicating Cores Experiments

Rock Creek Communication Environment

Rorschach Core Communication Express

Rapidly Communicating Cores Env.

R C C E
A small library for many-core communication

Reduced Compact Communication Environment

Rob van der Wijngaart (Software and Services Group)

Tim Mattson (Intel Labs)

6464

RCCE: Supporting Details

• Using RCCE and example RCCE code
• Additional RCCE implementation details
• RCCE and the MPI programmer

6565

RCCE API: Writing and running RCCE programs
• We provide two interfaces for the RCCE programmer:

• Basic Interface (general purpose programmers):
• FLAGS and Message Passing Buffer memory management

hidden from the programmer.
• Gory interface (hard core performance programmers):

• One sided and two sided
• Message Passing Buffer management is explicit
• Flags allocated and managed by programmer.

• Build you job linking to the appropriate RCCE library, then run
with rccerun

rccerun –nue N [optional params] program[params]

–program executes on N UEs as if it were invoked as:
“program params” (no parameters allowed for Baremetal)

–Optional parameters
-f hostfile: lists physical core IDs available to execute code
-emulator: run on functional emulator

6666

for (int round=0; round<nrounds; round++) {

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE_wait_until(flag_sent,
RCCE_FLAG_SET);

RCCE_flag_write(&flag_sent,
RCCE_FLAG_UNSET, ID);

RCCE_get(buffer, cbuffer, size, ID);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left);
}

#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();
ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
size = BUFSIZE*sizeof(double);
buffer = (double *) malloc(size);
cbuffer = (double *) RCCE_malloc(size);

/* create and initialize flag variables */
RCCE_flag_alloc(&flag_sent);
RCCE_flag_alloc(&flag_ack);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_UNSET, ID))
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left))

RCCE API: Circular Shift one sided

BUFSIZE must be divisible by 4
Message must fit inside Msg Buff

6767

for (int round=0; round<nrounds; round++) {

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE_wait_until(flag_sent,
RCCE_FLAG_SET);

RCCE_flag_write(&flag_sent,
RCCE_FLAG_UNSET, ID);

RCCE_get(buffer, cbuffer, size, ID);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left);
}

#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();
ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
size = BUFSIZE*sizeof(double);
buffer = (double *) malloc(size);
cbuffer = (double *) RCCE_malloc(size);

/* create and initialize flag variables */
RCCE_flag_alloc(&flag_sent);
RCCE_flag_alloc(&flag_ack);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_UNSET, ID))
RCCE_flag_write(&flag_ack,

RCCE_FLAG_SET, ID_left))

RCCE API: Circular Shift one-sided

RCCE_get(buffer, cbuffer, size, ID));
Get cbuffer from core ID and move it into my private memory (buffer)

RCCE_put(cbuffer, buffer, size, ID);
Put my private memory (buffer) into the msg buffer (cbuffer) of core ID

RCCE_FLAG flg;
RCCE_flag_alloc(&flg);
RCCE_flag_set(flg, RCCE_FLAG_SET, ID); or RCCE_FLAG_UNSET
RCCE_wait_until(flg, RCCE_FLAG_SET,ID); or RCCE_FLAG_UNSET

BUFSIZE must be divisible by 4
Message must fit inside Msg Buff

6868

RCCE_wait_until(flag_ack, RCCE_FLAG_SET);
RCCE_flag_write(&flag_ack,

RCCE_FLAG_UNSET, ID);
RCCE_put(cbuffer, buffer, size, ID_right);
RCCE_flag_write(&flag_sent,

RCCE_FLAG_SET, ID_left);

RCCE API: “Basic” interface, two sided

• flags needed to
make transfers
safe.

• Large messages
must be broken up
to fit into the Msg
Buff.

• We can hide these details by letting library manage flags +MPB:

RCCE_recv(buffer, size, ID));
Receive into private memory (buffer) from core ID

RCCE_send(buffer, size, ID);
Send private memory (buffer) to core ID

• This is Synchronous message passing … the send and receive do
not return until the communication is complete on both sides.

6969

for (int round=0; round<nrounds; round++) {

for (int c = 0; c<2; c++) {
if ((ID+c)%2)

RCCE_send(buffer, size, ID_right);
else

RCCE_recv(buffer2, size, ID_left);
}
memcpy(buffer, buffer2, size);

}

#include <string.h>
#include "RCCE.h"
int RCCE_APP() {

RCCE_init(&argc, &argv);
NUES = RCCE_num_ues();

ID = RCCE_ue();

ID_right = (ID+1)%NUES;
ID_left = (ID-1+NUES)%NUES;
int size = BUFSIZE*sizeof(double);
buffer = (double *) malloc (size);
buffer2 = (double *) malloc (size);

RCCE API: Circular Shift with 2-sided Basic interface

BUFSIZE may be anything
Message need not fit inside Msg Buf

Hides buffer and flag allocation,
messages “packetizing”, and flag
synchronization.

Anticipate most programmers will use
this RCCE version

7070

RCCE: Supporting Details

• Using RCCE and example RCCE code
• Additional RCCE implementation details
• RCCE and the MPI programmer

7171

offsets to “remote” MPB

RCCE_MPB[ID] = start of MPB for UE “ID”
RCCE_IAM = library shorthand for calling UE
target/source cache line aligned, size%32=0, data fits inside MPB

RCCE Implementation details:
One-sided message passing; safely but blindly transport
data between private memories

RCCE_put(char *target, char *source, size_t size, int ID)
{
target = target + (RCCE_MPB[ID]-RCCE_MPB[RCCE_IAM]);
RCCE_cache_invalidate();
memcpy(target, source, size);

}
RCCE_get(char *target, char *source, size_t size, int ID)
{
source = source + (RCCE_MPB[ID]-RCCE_MPB[RCCE_IAM]);
RCCE_cache_invalidate();
memcpy(target, source, size);

}

7272

RCCE_send(char *privbuf, char *combuf, RCCE_FLAG *ready,
RCCE_FLAG *sent, size_t size, int dest) {

RCCE_put(combuf, privbuf, size, RCCE_IAM);
RCCE_flag_write(sent, SET, dest);
RCCE_wait_until(*ready, SET);
RCCE_flag_write(ready, UNSET, RCCE_IAM);}

RCCE_recv(char *privbuf, char *combuf, RCCE_FLAG *ready,
RCCE_FLAG *sent, size_t size, int source) {

RCCE_wait_until(*sent, SET);
RCCE_flag_write(sent, UNSET, RCCE_IAM);
RCCE_get(privbuf, combuf, size, source);
RCCE_flag_write(ready, SET, source); }

HANDSHAKES
sent, ready:
synchronization
flags stored in MPB

RCCE Implementation details:
Two-sided message passing; safely transport data between
private memories, with handshake.

• Body gets called in a loop (+ padding if necessary) for large messages
• send and recv asymmetric: needed to avoid deadlock
• No size or alignment restrictions
• We get rid of these parameters in our “basic” interface (≈MPI)

7373

• Flags implemented two ways
1. whole MPB memory line (96 flags, 30% of MPB)
2. single bit (1 MPB memory line for all flags)

Control write access through atomic test&set register, implementing
lock.
No need to protect read access.

• Implications of the two types of flags:
─ Single bit saves MPB memory but you pay with a higher latency.
─ Whole cache line wastes memory but lowers latency.

RCCE Implementation Details:
Flags

7474

void RCCE_flag_write(RCCE_FLAG *flag, RCCE_FLAG_STATUS val, int ID) {
volatile unsigned char val_array[RCCE_LINE_SIZE];

/* acquire lock so nobody else fiddles with the flags on the target core */
RCCE_acquire_lock(ID);
/* copy line containing flag to private memory */
RCCE_get(val_array, flag->line_address, RCCE_LINE_SIZE, ID);
/* write “val” into single bit corresponding to flag */
RCCE_write_bit_value(val_array, flag->location, val);
/* copy line back to MPB */
RCCE_put(flag->line_address, val_array, RCCE_LINE_SIZE, ID);
/* release write lock for the flags on the target core */
RCCE_release_lock(ID);

}
void RCCE_acquire_lock(int ID) {

while (!((*(physical_lockaddress[ID])) & 0x01));
}
void RCCE_release_lock(int ID) {
*(physical_lockaddress[ID]) = 0x0;
}

RCCE Implementation Details:
RCCE flag write scenario (single bit)

physical_lockaddress[ID]: address of test&set register on core with rank ID.
RCCE_flag_read does not need lock protection.

7575

RCCE: Supporting Details

• Using RCCE and example RCCE code
• Additional RCCE implementation details
• RCCE and the MPI programmer

7676

RCCE vs MPI
• No opaque data types in RCCE, so no MPI-style

handles, only pointers

• No RCCE_datatype, except for reductions

• No communicators, except in collective
communications

• Only synchronous communications
+ No message bookkeeping
─ No overlap of computations/communications
─ Deadlock?

• RCCE has low overhead due short communication
stack:
– RCCE_send→RCCE_put→memcpy

7777

RCCE vs MPI: Avoiding deadlock
• If sending and receiving UE sets overlap, deadlock is possible.

Cause: cycles in communication graph (cyclic dependence).
• If no cycles, communication may serialize
• Solution:

─ Divide communication pattern into disjoint send-receive UE
sets (bipartite graphs), execute in phases.

─ Number of phases depends on pattern.
─ For permutation pattern, two phases min, three max:

1. Each permutation can be divided into cycles (length L)
2. If L even, red/black coloring suffices.
3. If L odd (2n+1), apply 2. to 2n UEs, then finish

communications for last UE. Each cycle takes O(1)
time.

– Note: coloring is wrt position in cycle, not UE rank; may need
different phase colorings for different patterns.

7878

RCCE vs MPI: Avoiding deadlock
you
are
here

you
are
here

MPI

RCCE
send recv

recv send

Programmer just
posts (i)sends and
(i)receives as needed

Programmer
must pair all
sends and
receives

7979

RCCE vs MPI: Avoiding deadlock

– Notes:
– MPI version cell based; RCCE version interface based
– RCCE fairly easy to grok, but requires restructuring to

interleave sends/recvs

RCCE: if (!IAM_LEFTMOST)
for (phase = 0; phase < 3; phase++) {

if (send_color==phase) RCCE_send(to_right);
if (recv_color==phase) RCCE_recv(from_left);

}
compute;

– pseudo-code example from HPC application:

MPI: if (!IAM_LEFTMOST) {
MPI_irecv(from_left);
MPI_wait(on_isend);
MPI_wait(on_irecv);

}
compute;

if (!IAM_RIGHTMOST) MPI_isend(to_right);

