
Master of Science in Computer Science
August 2011
Anne Cathrine Elster, IDI
Sverre Jarp, CERN

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Computer and Information Science

Optimizing a High Energy Physics (HEP)
Toolkit on Heterogeneous Architectures

Yngve Sneen Lindal

Optimizing a High Energy Physics (HEP) Toolkit on
Heterogeneous Architectures

Yngve Sneen Lindal

NTNU

Page intentionally left blank

Abstract

A desired trend within high energy physics is to increase particle accelerator luminosities,
leading to production of more collision data and higher probabilities of finding interesting
physics results. A central data analysis technique used to determine whether results are
interesting or not is the maximum likelihood method, and the corresponding evaluation of
the negative log-likelihood, which can be computationally expensive. As the amount of data
grows, it is important to take benefit from the parallelism in modern computers. This, in
essence, means to exploit vector registers and all available cores on CPUs, as well as utilizing
co-processors as GPUs.

This thesis describes the work done to optimize and parallelize a prototype of a central
data analysis tool within the high energy physics community. The work consists of optimiza-
tions for multicore processors, GPUs, as well as a mechanism to balance the load between
both CPUs and GPUs with the aim to fully exploit the power of modern commodity comput-
ers. We explore the OpenCL standard thoroughly and we give an overview of its limitations
when used in a large real-world software package. We reach a single-core speedup of ∼ 7.8x

compared to the original implementation of the toolkit for the physical model we use through-
out this thesis. On top of that follows an increase of ∼ 3.6x with 4 threads on a commodity
Intel processor, as well as almost perfect scalability on NUMA systems when thread affinity
is applied. GPUs give varying speedups depending on the complexity of the physics model
used. With our model, price-comparable GPUs give a speedup of ∼ 2.5x compared to a
modern Intel CPU utilizing 8 SMT threads.

The balancing mechanism is based on real timings of each device and works optimally for
large workloads when the API calls to the OpenCL implementation impose a small overhead
and when computation timings are accurate.

Page intentionally left blank

Acknowledgements

I want to thank my supervisor, Dr. Anne C. Elster for taking the time to be my supervisor
despite her sabbatical this year, for giving good advice, and for putting me in contact with,
and recommending me to CERN in the first place. I also want to thank Else Lervik for
recommending me to CERN.

I am very grateful to my colleagues at CERN openlab; my co-supervisor Sverre Jarp,
Dr. Alfio Lazzaro, Julien Leduc and Andrzej Nowak for an inspiring working environment
and constructive feedback on my work. I am especially grateful to Dr. Alfio Lazzaro which
has been my closest mentor during this work. His help and feedback has been invaluable. I
also want to thank my office colleague Julien Leduc once more for helping out with various
software and hardware setups, in addition to providing useful comments on some of my
work. Finally I want to thank Dr. Ian Karlin for reviewing my work and providing valuable
corrections, and Filippo Spiga for providing access to an NVIDIA Tesla C2050 GPU during
benchmarks.

Page intentionally left blank

Contents

Abstract i

Acknowledgements ii

List of tables vii

List of listings viii

List of figures ix

1 Introduction 1
1.1 Motivation, goals and questions . 3
1.2 Outline . 5

2 Background 9
2.1 The RooFit toolkit . 9
2.2 The maximum likelihood method . 12
2.3 Implementation . 16
2.4 Optimization efforts . 18
2.5 Principles of parallel computation . 21

2.5.1 Flynn’s taxonomy . 21
2.5.2 Amdahl’s law vs. Gustafsson’s law 22

2.6 Numerical sensitivity . 23
2.7 Eta’K model description . 25

3 MLFit on multi-core processors 27
3.1 The motivation for multi-core processors . 27
3.2 Alternative threading technologies . 29

iv

CONTENTS v

3.2.1 Brief OpenCL introduction . 29
3.2.2 OpenCL for CPUs . 30
3.2.3 Preliminary OpenCL conclusion . 35
3.2.4 Intel Threading Building Blocks . 36

3.3 General optimizations . 38
3.3.1 A different evaluation approach . 38
3.3.2 Aiming for scalability . 41
3.3.3 Result propagation and loop fusion 43
3.3.4 Constant expressions . 44

3.4 Results . 45
3.4.1 TBB and OpenMP, explicit and implicit 47
3.4.2 Block splitting . 49
3.4.3 Scalability so far . 51
3.4.4 Result propagation, loop fusion and constant expressions 54
3.4.5 NUMA results . 56
3.4.6 Preliminary conclusion . 57

4 MLFit on GPUs 59
4.1 Graphics processing units . 59
4.2 Implementation . 61
4.3 An initial experiment . 62

4.3.1 Measuring the double-precision basic operations 64
4.3.2 Performance of computations involving transcendentals 65
4.3.3 The effect of OpenCL vector types 66

4.4 Optimization possibilities . 69
4.4.1 Single-precision . 70
4.4.2 Parallel reduction . 70
4.4.3 Texture cache . 71
4.4.4 Result propagation and loop fusion 71
4.4.5 Constant expressions . 72
4.4.6 Occupancy . 72

4.5 Results . 73

5 Heterogeneous load balancing on commodity machines 79
5.1 Load balancing . 79

CONTENTS vi

5.2 Strategy . 80
5.2.1 Method . 82
5.2.2 Implementation details . 82

5.3 Benchmark results . 85
5.3.1 Test case 1: Intel Core i7 965 + NVIDIA GTX470 85
5.3.2 Test case 2: Intel Core i7 965 + AMD Radeon HD5870 88
5.3.3 Test case 3: NVIDIA GTX470 + AMD Radeon HD5870 91

5.4 Considerations on optimal execution configurations 93

6 Conclusions and future work 95
6.1 Conclusions . 95
6.2 Future work . 98

A OpenCL test kernels with varying arithmetic intensity 105

B OpenCL test kernels involving transcendentals 109

C The eta’K model implementation 111

D A tree illustration of the eta’K model 117

E OpenCL kernels for the PDFs used in the eta’K model 119

F NVIDIA Tesla benchmarks 123

G CERN openlab report: First encounter with OpenCL for multicore CPUs127

List of Tables

3.1 5 timings for 100 eta’K model evaluations with 4 threads and 1 000 000 events. 47

4.1 A specification comparison between the NVIDIA GeForce GTX470 and the
AMD Radeon HD5870. 63

4.2 DP basic operations counts for the kernels listed in Appendix A. 64
4.3 Timings, mean, standard deviation and standard error for 100 NLL evaluations

with 1 000 000 events, both for the GTX470 and the HD5870. 77

5.1 5 timings, mean, standard deviation and standard error for the balanced run
with the Core i7 965 and the GTX470. 1 000 000 events. 86

5.2 5 timings, mean, standard deviation and standard error for the balanced run
with the Core i7 965 (3 threads) and the HD5870. 1 000 000 events. 89

5.3 5 timings, mean, standard deviation and standard error for the balanced run
with the GTX470 and the HD5870. 1 000 000 events. 91

5.4 A comparison between equation 5.4.2 and some well-known polynomials. . . 93

F.1 The specifications of the NVIDIA Tesla C2050 professional GPU. 123

vii

List of listings

2.1 A RooFit program to plot toy data on a pre-defined statistical model. 9
2.2 A simplified version of the base PDF class of RooFit. 16
2.3 A simple implementation of the NLL function, relying on a PDF composite

model. 17
3.1 OpenMP version of a Gaussian evaluation function. 30
3.2 The OpenCL equivalent of the function in listing 3.1. 30
3.3 A wrapper function for calling the OpenCL Gaussian evaluation kernel in

listing 3.2. 32
3.4 The vectorized version of the kernel in listing 3.2. 34
3.5 Same as listing 3.4, but with more work per thread. 35
3.6 C++/pseudocode describing the use of the TBB parallel_for method. 37
3.7 Evaluation of the BifurGaussian function, calculating constant values for each

evaluation. 45
5.1 A conceptual implementation of the balancing method. 83
5.2 Threading implementation utilizing both CPU(s) and GPU(s). 84
A.1 OpenCL kernels with varying arithmetic intensity 105
B.1 OpenCL test kernels involving transcendentals 109
C.1 The eta’K model implementation . 111
E.1 OpenCL kernels for the PDFs used in the eta’K model 119

viii

List of Figures

1.1 The Atlas detector. ATLAS Experiment © 2011 CERN. 2
1.2 One signal and one background event probability distribution fitted to toy

data, and the combined signal+background PDF fitted to real data. 4

2.1 The resulting plot from the program in Listing 2.1. 11
2.2 The search for the minimum of a 2D function. 15
2.3 A simple illustration of the PDF tree resulting from the listing in Figure 2.1. 17
2.4 An Intel Vtune Amplifier 2011 hotspot profile of the optimized OpenMP ver-

sion of the MLFit application running with 100 000 events and 4 threads on
an Intel Core i7 965 machine. Note that this is an excerpt of the contributing
functions, showing the most time consuming ones. 20

2.5 An illustration of Amdahl’s law for a parallel computation with serial fractions
of respectively 5%, 10%, 25% and 50%. 23

3.1 An OpenCL thread grid consisting of workgroups (or blocks in NVIDIA ter-
minology). 29

3.2 Performance comparison of a single-threaded evaluation of the eta’K model
for OpenCL versus OpenMP with the Intel C compiler both with and without
vectorization (both SSE and AVX). 1 000 000 events. 36

3.3 An explicitly parallel evaluation of a PDF tree. 39
3.4 An implicitly parallel evaluation of a PDF tree. 40
3.5 VTune hotspot profiles for the OpenMP implicitly parallel version on 4 threads.

N is 100 000 and 1 000 000 respectively. 41
3.6 The topology of an Intel Core i7 965 CPU. 46
3.7 OpenMP version versus TBB version on the Intel Core i7 965. Both explicitly

parallel and implicitly parallel. 48

ix

LIST OF FIGURES x

3.8 Implicitly parallel versions of OpenMP and TBB on the Intel Core i7 965,
with and without block splitting. The blocked explicitly parallel version is
also included to compare with the blocked implicitly parallel one. 50

3.9 The average speedup of going from an explicitly parallel to an implicitly paral-
lel evaluation, with errors. The average is taken over all threads, and is shown
for different values of N . 51

3.10 Scalability of the OpenMP blocked implicitly parallel version. 53
3.11 Scalability of the most important OpenMP versions. 55
3.12 Speedup relative to the OpenMP explicit version. 55
3.13 MLFit scalability on a dual-socket Intel Core i7 machine. 57
3.14 A VTune hotspot profile of the final version, running 1 000 000 events on 4

threads on the Intel Core i7 965. 58

4.1 An explicitly parallel evaluation with OpenCL in MLFit. 62
4.2 The benchmark results for both NVIDIA GTX470 and AMD Radeon HD5870

running the kernels in Appendix A. 65
4.3 Benchmark results from the kernels in Appendix B running on the NVIDIA

GTX470 and the AMD Radeon HD5870 respectively. 67
4.4 Kernel 6 from appendix A run with and without using double-precision vector

types for both the GTX470 and the HD5870. 69
4.5 Kernel 6 from appendix A run with and without using single-precision vector

types for both the GTX470 and the HD5870. 70
4.6 MLFit benchmark, comparison between CPU and GPU. 74
4.7 MLFit benchmark, comparison between CPU and both GPUs. 76
4.8 Gaussian function evaluation, CPU and both GPUs. 76

5.1 The balancing convergence of the Core i7 965 and the GTX470 together, run-
ning with 1 000 000 events. 86

5.2 Speedup results from balancing between the Core i7 965 and the GTX470. . 87
5.3 The balancing convergence of the Core i7 965 and the HD5870 together, run-

ning with 1 000 000 events. 89
5.4 Speedup results from balancing between the Core i7 965 and the Radeon HD5870. 90
5.5 Speedup results from balancing between the GTX470 and the Radeon HD5870. 92

D.1 Tree illustration of the eta’K model. Double-circled red nodes are composite
PDFs, single-circled are ordinary PDFs and blue nodes are variables. 118

LIST OF FIGURES xi

F.1 Equivalent to figure 4.2, but with the Tesla C2050 in addition. 124
F.2 Tesla results for the kernels involving transcendentals in Appendix B. . . . 125
F.3 MLFit benchmark including results for the Tesla C2050. Eta’K model evalu-

ation. 126

Chapter 1

Introduction

Particle physics, or High Energy Physics (HEP), is the field of studying the basic building
blocks of the universe, the elementary particles. These particles includes 6 quarks, 6 leptons,
intermediate bosons, and hadrons, as well as all these particles’ antiparticles [1]. In addition,
theorists believe there are yet undiscovered particles like for instance the Higgs boson(s). For
each of these undiscovered particles, there exist important questions; does it exist? what are
its physical properties? what happens when it collides with another particle? etc. However,
many particles like the elementary particles cannot be seen in the natural physical conditions
on our planet, but can only be discovered and studied under very special circumstances. There
is ongoing research to find new particles, as well as study other effects, and to accomplish
that, subatomic particles like protons and ions are accelerated by extreme electromagnetic
fields and collided against each other in special machines called particle accelerators. Then,
to catch instances of some phenomenon X, often enormous devices called detectors tries
to observe the effect of particle interactions/decays (also called events), interpret physical
results, and store them as binary data.

CERN, the European Organization for Nuclear Research is an international organization
with the purpose to operate the world’s largest particle physics laboratory [2]. It is located
just outside Geneva at the border between France and Switzerland. It is the birthplace of the
World Wide Web and also the home of the Large Hadron Collider (LHC), which is the world’s
largest and most high-energetic particle accelerator [3]. The LHC can accelerate beams of
particles with so high energy levels that hopefully new physics extending the Standard Model
of particle physics [4] (the model describing the dynamics of sub-atomic particles) can be
found, as well as answers to remaining unsolved questions within physics. The Atlas detector
at the LHC, reprinted from [5], is illustrated in Figure 1.1. The amount of data produced

1

2

Figure 1.1: The Atlas detector. ATLAS Experiment © 2011 CERN.

by collision detectors is huge, and therefore a lot of computing power in terms of number-
crunching capability as well as storage capacity is needed.

A collision, as we mentioned, can lead to observations/phenomena called events. An
event is a collection of physical parameters from the collision. The detectors select the events
that look promising (also called candidate events) with respect to what is expected to be
found and record them. An experiment often starts with a physical model of the expected
outcome, which in essence is a collection of probability density functions (hereby abbreviated
PDFs) combined in some way, each of them representing some probability distribution for
e.g. which energies should be observed if an instance of phenomenon X has been observed,
which velocities, which masses etc. When these candidate events are recorded, they can be
analyzed further by statistical analysis bound to the relevant model. Events that to a high
statistical certainty are believed to be instances of X are called signals, while all other events
are called backgrounds. There will always be background events in an experiment since the
probability is very high for that other interactions/decays that are not directly relevant for
X happen. Figure 1.2a shows a signal PDF and figure 1.2b shows a background PDF. The
dots in these two plots are just toy data generated by Monte-Carlo methods with respect to
the PDF. However, figure 1.2c shows a PDF combined of these two fitted to real data. It
is easy to see that the observations fit the model good, and that the probability of finding

1.1. MOTIVATION, GOALS AND QUESTIONS 3

what was expected is high.
The work of this thesis has been performed during the spring of 2011 at CERN openlab,

which is a collaboration between CERN and industrial partners to develop new knowledge in
Information and Communication Technologies through the evaluation of advanced solutions
and joint research to be used by the worldwide community of scientists working at the Large
Hadron Collider [6].

1.1 Motivation, goals and questions

The physical model we have used for testing and benchmarking throughout this thesis is a
model stemming from the publication B meson decays to charmless meson pairs containing η
or η´ mesons [7], which is a real measurement performed by the BABAR collaboration at the
SLAC National Accelerator Laboratory (SNAL) [8]. The model will hereby be called eta’K
because of the measurement it was used for, that is, B meson decay to η’K final state. To give
the main motivation of this work, we give an example by introducing the concepts of cross
section and luminosity. A barn is a unit of area used to measure the reaction cross section of
atomic nuclei and subatomic particles in the study of their interactions with other nuclei or
particles [9], and equals 10−24 cm2. Luminosity is a measure of the total data collected by an
accelerator, and can be expressed by inverse barn, b−1 and inverse time, s−1. If one integrates
luminosity with respect to time, one gets the integrated luminosity, expressed by inverse barn.
The η’K measurement in [7] aimed to gather 130 000 candidate events, and was performed
at an integrated luminosity of 426 fb−1 (426 inverse femtobarn, or 426 ∗ 1015 inverse barn),
with the PEP-II accelerator at SNAL. According to [10], SuperB is a new accelerator that
aims to reach an integrated luminosity of 50 ab−1 (50 inverse attobarn, 50 ∗ 1018 inverse barn
or 50 000 fb−1). This will in principle mean a potential of gathering ∼ 100 times as many
events, and with the experiment we used as an example, this could mean ∼ 13 000 000 events
as opposed to 130 000 events. This is a general trend, also at the LHC [11], so more and
more data will be produced and thereby needs to be analyzed.

The methods used for analyzing these events are often very computationally expensive,
which we will see more clearly in chapter 2. It becomes therefore more and more important
as accelerators gets more and more powerful and reaches higher luminosities, to exploit the
available computing hardware that these methods are run on to a high degree. We add

1.1. MOTIVATION, GOALS AND QUESTIONS 4

E (GeV)Δ
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Ev
en

ts
 /

(0
.0

01
 G

eV
)

0

500

1000

1500

2000

2500

3000

3500

4000

E (GeV)Δ
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Ev
en

ts
 /

(0
.0

01
 G

eV
)

0

500

1000

1500

2000

2500

3000

3500

4000

/n = 1.5052χ
 0.0002 GeV± = -0.0022 (1)μ

 0.0001 GeV± = 0.0241 L
(1)σ

 0.0001 GeV± = 0.0225 R
(1)σ

 0.0010 GeV± = 0.1885 L
(1)α

 0.0009 ± = 0.1587 R
(1)α

 signal+ K
ππ)γγ(η

’η

(a) A signal PDF.

E (GeV)Δ
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Ev
en

ts
 /

(0
.0

2
G

eV
)

0

20

40

60

80

100

120

E (GeV)Δ
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Ev
en

ts
 /

(0
.0

2
G

eV
)

0

20

40

60

80

100

120

/n = 0.4352χ
 0.0395 ± = -0.3119 1c

 background+ K
ππ)γγ(η

’η

(b) A background PDF.

(c) The combined signal+background PDF.

Figure 1.2: One signal and one background event probability distribution fitted to toy data,
and the combined signal+background PDF fitted to real data.

1.2. OUTLINE 5

that these final analyses are often carried out on the personal computers of physicists, i.e.
commodity machines.

With these things in mind, the primary aim of our work is first of all to do elementary
optimizations to a toolkit (RooFit) used for analyzing the events from physics detectors, so
that these analyses could be performed as fast as possible on commodity machines, with the
constraints of RooFit in mind. We also look into the use of accelerators as graphics processing
units (GPUs) and their suitability for this task, as well as trying to exploit all computational
resources in one machine at the same time (CPUs and GPUs), in a hopefully simple and
elegant way. The work is a continuation of an already started process of optimization and
parallelization of this program package. Performance is not the only thing essential, though.
Since the program is large and written in a such a high-level language as C++, achieving a
high degree of programmability is also paramount. There exists huge amounts of code using
the interfaces of this package, so rule number one is to keep the interface consistent to the
highest degree possible. Based on these aims, our primary research questions are;

• Which optimizations can be done to RooFit’s data analysis methods without changing
the program structure/interface substantially?

• Is it feasible to use the OpenCL standard, by the current implementations of it, for
programming both CPUs and GPUs in a large real-world C++ software package that
makes use of high-level programming language constructs?

• If not, what is a simple and effective way of exploiting the available hardware?

We believe much of the strength of these questions lies in the fact that this is a large,
real-world software package, and not just an academic software example. We thus feel that
our answers to these questions can be interesting to other programmers within the HEP
community that deal with parallelism, but also to some degree to every programmer that
deals with real-world applications on heterogeneous commodity systems, or larger systems
for that matter.

1.2 Outline

This thesis is structured as follows.

Chapter 2 (Background) Gives an introduction to the data analysis toolkit around which
this thesis is centered, and the mathematical foundation of the main algorithm we focus on.

1.2. OUTLINE 6

In addition, previous work, special areas needed to be taken care of, as well as some back-
ground within parallel computing are covered.

Chapter 3 (MLFit on multi-core processors) Describes in details the work done to
optimize the prototype MLFit for fast execution and good scalability on commodity multi-
core processors.

Chapter 4 (MLFit on GPUs) Focuses on the development of an OpenCL version of
MLFit to be run on GPUs, as well as a general performance comparison between two GPUs
from different vendors.

Chapter 5 (Heterogeneous load balancing on commodity machines) Gives an intro-
duction to load balancing, which constraints and challenges MLFit imposes on this field and
a simple method for balancing different computational devices based on real timings. Results
are described and explained and selection of optimal runtime configurations are discussed.

Chapter 6 (Conclusions) Concludes the work by presenting and reflecting upon the find-
ings.

Appendix A (OpenCL test kernels with varying arithmetic intensity) Lists a few
OpenCL computational kernels used to explore the theoretical peak performance for the two
main GPUs we use in this thesis.

Appendix B (OpenCL test kernels involving transcendentals) Lists a few OpenCL
computational kernels used to determine performance characteristics when computing trascen-
dental and power functions.

Appendix C (The eta’K model implementation) Lists the C++ implementation of
the main physical model we use for performance analysis in this thesis.

Appendix D (A tree illustration of the eta’K model) Shows an illustration of the
eta’K model.

Appendix E (OpenCL kernels for the PDFs used in the eta’K model) Lists the
OpenCL kernels used for the PDFs in the eta’K model.

1.2. OUTLINE 7

Appendix F (NVIDIA Tesla benchmarks) Shows benchmarks using an NVIDIA Tesla
C2050 professional GPU compared to the commodity GPUs we use in this thesis.

Appendix G (First encounter with OpenCL for multicore CPUs) An experience/feed-
back report primarily intended for Intels OpenCL group written during our work at CERN
openlab.

1.2. OUTLINE 8

Chapter 2

Background

This chapter gives an introduction to the RooFit toolkit [12], as well as the mathematical
foundation for the algorithm used to fit statistical parameters to collected data. Some prin-
ciples of parallel computation are mentioned, and an overview of the optimizations that has
already been done to this package are given. We also mention some important restrictions
regarding the fitting procedure.

2.1 The RooFit toolkit

RooFit is a toolkit for modeling event distributions in particle physics experiments and is
integrated with the ROOT system [13]. ROOT is a set of object oriented frameworks used to
handle large amounts of data in an efficient way. It includes tools for doing histogramming,
curve fitting, function evaluation, minimization, graphics and visualization. RooFit uses in
particular ROOT’s graphics packages to visualize data and model plots. ROOT and RooFit
are written in C++, and make extensive use of the features of the language (polymorphism
and the use of virtual functions in particular). RooFit is able to fit data using a variety of
techniques, and we will in this thesis focus on one of them; the maximum likelihood method.

Recall from Chapter 1 the concepts of signal and background events. RooFit provides
methods to approximate which events are signals, and which are backgrounds. Physicists
start with a prediction of a model of the distribution of different events. This will differ from
measurement to measurement, and will involve PDFs for each quantity of interest. One of
RooFit’s powerful features is the object-oriented way to build composed PDFs from a set of
base PDFs. The resulting PDF could be viewed as a tree of PDFs, and virtual functions are
used to evaluate each PDF, since every PDF is derived from a base class which contains

9

2.1. THE ROOFIT TOOLKIT 10

Listing 2.1: A RooFit program to plot toy data on a pre-defined statistical model.
// --- Observable ---

RooRealVar mes("mes","m_{ES} (GeV)",5.20,5.30);

// --- Build Gaussian signal PDF ---

RooRealVar sigmean("sigmean","B^{#pm} mass",5.28,5.20,5.30);

RooRealVar sigwidth("sigwidth","B^{#pm} width",0.0027,0.001,1.);

RooGaussian signal("signal","signal PDF",mes,sigmean,sigwidth);

// --- Build Argus background PDF ---

RooRealVar argpar("argpar","argus shape parameter",-20.0,-100.,-1.);

RooArgusBG background("background","Argus PDF",mes,RooFit::RooConst(5.291),argpar);

// --- Construct signal+background PDF ---

RooRealVar nsig("nsig","#signal events",200,0.,10000);

RooRealVar nbkg("nbkg","#background events",800,0.,10000);

RooAddPdf model("model","g+a",RooArgList(signal,background),RooArgList(nsig,nbkg));

// --- Generate a toyMC sample from composite PDF ---

RooDataSet *data = model.generate(mes,2000);

// --- Declare the NLL ---

RooNLLVar nll("nll","NLL",model,*data,RooFit::Extended());

// --- Send the NLL to the minimizer (Minuit) ---

RooMinimizer minimizer(nll);

minimizer.optimizeConst(true);

minimizer.setMinimizerType("Minuit");

// --- Run the minimization ---

// --- Perform extended ML fit of composite PDF to toy data ---

minimizer.migrad();

minimizer.hesse();

// --- Plot toy data and composite PDF overlaid ---

RooPlot* mesframe = mes.frame() ;

data->plotOn(mesframe) ;

model.plotOn(mesframe) ;

model.plotOn(mesframe, RooFit::Components(background), RooFit::LineStyle(kDashed));

mesframe->Draw();

general methods (e.g. a method for evaluating the function with a given set of parameters).

2.1. THE ROOFIT TOOLKIT 11

Figure 2.1: The resulting plot from the program in Listing 2.1.

Listing 2.1 shows a code example from the RooFit user manual that creates two PDFs, one
Gaussian signal PDF and one Argus1 background PDF. The total PDF is the sum of these
two. Figure 2.1 shows the two PDFs representing signal and background event distributions
respectively. The plotted points in this example are toy Monte-Carlo samples generated wrt.
this model. The program then performs an extended maximum likelihood fitting of the func-
tion parameters to these toy data. As mentioned in Chapter 1, if one searches for a particular
(maybe yet to be discovered) particle, the fitting procedure is essential to decide whether the
data show signs of that particle or not, i.e. fits the model. In a real example, the samples
above would of course be real samples taken from particle collision detectors. To translate
to this example; if a significant portion of the events from an experiment each contribute a
variable value that could be plotted approximately on top of the gaussian function, it would
be a strong signal of what is expected, since the Gaussian in our case represents the signal we
are interested in. Of course, sofisticated statistical methods are used to decide the threshold
limits for when an event distribution could be deemed a discovery or not [15].

1An Argus PDF is a special PDF described in [14], and is defined as x
√
1− x2 exp

[−ξ(1− x2)
]
, with

x ≡ 2mES/
√
s and ξ a parameter that is determined by the fit.

2.2. THE MAXIMUM LIKELIHOOD METHOD 12

2.2 The maximum likelihood method

Recall the definition of an event as being a set of variables, measured at a given point in
time by a particle collision detector. A data sample consists of N different, independent
events. Following [16], an event could be represented as a multidimensional random vector of
variables x̂ = (x1, ..., xn) (masses, positions, energies etc.) that could be described by a PDF
P(x̂|θ̂), where θ̂ is a set of p real parameters (read: the propability for this set of variables, x̂,
given the parameter estimation θ̂). We further assume that x̂ is well known, so that P(x̂|θ̂)
after normalizing2 it represents a hypothesized PDF for x̂. In an experiment, one conducts a
series of N independent measurements leading to a data sample consisting of x̂ = x̂1, ..., x̂n

values. The joint PDF of x̂ is by independence,

f(x̂|θ̂) =
N∏
i=1

P(x̂i|θ̂). (2.2.1)

With uncorrelated variables, equation 2.2.1 can be written as a product of individual PDFs
dependent on each variable,

P(x̂i|θ̂) =
n∏

v=1

Pv(xv
i |θ̂). (2.2.2)

If we replace x̂ with a collection of real observed data, f will no longer be a PDF. Since x̂ is
now known, f is only dependent of θ̂, and is usually denoted L, being the likelihood function.
Thus, L(θ̂) = f(x̂|θ̂). This function can be used to estimate the set of parameters that fits
the total data sample the best way, or in other words, finding the estimate θ̂ for which L(θ̂)
has its maximum. This procedure is called the maximum likelihood (ML) method, and is
a popular statistical technique for this scenario [17]. It is possible to use the ML method
not only to estimate θ̂, but also the number of events belonging to the different species in a
data sample, i.e. signals or backgrounds. Given s different species and defining with nj the
number of events belonging to species j and with Pj(x̂|θ̂j) the PDF for the species j, the
extended likelihood function is defined as:

L =
e−

∑s
j=1 nj

N !

N∏
i=1

s∑
j=1

njPj(x̂i|θ̂j), (2.2.3)

2The evaluation of a PDF is completed by doing a normalization of the function value, to make the
integral equal 1 (i.e. making the function a true probability density function).

2.2. THE MAXIMUM LIKELIHOOD METHOD 13

which consists of an extended term to take in account that the number of observations N in
the sample is itself a Poisson random variable with a mean value

∑s
j=1 nj.

The search for the maximum of L can be done numerically. An often used method is to
minimize the equivalent function −ln(L), the negative log-likelihood (NLL). The functions
f(x) = x and f(x) = ln(x) are monotonic, so the search for the minimum would be an
equivalent procedure for this new function. Ignoring the extended term and using the fact
that ln(a1 ∗ a2 ∗ ... ∗ an) = ln(a1) + ln(a2) + ... + ln(an), the NLL to be minimized has the
form

NLL =
s∑

j=1

nj −
N∑
i=1

(
ln

s∑
j=1

njPj(x̂i|θ̂j)
)
, (2.2.4)

which clearly is a sum of logarithms. According to [18], the most common method used
in the HEP community to minimize the NLL is based on the MIGRAD algorithm inside
the MINUIT package (the C++ implementation is called MINUIT2). MIGRAD minimizes a
function using a variable metric method [19], called the Davidon-Fletcher-Powell method [20].
This method involves the calculation of the derivatives of the NLL for each free parameter.
According to [21], MIGRAD is also able to use approximation techniques like finite differences
to approximate the first derivatives of the function if there exists no analytical differentiation,
that is,

∂NLL

∂θ̂

⏐⏐⏐
θ̂0
≈ NLL(θ̂0 + d̂)−NLL(θ̂0 − d̂)

2d̂
, (2.2.5)

which means two calls to the NLL function for each variable. A numerical evaluation of the
second derivatives is also required at the end of the minimization. Variable metric methods
in general use Newtons method to find stationary points of functions where the gradient is
0, and thus in our case where

∂NLL

∂θ̂
= 0, (2.2.6)

which is called the likelihood equation [15], and would be the ultimate goal of the minimization
routine. The nice feature of equation 2.2.3 (and 2.2.4) is that nj is a tuneable parameter of the
function, which can be used to determine the number of events in the different species, which
again could be used to decide if the data sample to some degree of statistical significance could
represent an interesting result/discovery. Since our work will not involve modifying MINUIT2
in any way, we will not delve deep into the theory behind these minimization algorithms.
However, to give a feeling of what happens during minimization, a 2D function and the search
for its minimum is illustrated graphically in Figure 2.2. These images are reprinted from [22]

2.2. THE MAXIMUM LIKELIHOOD METHOD 14

(with permission from the author), which is a very instructive and pedagogical paper about
function minimization. The method used in this case is the method of steepest descent, that
uses the quadratic form of a matrix representing a system of equations to find the solution
of it.

2.2. THE MAXIMUM LIKELIHOOD METHOD 15

(a) A 2D function.

(b) The search for its minimum.

Figure 2.2: The search for the minimum of a 2D function.

2.3. IMPLEMENTATION 16

2.3 Implementation

To perform the minimization procedure, MINUIT is dependent of the NLL function we
described in Section 2.2. This function is implemented in a RooFit class called RooNLLVar,
and uses a model object defined by the programmer. The model will of course vary for each
analysis, and is represented by an instance of the class RooAbsPdf, which is the root node
of the PDF model.

Listing 2.2: A simplified version of the base PDF class of RooFit.
class RooAbsPdf

{

protected:

virtual Double_t evaluate() const = 0;

};

Listing 2.2 shows a very simplified version of the base PDF class of RooFit. It is up to derived
classes to implement the pure virtual function evaluate, depending on what the characteristics
of the given PDF are. The three PDF classes in listing 2.1; RooGaussian, RooArgusBG and
RooAddPdf all inherit from this base class. Note that the class is a lot more comprehensive
than this one; this illustration just tries to clarify the call graph that happens inside RooFit
when a call to the NLL function occurs. When the program in listing 2.1 is run, a tree of
PDFs will be created (see Figure 2.3), and the following will happen:

1. When generating the RooDataSet, the function “generate” will use the function RooAd-
dPdf::evaluate().

2. RooAddPdf::evaluate() will call RooGaussian::evaluate() and RooArgusBG::evaluate()
respectively, obtaining one result from each.

3. RooAddPdf::evaluate() sums these results, and returns the sum.

Of course, the tree can be of arbitrary size since models often can be very complex.
Recall the structure x̂ from Section 2.2. This structure is an array of arrays, where the

inner arrays represents the different variables measured at one single event, making the row
i represent event i. The procedure is illustrated in listing 2.3. The function (based on the
NLL definition) takes a set of parameter estimates, θ̂. It then loops over all events, and for
each event, calls the root PDF object with these parameters. This involves virtual function
calls for each NLL call, for each event, for each PDF (and a model can consist of many
PDFs). And as we already know, the number of events can become very high depending on

2.3. IMPLEMENTATION 17

Figure 2.3: A simple illustration of the PDF tree resulting from the listing in Figure 2.1.

the experiment and the detectors, and it is also a number that is expected to increase, as we
described in Chapter 1.

Listing 2.3: A simple implementation of the NLL function, relying on a PDF composite
model.
Double_t NLL::GetVal(<parameters>, const UInt_t N)

{

//Assume that we have a PDF tree in a AbsPdf object called "model"

Double_t sum = 0.0;

for(UInt_t i = 0; i < N; i++)

{

sum -= model.GetLogVal(<parameters>, i);

}

return sum;

}

The NLL function itself is evaluated numerous times (could be thousands) for different
combinations of the parameters, hopefully converging to the minimum. This is obviously an
implementation not having performance in mind. There are two obvious points that ruins
the performance of this computation.

• A compiler would not be able to either vectorize the code effectively or perform inter-
procedural analysis since code paths are not clear at compile-time because of the dy-
namic dispatch. And if the functions were not virtual, they would have to be inlined
for the compiler to be able to vectorize efficiently.

• By calling the PDF tree and its virtual functions for each x, virtual function overhead

2.4. OPTIMIZATION EFFORTS 18

is built up.

In addition, assuming we have for instance three parameters, RooFit stores all parameter data
in a matrix on the form θ1iθ2iθ3i , θ1i+1

θ2i+1
θ3i+1

... θ1nθ2nθ3n suggesting bad locality when using
one and only one of these parameters at a time. In general, this is a great example of a trade-
off situation between programmability and performance. RooFit gives the programmer the
expressive power to design models composed of virtually any PDF combination. These PDFs
could also be customly defined by a newly introduced class inheriting from RooAbsPdf and
implementing the function evaluate (and some others not included here). The price for this
is a program that will not take advantage of the potential of modern CPUs or accelerators
like GPUs, since the computation is not done on vectors, but on single values with e.g.
conditional jumps between each value (much like an array of structures (AOS) instead of a
structure of arrays (SOA)).

2.4 Optimization efforts

RooFit is an extensive software package. The NLL evaluation that we focus on is just a
part of it, and we have therefore based our work on a prototype called MLFit. This is a
small application made to be able to perform NLL fits, and is, like RooFit, compatible with
MINUIT. It supports a subset of the PDF functions that RooFit offers, and this subset is
sufficient for our work. This way we can perform realistic benchmarks on a much simpler
software package.

The efforts done to optimize MLFit so far are described in [16] and [23]. The most
important change to the implementation was to evaluate each PDF for all x in one single
call. Instead of an evaluation function that returns one floating-point number, it now returns
an array of floating point numbers. After all, the evaluation is the same, since the only
difference is the argument xi. This step is repeated, so in the end one would have a partial
result array for each PDF. These are then combined in the PDFs responsible for e.g. adding
or taking the product of two child PDFs (see Appendix C, listing the implementation of the
eta’K model), which in the end would propagate up to the root as the final result. Then the
logarithm of these values is calculated, and a negative reduction is applied on top of that to
produce the single NLL value (see equation 2.2.4). This introduces two important benefits;
it

• reduces the number of virtual function calls from k ∗N to k where k is the number of
PDFs, and N is the number of events. That is, the number of virtual function calls

2.4. OPTIMIZATION EFFORTS 19

is now independent of the number of events, and when N could be 1 000 000 or even
maybe 13 000 000 as we predicted in Chapter 1, and this happens for each call to the
NLL function, this is significant.

• structures the code in a manner that makes use of arrays, which again makes it easier
for compilers to vectorize. The problem of not being able to do interprocedural analysis
is now reduced significantly, since most of the time spent in calculations actually is done
inside the evaluation loops. Because of the use of arrays, the code is now also easily
parallelizable using multithreaded libraries like OpenMP for instance.

There has also been done other modifications to the code that has revealed speedups (like
multiplying with reciprocals instead of division), but these are details compared to the struc-
tural changes. The results of all these optimizations are reported by Jarp et al. in [23] to be
∼ 4.5x on a single core compared to the original RooFit. It is also important to point out
that there are not just benefits associated with these optimizations. A downside is that we
now have to store vectors of results for each PDF, which obviously takes up more memory
compared calculating the result “on the fly”. This can be a limitation when the number of
PDFs and N grow.

By introducing the new strategy for evaluation of the functions, OpenMP is a natural
choice to spread work across cores. This is implemented by adding a virtual function eval-
uateOpenMP as a virtual function in the class RooAbsPdf. It is a quite elegant solution
in terms of programmability, since the class encapsulates the details of the OpenMP spe-
cific code, and since one keeps the benefits of polymorphism through virtual functions. The
threads are spread across the current array in a statically partitioned manner. This means
that each thread has an approximate equal size of the array, and it is implemented in a way so
that one thread can never have more than one element more than another thread, to ensure
an equal load balancing. Figure 2.4 gives a clear picture of how the computation time is
distributed in the OpenMP version of this application for the eta’K model we introduced in
Chapter 1, evaluating 100 000 events. Since this model involves the computation of Gaussian
functions (as most models do), a lot of time is spent calculating the exponential. Modern
CPUs have vector units that are able to do one simple arithmetic operation on a set of data
elements in true parallel (typically 128 bit, which means four floats or two doubles). The
instructions used to operate these registers are called SSE (Streaming SIMD Extensions).
Being able to utilize vectorized routines for e.g. exponentials is therefore of high impor-
tance, and Figure 2.4 shows that the compiler we are using (Intel C/C++ Compiler) is able
to utilize the SVML (Short Vector Math Library) intrinsics that Intel provides, by the call

2.4. OPTIMIZATION EFFORTS 20

Figure 2.4: An Intel Vtune Amplifier 2011 hotspot profile of the optimized OpenMP version
of the MLFit application running with 100 000 events and 4 threads on an Intel Core i7 965
machine. Note that this is an excerpt of the contributing functions, showing the most time
consuming ones.

to __svml_exp2.N. In this single case, there is not much we can do with the number #1
hotspot for the evaluation of this model, since it is an intrinsic function (which of course is a
good sign). Note also that parallelization with OpenMP does not come without a cost. We
can see that the OpenMP library (libiomp5.so) contributes directly with 4.4% of the total
running time when running with 4 threads. This was a trivial example in the way that it is
for a relatively low number of events. Chapter 3 provides more details regarding scalability
and further optimizations.

GPU version There has also been developed a GPU version of MLFit, to explore what
performance speedups modern GPUs can achieve. This is based on NVIDIA CUDA, and the
work is explained thoroughly in [23]. Since each PDF class has a function evaluateOpenMP,
switching to CUDA is not very difficult if one implements a corresponding function for the
GPU. This function must transfer the necessary data onto an available GPU, and call a
CUDA kernel responsible for computing the corresponding function. One problem with this
setup (which in fact is the only effective setup possible) is that the number of GPU kernel calls
is equal to the number of PDFs. Ideally, most of the time should be spent on computation,
and therefore one should try to minimize the number of kernel calls (a GPU kernel call can
be more expensive than a CPU function call). Because of this penalty, and because GPUs
in general are throughput machines, a hypothesis is that the speedup of the GPU version
compared to the CPU version will increase as the number of events increase (amortizing the
overhead with more work). We will look further into the use of GPUs in Chapter 4.

2.5. PRINCIPLES OF PARALLEL COMPUTATION 21

2.5 Principles of parallel computation

We now introduce some fundamental concepts around parallel computation, which is essential
in our terminology and in our reasoning about the execution of MLFit. A central point is to
be able to scale the application across cores, since the trend within CPUs is to increase the
number of cores, at least by the time this is written. This phenomenon is more thoroughly
explained in Chapter 3.

2.5.1 Flynn’s taxonomy

A classification of computers called Flynn’s taxonomy describes four computer classes in both
a serial and parallel context [24]. The four classes are:

• SISD - Single instruction stream - single data stream. A single processor computer that
executes one stream of instructions on one set of data. Single-core processors belong in
this class.

• SIMD - Single instruction stream - multiple data stream. A multiprocessor where
each processing unit executes the same instruction stream as the others on its own
set of data. In other words, a set of processors share the same control unit, and their
execution differs only by the different data elements each processor operates on.

• MISD - Multiple instruction stream - single data stream. A multiprocessor where each
processing element executes its own instructions, but operates on a common data set
among all elements. This is a kind of conceptual class, since it is not widely used
in practice. However, it can be found in bioinformatics for instance, where many
processors operate on the same DNA string, issuing different types of instructions.

• MIMD - Multiple instruction stream - multiple data stream. A multiprocessor where
each processing element executes its own instruction stream on its own set of data.
This is the most usual class, where modern multi-core computers belong.

With SIMD we in practice understand computers that are specifically designed to execute
a similar amount of instructions on different data elements. Vector computers fit to this
description, as well as modern GPUs and also modern CPUs (partly) since they have vector
registers constructed to issue one instruction on a set of data in the same cycle. However,
when running a typical multi-threaded program it will primarily be regarded as a MIMD-style
program, since the synchronization/order of execution is not deterministic. It is beneficial

2.5. PRINCIPLES OF PARALLEL COMPUTATION 22

to use the vector capabilities of modern hardware whenever possible, and much of our work
will be centered around that.

2.5.2 Amdahl’s law vs. Gustafsson’s law

Exploiting every core on a modern multiprocessor to achieve hopefully large speedups is
desirable. However, utilizing 8 processor cores instead of 1 does not mean an immediate
speedup of 8x. Parallelizing programs will often incur overheads like thread synchronization,
and running more than one thread on a physical CPU (with more than one core) will in
many cases lead to having to go further down in the memory hierarchy and eventually lead
to loss of performance. However, there are one significant concept that can really limit the
amount of speedup possible, and that concept is called Amdahl’s law. A parallel program
will in most cases contain a serial part, i.e. a piece of execution that has to be performed
serially by one processing unit. Let ts and ps be the serial and parallel computation time,
respectively. Speedup is then defined as

S(p) =
ts
tp
. (2.5.1)

If we generalize the example with 8 processor cores above and denote p as the number of
processors, the maximum speedup of a parallelization would be if tp = ts

p
and thus S(p) =

ts
ts
p

= p. As we mentioned above, tp will in most cases involve serial parts of execution. Let f
denote the fraction of the computation that is serial. We could then rewrite equation 2.5.1
into

S(p) =
ts

fts + (1− f)tp
=

ts

fts +
(1−f)ts

p

. (2.5.2)

We are interested in finding the maximum speedup when the parallel computation involves
serial parts. If we now let p grow, we see that

Smax = lim
p→∞

ts

fts +
(1−f)ts

p

=
ts
fts

=
1

f
. (2.5.3)

This means that the maximum speedup is strictly limited by the serial fraction. If a parallel
application involves a serial fraction of 5%, the maximum speedup would be 1

0.05
= 20,

independent of how many processors one throws at the job. It is a lot easier to see the direct
effects of this with a plot, which is illustrated in Figure 2.5.

A prerequisite for Amdahl’s law to apply is that the problem size, N , is fixed. This is also

2.6. NUMERICAL SENSITIVITY 23

Figure 2.5: An illustration of Amdahl’s law for a parallel computation with serial fractions
of respectively 5%, 10%, 25% and 50%.

called strong scaling and could be summarized as “how well does an application scale by the
number of processing elements when the problem size is fixed”. However, if one changes the
problem size as one changes the number of processing elements, and assumes that the serial
fraction is not dependent on N , the time spent by the serial part will be amortized. This
is based on that as more and more compute units are used, one is able to compute a much
larger problem set in a time comparable to the serial one. This is called Gustafsson’s law, or
weak scaling and can be summarized as “how well does an application scale by the number
of processing elements when the problem size per processing element is fixed, and the serial
part is not dependent on the problem size”.

In our case, the serial fraction consists of a serial reduction of partial parallel-reduced
values (one partial sum per thread), which means that the serial fraction is only (weakly)
dependent of the number of threads. This is absolutely ideal.

2.6 Numerical sensitivity

As stated in Section 2.2, MLFit uses the MINUIT package for performing the function min-
imization itself. However, by experimentation, MINUIT is very sensitive regarding the nu-
merical result of the NLL function, which is understandable since parameter space search
can involve consecutive results that are very similar in value. A minor numerical error can

2.6. NUMERICAL SENSITIVITY 24

lead the minimization algorithm on a wrong path from the start, which is not good. This
has some consequences regarding the optimization efforts. The OpenMP version uses a par-
allel reduction to compute the sums of the negative terms in the NLL equation (equation
2.2.4). However, the order of the summation must be preserved between each call of the NLL
function for MINUIT to work properly, since a summation of different order would lead to a
different result (non-identical bit-level value). This is because the law of associativity breaks
down since rounding is applied in floating-point arithmetic, i.e. it might be the case that

(u⊕ v)⊕ w �= u⊕ (v ⊕ w). (2.6.1)

The reason for this is that the relative error for a pairwise addition of any of u, v and w

can differ depending on what the operands are, since each operand (u, v or w) have different
relative errors compared to the exact decimal value [25]. The parallel reduction has therefore
been written to conform with these requirements. It preserves the order of the operations for
a given number of threads and it reduces the rounding problem due to associative floating
point arithmetics using the double-double compensation algorithm 2Sum [26]. In this way
the results are deterministic and stable in all tests. However, if a user runs the application
with i number of threads and produces a result, he can not be sure to get a bit-identical
result if he runs the application again with j number of threads afterwards (given i �= j),
since the order of summation definitively would have changed.

MLFit is written using double precision floating-point numbers exclusively, and we do not
know if we are able to use single precision floating-point numbers. A trend among physicists
is to use double precision “to be sure”, but single precision is often enough for many kinds of
analysis. If we could use single precision in the evaluation, it could mean a potential ∼ 2x

speedup on CPUs (doubling the vector registry capacities), and even more on GPUs (GPUs
were originally made for single precision calculations, and they have special features geared
towards that). MINUIT uses double precision exclusively, and we do not know how MINUIT
would react if we return single precision values to it. Following the IEEE-754 standard [27],
single precision has a fractional part of the mantissa represented by 24 bits. Therefore the
highest accuracy representable converted to decimal form is log10(2

−24) = 7.2247..., which
gives us a precision of 7 digits. If MLFit uses single precision exclusively, it may be that
MINUIT will not be able to see the difference between value NLLi and value NLLi+1 if they
differ only after the 7th digit, since we sacrifize precision. The effects of this problem could
be catastrophic for the minimization.

In addition, it should be mentioned that MINUIT is not the only minimization algorithm

2.7. ETA’K MODEL DESCRIPTION 25

out there. Another well-known approach for function minimization is the use of genetic
algorithms [28], which could possibly work fine with single precision, but this is an assump-
tion. We focus our work around how much speedup it is possible to get when doing NLL
evaluations with this package on modern hardware, since precision requirements differ from
algorithm to algorithm.

2.7 Eta’K model description

In the eta’K model there are 3 observables (variables) and 5 species. In total there are 29
PDFs. All PDFs have an analytical integral, so no numerical approximations of integrals
must be done. The C++ implementation of this model is given in Appendix C, and a tree
illustration of it is given in Appendix D

2.7. ETA’K MODEL DESCRIPTION 26

Chapter 3

MLFit on multi-core processors

This chapter describes what we have done to improve the multicore version of MLFit. We
explore other technologies that supports multi-core parallelism, and we perform general opti-
mizations. An important feature of MLFit is how programmable it is, and solutions that are
easily modifiable as well as delivering good performance/scalability will be preferred. With
that in mind, using a technology that could support CPUs and also GPUs could maybe
be interesting. Since RooFit is often run by physicists on their own computers, commodity
hardware is our main target segment and therefore our tests are run on such hardware.

3.1 The motivation for multi-core processors

After year 2000, it became more and more usual to produce and sell multi-core processors.
Many computer users are using machines made for parallel execution often without knowing
it. Moore predicted in 1965 that the number of transistors possible to place on a single chip
would double every 2 years, and there is currently no sign that this trend will stop [29].
For many years, processor manufacturers made the processors faster and faster by increasing
their frequency (clock rate), but this came to a stop because of physical constraints. A.R.
Brodtkorb et al. mentions in [29] the formula for power density (or power wall),

P = CρfV 2
dd, (3.1.1)

where P is the power density in Watts per unit area, C is the total capacitance, ρ is the
transistor density, f is the processor frequency and Vdd the supply voltage. Higher voltages
increase the potential processor frequency, and it is easy to see by the formula that the power
density will reach extremely high values if continuing to push the frequency and voltage.

27

3.1. THE MOTIVATION FOR MULTI-CORE PROCESSORS 28

With large power consumption comes large temperatures, and with a growth proportional
to the square of the voltage, power consumption will in the end become enormous and
demanding cooling techniques have to be applied. To solve this problem, (i.e. to keep P

constant) processor manufacturers have temporarily chosen the strategy of duplicating the
processor cores (increasing transistor density) instead of increasing their frequency, called
SMP (symmetric multi-processing). In an SMP processor, a number of processing cores
reside on one physical chip, often sharing the last-level cache (L3). According to [29], the
rule of thumb interpretation of 3.1.1 is that if one decreases the voltage and frequency by
1%, the power density is decreased by 3%, and the performance by 0.66%. Therefore will
for instance dual-core processors which are running at 85% of the frequency with 85% of
the supply voltage have the possibility to offer 180% better performance than an equivalent
single-core processor. This is of course an elegant solution to the problem, but it imposes
challenges. Programming parallel applications is more time-consuming than programming
serial ones, and many programmers are not trained in parallel programming. It can also
often be challenging to achieve linear speedup with respect to the number of cores you have,
since most programs contain serial parts (albeit often small ones), and it is not unusual to
experience overhead regarded to threading mechanisms/libraries. Also, since the L3 cache
on SMP processors is often shared between the cores, it is important to take special care
when accessing memory to achieve a good cache hit rate when increasing the number of
threads. If you wanted a speed boost in the single-core era you could buy a faster processor
with higher frequency. Today, you can not be sure that your favourite program supports
multithreading, so buying a brand new multi-core processor will not necessarily increase
performance. Actually, since the frequency might be reduced, you might experience worse
performance.

MLFit is already parallelized and takes advantage of all the cores you want (easily ad-
justable by OpenMP). But are there libraries than can to the multithreading job better, or
are the most elementary threading techniques the best for this application? We try to an-
swer that question in the following sections. We have tried different technologies because we
wanted to get a picture of the possibilites programmers have. We believe this can also reveal
interesting results for other groups at CERN heavily involved in parallelization of software.

3.2. ALTERNATIVE THREADING TECHNOLOGIES 29

3.2 Alternative threading technologies

In this section we compare the performance and programmability of two other threading
technologies to see if they in our case are good alternatives to the OpenMP industry standard.

3.2.1 Brief OpenCL introduction

OpenCL is a standard which defines an API for programming heterogeneous computers,
created and maintained by the Khronos Group, which is a group of industry vendors that
have interest in promoting a general way to target different computational devices [30]. It
abstracts a parallel execution with a concept called a kernel (or computational kernel). This
kernel is written on a per-thread basis, and the runtime executes this kernel by laying out
threads grouped in independent groups called a workgroup on a thread grid. Each work
group consists of a given number of threads, and each thread is called a work item. The main
benefit with such a structure is that it maps well onto SIMD algorithms, and thus is ideal for
implementing computations to be performed on a GPU. This is first and foremost because
threads on modern GPUs are lightweight and can be spawned and scheduled with much less
overhead than on a CPU [31]. Workgroups can again be divided in to small groups of threads
called wavefronts. We will revisit these in Chapter 4. We show an illustration of this thread
grid in Figure 3.1, which is a reprint from [31]. This concept will become more clear in the
next section where we provide some code samples for this paradigm of programming.

Figure 3.1: An OpenCL thread grid consisting of workgroups (or blocks in NVIDIA termi-
nology).

3.2. ALTERNATIVE THREADING TECHNOLOGIES 30

3.2.2 OpenCL for CPUs

MLFit has been implemented with OpenMP, but it is interesting to explore if OpenCL and
its programming paradigm would be suitable for it too, in addition to delivering competitive
performance. Ideally, it should be possible to run the same code on both CPUs and GPUs
while still achieving good performance on both platforms, but that remains to show.

Listing 3.1: OpenMP version of a Gaussian evaluation function.
void evaluate(const double mu, const double sigma, const double* data, double* results,

const int N)

{

#pragma omp parallel for

for(int i = 0; i < N; i++)

{

double temp = (data[i]-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp);

}

}

Listing 3.2: The OpenCL equivalent of the function in listing 3.1.
__kernel void evaluate(__const double mu, __const double sigma, __global const double *

data, __global double *results, __const int N)

{

int i = get_global_id(0);

if (i >= N) return;

double x = data[i];

double temp = (x-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp);

}

Implementation

Listing 3.1 shows an OpenMP version of a function which evaluates a Gaussian function.
Listing 3.2 shows the equivalent OpenCL kernel. Each thread that is configured to run this
kernel, will query the OpenCL runtime for its ID. If the ID is in the scope of the number of
elements in the array, it will compute the function evaluation for one single element. The
programming model therefore assumes that thread scheduling is implemented. If N is higher

3.2. ALTERNATIVE THREADING TECHNOLOGIES 31

than the number of threads, which would almost exclusively be the case, it is completely
necessary to have effective scheduling of a large numer of threads to make the execution
effective. This is the case for GPUs, and the programming model is therefore highly suitable
for GPUs.

AMD has released an OpenCL implementation supporting x86-compatible CPUs, which
is available for Windows and Linux. The name of the package is AMD APP SDK, and
version 2.3 was released in January 2011 [32]. It should be noted that Intel did not release an
OpenCL implementation for Linux before the end of the period of this thesis. We want to see
if AMD APP SDK is comparable performance-wise to Intel’s implementation of the mature
industry standard OpenMP technology. The OpenMP version of the MLFit application
implements parallelism by a function called evaluateOpenMP in the class RooAbsPdf. Each
inheriting class then implements this method itself which returns the result array of doubles
for the whole N -range. The high function-level coherence makes it easy to swap this function
with a function called evaluateOpenCL. However, there are some differences between the two
technologies.

OpenCL is all about generality, and this means that one has to treat CPUs on the same
device level as GPUs and other compute devices. In GPU applications, it is necessary to
transfer data from the host’s main memory to the GPU. Since CPUs are also treated as
devices, it is in plain CPU OpenCL applications necessary to transfer data “to the CPU”,
but this only means either copying from one area in memory to another (which would be
slow and unnecessary), or using the data at the source address (faster and more elegant).
This is implementation specific, and we have to trust the vendors in making an effective
implementation. This copy operation makes the code more verbose, and it is necessary to
work with structs of cl_mem, which represents memory objects (by our experience, essentially
a wrapper over a pointer to memory, but this is of course also implementation specific) in
the OpenCL runtime. Also, when invoking kernels, it is necessary to invoke functions to set
kernel arguments, and this has to be done with one call per argument. Listing 3.3 illustrates
this for the call to the Gaussian evaluation kernel. This is clearly very verbose, and could
almost be regarded as code bloat, atleast when comparing to the code for the OpenMP
version. When the kernels grow in numbers, this increases the amount of code significantly.

The OpenCL runtime compiles kernel files at runtime, and turns the executable equiv-
alents into binaries represented in code by cl_kernel structs. This way, all functions and
constants the kernels use, has to be in the source compiled by the OpenCL compiler. Unfor-
tunately, in our case (RooFit), many functions (mathematical PDFs for example) are already
implemented and tested in C++. This implies duplication of code if we want to support these

3.2. ALTERNATIVE THREADING TECHNOLOGIES 32

functions in OpenCL, since it is not possible to do procedure calls from the OpenCL environ-
ment to C++ code compiled by the C/C++ compiler. Anyways, since we aim to implement
GPU support by OpenCL too, this is of lesser significance (the functions must be ported
anyways).

Listing 3.3: A wrapper function for calling the OpenCL Gaussian evaluation kernel in listing
3.2.
void OpenCL::evaluateGaussian(const Double_t mu, const Double_t sigma, cl_mem data, const

int variableOffset, cl_mem results, const UInt_t N)

{

size_t totalSize = N;

clSetKernelArg(OpenCL::m_evaluateGaussian, 0, sizeof(Double_t), (void*)&mu);

clSetKernelArg(OpenCL::m_evaluateGaussian, 1, sizeof(Double_t), (void*)&sigma);

clSetKernelArg(OpenCL::m_evaluateGaussian, 2, sizeof(cl_mem), (void*)&data);

clSetKernelArg(OpenCL::m_evaluateGaussian, 3, sizeof(cl_mem), (void*)&results);

clSetKernelArg(OpenCL::m_evaluateGaussian, 4, sizeof(UInt_t), (void*)&N);

cl_int status = clEnqueueNDRangeKernel(OpenCL::m_queue, OpenCL::m_evaluateGaussian, 1,

NULL, &totalSize, NULL, 0, NULL, NULL);

CL_CHECK_ERROR(status, "evaluateGaussian");

}

The arguments to the clEnqueueNDRangeKernel function includes parameters that describes
the thread grid that is set up. The variable totalSize represents the number of elements in
the grid. If one wants to configure the execution in a more detailed way, it is possible to pass
the number of work items per workgroup also (local size). In this example we pass the value
NULL which makes the OpenCL implementation decide the workgroup size. This could be
a decent choice when running this on a GPU, but as we will see soon, not for a CPU (using
AMD APP SDK).

Drawbacks and optimizations

Threads on modern GPUs are very lightweight, and scheduled by hardware mechanisms (we
describe GPUs more carefully in Chapter 4). In an application performing calculations on e.g.
vectors, it is therefore appropriate to make each thread typically target one single element
in that vector. If the number of threads is smaller than the number of elements, threads
that are done with their execution will be rescheduled to compute another element without
much scheduling overhead. This is automatically taken care of by the OpenCL library/driver,
which clearly eases the programming effort. It is tempting to use one unified programming
model for a range of devices, however, using the OpenCL implementation in AMD APP

3.2. ALTERNATIVE THREADING TECHNOLOGIES 33

SDK for the CPU is not necessarily straightforward if one wants to achieve performant code.
Using a kernel implementation strategy similiar to the one in listing 3.2 fits GPUs well, and
it would be highly ideal if this kernel could be highly performant also on the CPU. However,
this is not the case for two main reasons: AMD APP SDK does no auto-vectorization (which
is done by the Intel C++ compiler in the OpenMP version) and the way to do threading on
the CPU is different from the GPU.

Vectorization Since the OpenCL compiler in the AMD APP SDK does not support
auto-vectorization, one has to explicitly program with vector types defined in the OpenCL
standard to make the compiler produce vectorized x86 code (SSE). By introducing explicit
vectorization in the code we now have a different kernel, and the benefit of a unified pro-
gramming model is dramatically reduced, since we need one version of the same kernel for
both CPUs and GPUs. It would be a lot easier if the AMD APP SDK OpenCL compiler
had auto-vectorization capabilities. Listing 3.4 shows the vectorized edition of the kernel in
listing 3.2. A positive side with this OpenCL implementation is that the syntax for loading
and storing vector types is clean and easy to understand, and vector types have mathematical
operators implemented.

3.2. ALTERNATIVE THREADING TECHNOLOGIES 34

Listing 3.4: The vectorized version of the kernel in listing 3.2.
__kernel __attribute__((vec_type_hint(double2))) void evaluatePdfGaussian(__const double

mu, __const double sigma, __global const double *data, __global double *results,

__const int N)

{

int i = get_global_id(0);

if (i >= N/2) return;

double2 x = vload2(i, data);

double2 temp = (x-mu)/sigma;

temp *= temp;

double2 result = exp(-0.5*temp);

vstore2(result, i, results);

}

Note that since it is necessary to program this by hand, we must have arrays of even
length the way the source code is now, i.e. it is necessary to take special care off odd
elements. Also, if we want to use larger vector registers in the future, e.g. 256-bit AVX (Intel
Advanced Vector Extentions [33]), we have to change all the vector types in the code. This
could be possible to bypass with a type definition for vector types, but in general, this should
be done by the compiler.

A major drawback of AMD APP SDK is that it does not support vectorization of expo-
nential functions. As we have already seen, the Intel compiler, with optimizations turned on,
compiles exponential functions down to calls to the SVML vectorized exponential routine,
but this is not the case for AMD APP SDK. This is a major drawback, and suggests that an
OpenMP implementation compiled with a vectorizing compiler is much more suitable since
functions like the exponential often ends up being one of the major hotspots in our case.

Thread scheduling With the AMD APP SDK, the kernel in listing 3.4 will not perform
very well on a CPU, even though vectorized code is emitted (which it to just some degree is).
This has to do with how the AMD APP SDK handles thread scheduling internally. We do
not know the details of the implementation, but AMD encourage users (in online examples
on their App SDK web pages [32]) to give CPU threads more work than GPU threads. Tests
we have conducted, showed that running CPU kernels as the one in listing 3.4 resulted in a
performance of around 30% compared to an auto-vectorized OpenMP version. However, by
splitting the data into an appropriate amount for each thread, we achieved speeds similar to
it (scaled with respect to the lack of vectorization of transcendental functions).

3.2. ALTERNATIVE THREADING TECHNOLOGIES 35

Listing 3.5: Same as listing 3.4, but with more work per thread.
__kernel __attribute__((vec_type_hint(double2))) void evaluatePdfGaussian(__const double

mu, __const double sigma, __global const double *data, __global double *results,

__const int N, __const int numComputeElements)

{

int i = get_global_id(0);

if (i >= N) return;

int part = N/numComputeElements;

for(int index = i*part; index < (i+1)*part - 1; index+=2)

{

double2 x = vload2(index/2, data);

double2 temp = (x-mu)/sigma;

temp *= temp;

double2 result = exp(-0.5*temp);

vstore2(result, index/2, results);

}

}

Listing 3.5 shows a kernel that does more work per thread. Note that this kernel assumes
that the number of compute elements evenly divides N . Doing more work per thread forces
the developer to think about work distribution, and then most of the benefits with this
programming model are lost, since it really should be implicit. Work distribution is not very
difficult to achieve, but it would be like fighting against the programming model. The ideal
case would be to have the same kernel for both the CPU and the GPU, and that the OpenCL
SDK took care of this automatically. As we can clearly see, the kernels in listing 3.2 and 3.5
are very different from each other. Also, note that the Gaussian function is a trivial function
to implement. Other functions might be much more complex.

3.2.3 Preliminary OpenCL conclusion

We do not see any reason to port the evaluation functions in the CPU version of MLFit
from C++ to OpenCL, atleast not for now. OpenCL for CPUs has to mature a lot before
this can be attractive. We want the compiler to deal with vectorization, and we want a
threading library that can do effective scheduling of threads, without forcing the programmer
to do programming tweaks. The primary argument for using OpenCL is portability. We
could for each function use one OpenCL kernel for both CPUs and GPUs, but that would
lead to performance penalties. For the performance penalties to become smaller, one would
have to have separate OpenCL kernels for each device, and then there is really no point in

3.2. ALTERNATIVE THREADING TECHNOLOGIES 36

Figure 3.2: Performance comparison of a single-threaded evaluation of the eta’K model for
OpenCL versus OpenMP with the Intel C compiler both with and without vectorization
(both SSE and AVX). 1 000 000 events.

implementing OpenCL kernels for the CPU if one already has a well established C++ version
with OpenMP. Figure 3.2 shows a comparison for a single-threaded run of an evaluation of
the eta’K model with 1 000 000 events. Clearly, AMD’s OpenCL implementation is not
close to near the non-vectorized OpenMP implementation compiled by the Intel C compiler
because of unnecessary overhead in the library. We emphasize that the OpenCL version (i.e.
the C++ part of the OpenCL version) also was compiled with the Intel C compiler.

We have in addition tried Intel’s OpenCL version (a Linux edition was released at the
end of the period of this thesis) as a preliminary evaluation for Intel, without much success
regarding performance. Intel’s implementation was comparable to AMD APP SDK.

3.2.4 Intel Threading Building Blocks

Intel Threading Building Blocks, or TBB for short, is a multithreading library developed by
Intel. It is open source, written in C++, and aims to give programmers a way to introduce
multithreaded data and task parallelism in C++ programs. MLFit is mainly data parallel
(for now), so the tools for managing tasks by explicitly using task constructs in TBB is not
interesting for us at this moment. We will use one TBB method primary, and that is the
templated parallel_for method. Moving to TBB is a relative straight-forward operation.
Since parallelism is encapsulated in a single method of each PDF, this is the main piece of
code we have to change.

3.2. ALTERNATIVE THREADING TECHNOLOGIES 37

Listing 3.6: C++/pseudocode describing the use of the TBB parallel_for method.
//Prototype of parallel_for

void parallel_for(blocked_range<size_t>, <functor>, tbb::partitioner);

//An accumulation functor

class PdfGaussianTBBAccumulator

{

PdfGaussian* m_pdf;

Double_t* m_data; public:

void operator()(const tbb::blocked_range<size_t>& r) const

{

int end = r.end();

for(size_t i = r.begin(); i < end; ++i)

{

/*

* Calculate the gaussian for element i based on the data array,

* and put the result in some result structure in m_pdf

*/

}

}

PdfGaussianTBBAccumulator(PdfGaussian* pdf, Double_t* data) : m_pdf(pdf), m_data(data)

{} };

//Executing the parallel evaluation of the Gaussian function

parallel_for(blocked_range<size_t>(0, N), PdfGaussianTBBAccumulator(pdf, data), tbb::

auto_partitioner())

Listing 3.6 shows some code which explains how execution with parallel_for is done. The
method accepts an object called blocked_range, which is a TBB object representing a par-
tition of the array. Since TBB is based on tasks, and that threads take/steal tasks, each
thread will take a task representing a blocked range and perform the computations in this
area. If the thread is done and there is still more work to be done, it will be scheduled to
take another range. The explicit declaration of the integer end is done to help the compiler
vectorize the loop.

For partitioning the work, TBB offers different work partitioner implementations. A
standard partitioner is the auto_partitioner used in listing 3.6. It uses a heuristic to decide
the range size for each task. Note that it is also possible to define a static blocked range
size (also called grain size). Another type of partitioner is the affinity_partitioner, which
we assume is a partitioner optimized for good cache usage. All our tests has shown slightly
performance improvements using this partitioner. It is in general difficult for us to describe it
more detailed than this, since this is like a black box. We show results including TBB runs in

3.3. GENERAL OPTIMIZATIONS 38

Section 3.4. An important aspect of TBB is to provide enough work for each thread, so that
the overhead of calling parallel_for is justified/amortized. According to [34], it is suggested
that each thread has a grainsize so large that the execution of parallel_for should take at
least 10 000 to 100 000 instructions to execute for each thread. This can potentially involve
a penalty for low workloads, and we are looking for a solution with maximum performance
in any case, since we cannot assume what N will be.

Downsides TBB is from a programmer’s perspective an elegant tool to use for parallelism.
However, the programmer cannot identify a logical thread, i.e. the OpenMP phenomenon
of thread IDs does not exist. Actually, this is the purpose of TBB. The programmer should
not have to deal with threads and do for instance SPMD1 branching with respeect to thread
ID. The idea is that the programmer should map tasks onto work, and not care about which
threads execute those tasks. Unfortunately, this is problematic since MINUIT requires a
deterministic reduction for each evaluation, as mentioned in Section 2.6. To achieve this,
one has to explicitly specify which elements each thread will reduce. But this is totally in
opposition to what TBB is made for, and as mentioned, we cannot use thread IDs to assert
a deterministic reduction.

TBB also requires implementation of more code to work. It is necessary to implement one
class per parallel_for operator, which is not elegant compared to OpenMP. Another point
is that TBB is a stand-alone library. OpenMP is included in most compilers on the market,
which obviously is easier for users.

3.3 General optimizations

This section describes the general optimizations we have done to MLFit. All these optimiza-
tions comes on top of the optimizations already done to it, presented in Section 2.4.

3.3.1 A different evaluation approach

The optimized/parallelized OpenMP NLL evaluation in MLFit is implemented as follows;
A call to GetVal in a leaf PDF will start an OpenMP parallel region, and call the method
evaluateOpenMP which will vary by polymorphism with respect to which class one is inside.

1SMPD is a term used for a MIMD execution with a number of processes/threads starting running the
same instructions, but later executing an individual set of instructions with the help of branching inside the
program. This is often used in e.g. MPI programs.

3.3. GENERAL OPTIMIZATIONS 39

Figure 3.3: An explicitly parallel evaluation of a PDF tree.

Figure 3.3 shows a parallel version of the scenario in Figure 2.3. When entering the GetVal
function of RooAddPdf, a parallel region will not be started, since we are in a composite
node. This function will single-threadedly call its own evaluateOpenMP function, which for
RooAddPdf is specifically implemented to iterate over all child PDFs and call their GetVal
function too, traversing the tree, for in the end to sum these partial results. However,
each GetVal function in leaf nodes (RooGaussian and RooArgusBG in this case) applies the
actual parallelization, and this means a new OpenMP parallel region which we suspect could
involve a larger overhead than necessary. We would want as few OpenMP parallel regions as
possible, since threading overhead should be kept at a minimum. To remove this potential
overhead, we have rewritten the entire evaluation using a different pattern. The idea is to
have one parallel region only, and this region will be started at the top of the tree. To
avoid race conditions in the composite PDFs, we statically partition the problem set (which
was also done before), and make each thread do an evaluation from the root to the leaves
within its own partition only. We call this an implicitly parallel approach, since the parallel
execution will be defined another place than in the PDFs, and now does not have to stop at
various places inside the tree, but can be run on the entire tree in a direct top-down manner,

3.3. GENERAL OPTIMIZATIONS 40

avoiding eventual thread overhead as much as possible. In practice, this is implemented as
a parallel OpenMP region in the class responsible for doing the NLL evaluation. This way,
no PDF classes need to know anything about OpenMP since the parallel call happens only
in the RooNLLVar object. This means that parallelization is much easier, and that simpler
threading mechanisms eventually can be used with very little implementation work. In other
words, we do not really need any sofisticated threading technology, since this is a statically
balanced evaluation with one entry point for parallel execution. This is very beneficial with
respect to the fact that the implementation is loosely coupled from any threading technology,
and we have reduced the amount of code needed to do threading to a few lines.

This evaluation pattern is not an optimization without consequences that may be prob-
lematic. When evaluating the PDF evaluation functions in parallel without an explicitly
parallel region inside them, it is crucial that these functions do not modify member variables
of the object the method is run on, or global variables, without carefully assuring that race
conditions are avoided. An illustration of the implicitly parallel evaluation is shown in Figure
3.4.

Figure 3.4: An implicitly parallel evaluation of a PDF tree.

3.3. GENERAL OPTIMIZATIONS 41

3.3.2 Aiming for scalability

Scalability characteristics changes depending on which hardware an application is run on.
Some processors might have loads of cache, while smaller commodity systems have smaller
cache sizes. Scalability is a problem for MLFit on commodity hardware, and this is not
a problem of Amdahl’s law since we see this trend on large numbers of N only. Just to
illustrate, we have in Figure 3.5 included two VTune hotspot profiles from the implicitly
parallel version running 4 threads with 100 000 and 1 000 000 events respectively. These
show that there is clearly problems inside composite PDFs when N grows large.

(a) N= 100 000 (b) N= 1 000 000

Figure 3.5: VTune hotspot profiles for the OpenMP implicitly parallel version on 4 threads.
N is 100 000 and 1 000 000 respectively.

The relative time spent on actual computation is here reduced dramatically (can be seen
from the time used on doing exponentials in SVML). In composite PDFs, it is necessary to
evaluate the child PDFs and then add/multiply PDF by PDF. We have verified that the
local hotspots inside the prod and add functions correspond to the source lines that do the
loading of child results from memory, as well as storing the final result to memory. This
incurs a high load on caches, and will for a large number of events lead to a lot of L3 cache
misses. This can be explained by the fact that doing an addition or a multiplication is almost
negligible compared to several memory operations, while in the evaluation functions of the
PDFs, transcendental functions increase the relative time spent on actual computation (i.e.
the arithmetic intensity). Note that it seems like the polynomial PDF is relatively expensive
compared to the other PDFs. This is because the exponential routine is separated from the
PDFs, so the Gaussian function for instance spends more time than depicted by the profile
if one adds the time spent in the exponential routine.

A common technique used to solve this problem is to do cache blocking, also called block

3.3. GENERAL OPTIMIZATIONS 42

splitting. Cache blocking works by splitting the data domain into blocks and consuming one
by one of them. This will hopefully increase locality and thereby cache efficiency. There were
two difficult areas to consider when doing this optimization;

• When doing cache blocking in e.g. a for loop, and with more than one thread, it is
necessary to compute which index each thread should access by using which block to
target, the thread’s ID and the loop counter. It is not always possible for the compiler
to know if the indices produced by these expressions are aligned or not, since they
often are non-deterministic at compile time. This will again lead to that the compiler
eventually cannot vectorize the loop, which implies a huge performance degradation
since SSE instructions are not emitted.

• If cache blocking is to be used, it means evaluating the total function the tree represents
in chunks, and thereby more call to virtual functions than doing the whole evaluation
in one. This can also be of large significance, especially if the model (tree) consists of
many PDFs, since each node represents a virtual function call for each iteration. All
in all, this is a trade-off situation that is difficult to optimize, at least when it is not
known a priori which hardware the application is run on.

The solution that gave improvements was actually implemented in the old OpenMP version
(explicitly parallel) before this work was started. It was tried as an optimization, but that
was in a compute-bound scenario (larger machine) which then did not pay off. However, in
our commodity scenario the application obviously is memory-bound for large numbers of N ,
and we have therefore implemented it also in the implicitly parallel version.

The solution is to run the evaluate function of the tree root on a block basis (in the
NLL::GetVal function) and not do any changes inside the tree. When one thinks about
it, setting a block size of e.g. 10 000, will be almost like evaluating the function for N =
10 000, only that this happens many times, and by Figure 3.5, this suggests a much faster
computation. Sometimes the simplest solution clearly is the best. By almost, we mean that
there is one difference; when MLFit is run without block splitting, a static partitioning/load
balancing will occur, and each thread will get one partition of the entire workload. When
block splitting is applied, the exact same thing is done, but each thread’s partition is blocked.
Another blocking solution would have been to block the entire array and then partition each
block into thread parts. The reason the former was chosen is that it is necessary to have
partitions of fixed size to have a deterministic reduction. If the block size was to be changed
(for performance tuning for instance) this would imply different results, since the partition

3.3. GENERAL OPTIMIZATIONS 43

distribution would have changed. This would have meant a reduction value depending on the
number of blocks and threads. However, when partitioning is done first, it is clear that each
thread has ni elements (where i is the thread ID) and that those elements can be consumed
on a block basis, but will still be reduced to the same bitwise number independent of the
block size (given that the number of threads is constant, of course).

3.3.3 Result propagation and loop fusion

Loop fusion (or loop jamming) is a technique where two or more subsequent loops are merged
into one loop. The normalization step after the function evaluation means in practice to divide
the function value by the integral of the function. In RooFit this was done by doing a division
for each element, but when MLFit was written, and all values of a whole range were to be
computed, it was then possible to multiply by the reciprocal of the integral instead (division
is an inherently slow operation [35]). This optimization contributed a lot, since this happens
for each value, for each PDF in the tree. The normalization, at the time being, happens
in a separate loop which is run after the PDF evaluation. It is possible to merge this loop
into the function evaluation loop, and we have done exactly that. The idea is not to just
escape the loop overhead, but also to overlap computation and memory accesses. This can
be seen as changing the design in RooFit, but it should be possible to keep this as a special
function which does evaluation and normalization in one, while keeping the evaluation and
normalization function separate (performance can still be kept because of function inlining).

Since there is a general hotspot in composite PDFs when N grows large, we have tried
to come up with solutions that can lower the load on memory that these areas incur. As
already described, the composite PDFs tell their children to produce their results, and then
do the given operation (e.g. addition or multiplication) on those results, PDF by PDF (after
the childrens’ computation). But what if child by child could do this operation at the same
time as they are calculating themselves, and thereby operate only on the parent result? This
would mean that each leaf PDF does not have to store its own results anymore, and quite
a few memory accesses are escaped. We have implemented a solution where each composite
PDF sends its result array “down” to the child, so that the child can compute itself and also
do the parent’s operation on the parent’s result. This is for sure a loop fusion, as well as a
bottom-up propagation of computed results, and another positive bi-effect could be latency
hiding since the computation is done in a memory-hotspot as opposed to before. This is
possible since the evaluation of different PDFs is sequential within each thread. Also, since
we are now operating on the parent results, a lot of memory is saved.

3.3. GENERAL OPTIMIZATIONS 44

To summarize, a child PDF hereby has the responsibility to

• Evaluate itself.

• Normalize itself by a multiplication of the reciprocal of its integral.

• Perform the required operation that the parent represents on the parent result array
directly, using its newly computed result.

This might sound as more work for programmers/users that maybe want to add new PDFs,
and that is true to some degree. For each PDF it is necessary to add one function for each
composite PDF type. In MLFit, this means two functions (add and prod) for now. It is
not possible to implement it in another way in C++, since virtual functions cannot be e.g.
templated, and we have to avoid branching and virtual function calls inside the evaluation
loops, since that would break vectorization. It is clear that we introduce duplication of
code to make the program run faster. This is something that must be considered when this
prototype is going to be merged into RooFit, since it is a trade-off situation between good
coding practice and performance.

3.3.4 Constant expressions

In Section 2.4 we described the changes done to the implementation when parallelizing it. In
RooFit, there are many types of PDFs, and each PDF often has some unique variables which
are used in the evaluation. To illustrate, we list the implementation of the BifurGaussian
PDF in listing 3.7, which is called from its evaluateOpenMP function. This PDF relies on
a coefficient in the evaluation, and this coefficient is calculated by doing a division and a
multiplication of some other variables. This is maybe a rational implementation in RooFit
where each evaluation returns one value, since you might want to change for instance sigmaL
in between two function evaluations. However, when evaluating a whole range of values, it
is desirable to keep sigmaL constant (but of course have the possibility to change it between
the parallel evaluations), which means that this value could be precomputed before entering
the computational kernel. This will lower the amount of arithmetic operations, and the
performance gain will be proportional to the complexity of the model, i.e. one can benefit
more if one has 5 BifurGaussian PDFs in the model than 1. This is not an architectural
optimization, since it is more at the detail level, but we believe it could have an impact
and thus should be mentioned here. The eta’K model consists of 4 BifurGaussian PDFs
and 3 ArgusBG PDFs among others, and both of these are targets for constant expression

3.4. RESULTS 45

optimizations. But there are also PDFs that are not a target for this optimization. For
instance, the gaussian function only relies on x, sigma and mean so it is not possible to
compute any constant expressions in that case.

Making expressions constant is primarily the work of the compiler, and modern compilers
do this very well. If this had been a loop, and the coefficient variable had been calculated for
each iteration, a good compiler would have had no problems in optimizing that into a constant
expression. However, the evaluation involves virtual functions and it could therefore be
difficult for the compiler to do something about this, since the call is dynamically dispatched
at runtime. Also, it should be noted that these are optimizations that in our model centers
around multiplication and division. The operations that by far takes the most time are
transcendental math functions like log, pow, exp and sqrt, so we should maybe not expect
huge differences. We show the results of this small optimization in Section 3.4.4.

Listing 3.7: Evaluation of the BifurGaussian function, calculating constant values for each
evaluation.
inline Double_t evaluateLocal(const Double_t x, const Double_t mu, const Double_t sigmaL,

const Double_t sigmaR) const {

Double_t arg = x - mu;

Double_t coeff = 0.0;

if (arg < coeff)

{

if (TMath::Abs(sigmaL)>1e-30)

{

coeff = -0.5/(sigmaL*sigmaL);

}

else if (TMath::Abs(sigmaR)>1e-30)

{

coeff = -0.5/(sigmaR*sigmaR);

}

}

return TMath::Exp(coef*arg*arg);

}

3.4 Results

We present the runtime/speedup results obtained from the TBB and OpenMP versions we
have developed, with and without our own evaluation approach, in addition to the other

3.4. RESULTS 46

Figure 3.6: The topology of an Intel Core i7 965 CPU.

optimizations. We have concluded that OpenCL is not the way to go for us on the CPU
side (atleast not yet), so we do not include results for that implementation here. Since we
are aiming at commodity hardware primarily for now, we have benchmarked our different
versions of MLFit on a modern machine featuring an Intel Core i7 965 CPU, running at 3.2
GHz and 2GB of DDR3 RAM. The Core i7 965 is turning into a commodity processor by
the time this is written, but it is still reasonably high-end (although not Intel’s flagship at
the time being). This CPU has 4 physical cores, 32 KB of L1 cache, 256 KB of L2 cache
and 8192 KB of shared L3 cache between the cores. The Intel Core i7 965 supports SMT
(simultaneous multithreading), also called Hyper-Threading by Intel [36]. This means that it
has the ability to physically execute 8 threads simultaneously and on a per-core basis (with
2 threads) try to latency-hide the memory accesses of each of the two, aiming to exploit
the ALUs better. This can be thought of as hardware thread scheduling instead of plain
OS/software thread scheduling. Figure 3.6 shows the topology of this CPU. The operating
system used is Scientific Linux CERN 5 (SLC5), which is a modified version of Red Hat
Enterprise Linux.

The benchmarks include runs for 10 000, 50 000, 100 000, 500 000 and 1 000 000 events.
Each run is a pure NLL function evaluation done 100 times to achieve an accurate timing
result, which means that the results in seconds we present (NLL evaluation time) is the time of
100 function evaluations. The timing facility used is the OpenMP function omp_get_wtime.
Two calls to this function surrounds the loop that call the NLL function. Table 3.1 shows

3.4. RESULTS 47

t1(s) t2(s) t3(s) t4(s) t5(s) t̄ σ SE
4.0405 4.0341 4.0367 4.0260 4.0213 4.0317 0.0078 0.34%

Table 3.1: 5 timings for 100 eta’K model evaluations with 4 threads and 1 000 000 events.

the measurement of 5 runs with mean, standard deviation and the standard error (hereby
abbreviated SE). The standard error is 0.34%, i.e. the timings are very accurate. We will
use these numbers as a foundation for further timings throughout the thesis. In addition to
targeting commodity hardware, we show how MLFit performs on a larger NUMA2 machine.

3.4.1 TBB and OpenMP, explicit and implicit

It is interesting to see how TBB performs compared to OpenMP on a commodity machine
(Core i7), with and without the new evaluation pattern we introduced, even if it has its
downsides and is less suitable for MLFit than OpenMP. By this we mean that in the end
MLFit must be implemented with OpenMP anyways, since it allows deterministic reductions.
The new evaluation pattern has the potential to inflict on both performance in general as
well as scalability, since the goal is to minimize the threading overhead by having one parallel
entry point.

Figure 3.7 shows the runtime results for both versions with both the explicitly parallel and
implicitly parallel evaluation pattern. The implicitly parallel versions perform significantly
better in most cases, however, the most characteristic (and critical) observation is the huge
performance degradation the OpenMP version suffers when N grows large. This is the
manifestation of what we discussed in Section 3.3.2. TBB is implemented by threads taking
tasks in blocked ranges, and these ranges are much smaller than the static partitions used
in the OpenMP version. Therefore the TBB version (atleast the implicitly parallel) is more
robust to larger amounts of data (and thereby higher cache loads) for these implementations.
We can note that the general scalability of the application so far is very bad. We can also
note that SMT only has an effect on small numbers of N for these versions.

2NUMA stands for Non-uniform memory access and is a term used for many-socket systems. In these
systems memory access latencies varies with respect to which CPU accesses which memory bank. When for
instance placing 4 SMP nodes in one machine, it is logical that node number 1 will spend more time loading
memory from node 2’s memory bank than from its own.

3.4. RESULTS 48

(a) N= 10 000 (b) N= 50 000

(c) N= 100 000 (d) N= 500 000

(e) N= 1 000 000

Figure 3.7: OpenMP version versus TBB version on the Intel Core i7 965. Both explicitly
parallel and implicitly parallel.

3.4. RESULTS 49

3.4.2 Block splitting

To improve the bad performance reflected in Figure 3.7, a top-level block-splitting was in-
troduced. This directly targets cache misses, since the application will operate on smaller
chunks of memory at a time as explained in Section 3.3.2. The performance gain by doing
blocking is of course highly dependent on the block sizes. We have experimented with a broad
range of different values, but in the end (for this processor) one reaches a plateau where it
does not matter much whether one increases or decreases it with e.g. 1000 elements. We
found by experimentation that some of the best choices for the blocksize was 1000 for the
OpenMP version and 5000 for the TBB version. However, this comparison is not about being
100% fair against any of the two implementations. It is more interesting to see if there are
some surprising trends. Block size will of course be modifiable by the user of the application
if he has any interest in experimenting with that himself. The size of the blocks depend on
the hardware and the size of the model.

The results of this optimization are shown in Figure 3.8. For a low number of N , we
do not see much difference between the versions (as expected), but when N grows large we
clearly see the power of blocking. The blocked OpenMP implicit version is superior to the
non-blocked, and is the fastest of the five in nearly every case (although in general with small
margins with respect to TBB implicit, but this is also as expected). This was exactly the
goal of this optimization.

3.4. RESULTS 50

(a) N= 10 000 (b) N= 50 000

(c) N= 100 000 (d) N= 500 000

(e) N= 1 000 000

Figure 3.8: Implicitly parallel versions of OpenMP and TBB on the Intel Core i7 965, with
and without block splitting. The blocked explicitly parallel version is also included to compare
with the blocked implicitly parallel one.

3.4. RESULTS 51

Figure 3.9: The average speedup of going from an explicitly parallel to an implicitly parallel
evaluation, with errors. The average is taken over all threads, and is shown for different
values of N .

How much was it in “total” possible to gain on using the new evaluation approach? Figure
3.9 gives the average speedup for the blocked implictly parallel vs. the blocked explicitly
parallel version for all number of threads with respect to the number of events. The most
important observation is that it seems to increase as N grows large and it is when N grows
large that commodity systems need all the power they can get. We do not mean to analyze
this speedup very thoroughly, the main point is that the new evaluation strategy is faster
and therefore we will use it. Error bars are included to give some more information about
the potential.

3.4.3 Scalability so far

We have converged on a version to use for further optimizations, which is the blocked im-
plicitly parallel OpenMP version. Figure 3.10 shows a scalability plot for this version. The
scalability has improved, but there is still much to improve before it will be good, since we
only have about ∼ 2.5x speedup with 4 threads when N grows large. SMT obviously works
well for 10 000 events, but after that the effect is almost negligible in every case, and leads
to slightly loss of performance on 1 000 000 events. However, an important property of these
plots is the clear pattern as N grows. The speedup is nearly constant with respect to N ,
which means that cache blocking works as assumed. Cache misses could be a problem still,

3.4. RESULTS 52

but at least it does not increase as the amount of data is increased. This is a quite good
starting point to do further optimizations from. The most obvious difference between the
plots is the case with 10 000 events compared to the rest; the speedup is substantially higher
and this is because the data reside higher up in the memory hierarchy, e.g. fits to a higher
degree in L3 cache instead of memory. Remember that the L3 cache is shared between the
cores on this processor, as shown in Figure 3.6.

3.4. RESULTS 53

(a) N= 10 000 (b) N= 50 000

(c) N= 100 000 (d) N= 500 000

(e) N= 1 000 000

Figure 3.10: Scalability of the OpenMP blocked implicitly parallel version.

3.4. RESULTS 54

3.4.4 Result propagation, loop fusion and constant expressions

By doing these loop fusions and propagation of results, we do not doubt that it will go faster,
but we are first and foremost interested to see if this has meant an increase in scalability. The
results from this optimization was, as the last scalability results, more or less independent
of N . Because of this we present a scalability plot in Figure 3.11. This shows the average
scalability for all numbers of events for 1, 2, 4 and 8 threads. Note that we denote the edition
utilizing both loop fusion and result propagation as loop fused, for convenience. Combining
the block splitting with fusion of the composite loops and result propagation in addition
to the final normalization loop for each PDF, the application is finally reasonably scalable.
The plot crawls quite near the plot for ideal speedup, but it is still something that limits it
somewhat. When using more than one thread, there exists a small OpenMP overhead, which
we have seen using VTune, and we suspect that this is one of the major factors. It is also
important to remember that the operating system occupies one of the cores slightly, which
can become significant when using all cores. We have carefully measured the serial fraction
of the program to be almost negligible, so the impact of Amdahl’s law should in general be
small. One has to remember that this is a very non-trivial application to optimize, and that
it is memory-intensive; it is not directly clear when threads access memory since they “live
their own life” when they evaluate the tree. The RooFit style of creating PDF models targets
programmability mainly, and we have tried to “force” performance into it. We have applied
optimizations that seemed logically reasonable to do, and it is very rewarding to see that the
optimizations so far has lead to an if not perfectly scalable, then at least nearly perfectly
scalable edition of MLFit on commodity machines.

Having the scalability characteristics in mind, we present the actual speedup of the final
version in Figure 3.12, with the average values over 10 000, 50 000, 100 000, 500 000 and 1 000
000 events. We can see from this plot that the new evaluation pattern (implicit) improved
the evaluation with everything from 25% to 40% overall, when considering the average with
respect to the number of threads. Note that Figure 3.9 also tries to show this, but it shows
it with respect to the number of events, with the average for all threads. Applying cache
blocking increases the performance significantly. The problem is that with blocking only, the
application will still not scale properly, and this is something that it is non-trivial to give a
good answer to, since the operations in the composite PDFs should be blocked now. Therefore
it must be something very sub-optimal with the memory access pattern that occurs. All these
problems are to a large degree solved with the fusion optimizations and result propagations,
and by pre-calculating constant expressions we can in the most profitable case (8 threads)

3.4. RESULTS 55

Figure 3.11: Scalability of the most important OpenMP versions.

Figure 3.12: Speedup relative to the OpenMP explicit version.

3.4. RESULTS 56

achieve an average speedup of ∼ 3.5x compared to the OpenMP explicit version. Note that
these are average measurements. We would like to add that the speedup of the final version
compared to the OpenMP explicit version on 8 threads and 1 000 000 events is ∼ 6.45x.
Of course this is also lower than 3.5x in other configurations (∼ 1.45x is the lowest we have
measured). By pre-calculating constant expressions we gain anything from 5% to 14%, which
is nice, considering the minimal effort to implement it. We note that we actually gain quite a
lot on SMT with the loop-fused versions, but lesser with the final one than the one not using
constant expressions. Obviously this means that the processor is able to do latency-hiding of
memory accesses well when there are done a lot of computations. The constant expressions
version is doing fewer computations while keeping the memory traffic as before, and therefore
it is reasonable that SMT will be less significant. Anyways, SMT should just be considered
as a pure “bonus”. Jarp et al. reports in [23] a single-core speedup of 4.5x for the explicitly
parallel version of MLFit compared to the original RooFit. By Figure 3.12 our speedup is
now around 1.75x compared to that version. An estimate of the final version compared to
RooFit running on a single core will then be ∼ 4.5x ∗ ∼ 1.75x ≈ 7.8x. On top of that comes
a scalability of ∼ 3.6x on 4 cores, and good utilization of SMT (∼ 4.7x).

3.4.5 NUMA results

We have in the sections up until now run MLFit on a single-socket machine, and we present
in this section the results from running on a dual-socket NUMA machine with up to twice as
many threads. When running on more than one socket, the concept of affinity, or pinning can
be very central. By this we mean which thread is scheduled to run on which core. Executing
the program naively will put all this responsibility on the operating system. Depending
on the application, this can incur performance penalties since the effect of scheduling a
thread on another socket can mean loosing all data loaded into the cache in the CPU on the
former socket (cache misses). More specifically, if one thread allocates some memory area,
this memory area will most probably be allocated in the memory bank corresponding to the
socket of the CPU the thread is currently running on. However, if this thread now is scheduled
onto another socket it might incur large penalties since the thread must go to the former
CPU’s memory bank to fetch these data. This can therefore also have a large impact on
reliability of timing results. Another important point is that it will be more cache efficient to
evenly distribute threads across sockets, “waiting as long as possible” with filling a socket with
threads. Intel OpenMP (and maybe other implementations) supports a flag/environmental
variable named KMP_AFFINITY. This flag gives the user the opportunity to control thread

3.4. RESULTS 57

Figure 3.13: MLFit scalability on a dual-socket Intel Core i7 machine.

affinity, i.e. locking a thread to a specific core. Figure 3.13 shows the scalability running
both with and without KMP_AFFINITY set. The speedup is as good as perfectly linear
with the affinity flag set (this also proves that Amdahl’s law is close to insignificant in our
case). However, leaving scheduling to the operating system involves a large penalty when the
machine starts to get filled. This demonstrates the importance of pinning. Note that this is
on an 8-core machine and that we run SMT on top of these 8 threads. SMT gives around
25% speedup when pinning is done properly and the machine is filled.

3.4.6 Preliminary conclusion

We have landed on an implementation that suits our needs for future development. It can be
assumed that the application will scale reasonably well on commodity processors, and also
on larger NUMA machines, atleast when taking pinning into consideration. VTune profiles
have shown that OpenMP overhead represents a few percent of the total running time for
the whole application (this can be very variable), and it increases slightly when using SMT.
This is important, since it means that it will be difficult to improve it significantly using
other threading mechanisms unless they have close to zero overhead in every case. In general
this chapter has been more about low-level optimizations than what kind of threading one
applies.

3.4. RESULTS 58

Figure 3.14: A VTune hotspot profile of the final version, running 1 000 000 events on 4
threads on the Intel Core i7 965.

It may be possible to do further optimizations with regards to memory access, threading
overhead, and in general trying to achieve close to perfect scalability on single-socket machines
with a CPU with limited cache size. However, we will say stop for now because there
are other areas in our work that is more important than fine-tuning. The most important
optimizations are the fundamental ones like implicitly parallel evaluation, cache blocking,
loop fusions and result propagation. We mean that it is not possible to add any more
fundamental/architectural optimizations without breaking the interface of RooFit. Figure
3.14 shows a VTune hotspot profile for the final version. We can see that almost half of the
time is spent doing exponentials, which is a really good sign. The functions further down the
list are the evaluation functions, and with the optimization of constant expressions we can
be sure that they do only what they must do and nothing more.

Chapter 4

MLFit on GPUs

Since modern computers often are equipped with programmable graphics processing units,
it will be advantageous if MLFit can benefit also from them. In this chapter we present
the implementation of MLFit for GPUs using OpenCL. MLFit was actually implemented
in CUDA before this work was started, but we will here focus on OpenCL and on the
eventual optimizations that is possible to implement. The key reason for using OpenCL is
the portability between vendors. It is not ideal to be bound to NVIDIA GPUs just because
the software technology dictates that. Another important point is that MLFit for CPUs now
has a completely different performance profile, so this chapter will also include a thorough
performance comparison.

4.1 Graphics processing units

In recent years, it has become more common to use graphics processing units (GPUs) as
general co-processors. GPUs are designed to process image textures, where each pixel is
independent of all others, but identical operations are used to process each. Therefore, general
purpose algorithms that can be classified as SIMD perform efficiently on GPUs. On GPUs, a
larger fraction of the silicon is spent on ALUs instead of caches and control-flow mechanisms
[31]. GPUs can in some cases be much faster than price-equivalent CPUs, but not necessarily,
since the GPU is an accelerator connected through a bus (the PCI-Express bus for instance).
Transferring data back and forth on this bus can lead to high communication overhead, which
again could make a GPU performance-wise obsolete compared to a CPU in some scenarios.
The GPU is a massively parallel throughput device, that aims to deliver massive memory
bandwith and parallelism by sacrificing low latency. Just as a comparison, the Intel Core i7

59

4.1. GRAPHICS PROCESSING UNITS 60

965 CPU has a theoretical maximum memory bandwidth of 21 GB/s [37] while an NVIDIA
GTX470, which is almost equally priced by the time this is written, has a memory bandwith
of 133.9 GB/s [38]. One of the prime drivers for the popularity of GPUs is the video game
market. Modern video games are highly demanding when it comes to rendering capabilities,
and since computer games are very popular, the market is enormous. Graphics operations
done on pixel buffers are nothing more than plain arithmetic operations, so there is no
fundamental difference between rendering graphics to the screen or performing some kind of
scientifical computation on those data. A GPU is a many-core processor with up to thousands
of cores, usually running on a lower frequency than price-equivalent CPUs. This has to do
with power consumption/temperature, and is in general a scale out approach as opposed to
a scale up approach. These cores are able to execute thousands of threads with effective
hardware context-switching, and the instructions run should stem from SIMD-like code for
best performance, avoiding branching for instance. Each core executes an instruction in a
lock-step fashion, and eventual branch divergence will be computed sequentially, which again
will lead to a serious peformance decrease. NVIDIA CUDA uses a stack-based reconvergence
algorithm for this [39], but this will of course depend on the implementation when using
OpenCL.

Another major difference between CPUs and GPUs is the caches and memory. While the
CPU often has a hierarchy of data and instruction caches (differing mainly by size, access
times and if they are pure instruction/data caches or combined ones), GPUs have a number
of different types of memory. We list (based on previous work presented in [40]) the different
memory types on an NVIDIA GeForce GTX470, which is one of the two GPUs we will do
benchmarks on in this chapter. The different memory types on the GTX470 are:

• Global memory

• Local memory

• Constant memory

• Texture memory

• Shared memory

• Registers

The most obvious type of memory is global memory, which is a large and relatively slow
memory that each thread in every block can access. As an example, NVIDIA states that

4.2. IMPLEMENTATION 61

the latency associated with a read from CUDA global memory is everywhere from 400 to
600 clock cycles [31]. This memory is off-chip. Local memory is the same kind of memory
as global memory, and are often used as a register spill space if the number of registers
required by the threads exceeds the number of registers available. Note that this memory is
per-thread. Constant memory is a small cached read-only memory. It is therefore faster
than global memory, but unwriteable unless one copies data from host memory to it. Since
it is small, it can only be used for a limited amount of data, typically constant values that
are to be reused globally. Texture memory is memory with a cache optimized for 2D
access. It is therefore appropriate to use for reading textures/images, but is also read-only.
Shared memory is shared among threads in a thread block, and is on-chip, thus very fast.
Shared memory is divided into blocks called memory banks, where each bank can be accessed
simultaneously. NVIDIA states that shared memory is as fast as accessing a registry as long
as no bank conflicts occur (i.e. two threads access the same bank at the same time) [31].
Finally, registers are the fastest form of memory on an NVIDIA GPU, but they are limited
in numbers so they should be used wisely. The compiler will try to use registers for frequently
accessed variables.

4.2 Implementation

Since MLFit already was implemented using CUDA, the GPU part of our work is significantly
smaller than the CPU part. The description of the work done using CUDA is thoroughly
described in [23], but with the major changes done to the OpenMP version of MLFit comes
also entirely different results. There is one important point to mention though. The new
OpenMP version of MLFit (implicitly parallel) is based on a directly top-down evaluation of
the tree. However, this is not possible using the GPU, since it really does not fit with the
way a GPU does computations. OpenCL is plain C, and the concept of virtual functions for
instance is something unknown. We will therefore have an explicitly parallel evaluation of
the tree for the GPU. An interesting fact is that the OpenCL standard is designed to support
asynchronous execution. This is reflected in the way API calls are named, i.e. clEnqueue-
<call>. A good example is the clEnqueueNDRangeKernel call for enqueuing a kernel for
execution. This means that if the underlying OpenCL implementation supports this, the
evaluation of the tree will be non-blocking, i.e. kernels will just be enqueued for execution on
the GPU. Then an implicit synchronization must occur at the end when the final reduction
result is to be copied over the bus. Since the OpenCL version of MLFit is explicitly parallel,

4.3. AN INITIAL EXPERIMENT 62

Figure 4.1: An explicitly parallel evaluation with OpenCL in MLFit.

each PDF has the ability to execute a kernel that corresponds to the given computation.
This is illustrated in Figure 4.1.

4.3 An initial experiment

Before running MLFit on a GPU, it is interesting to explore the characteristics of simple
computations, as well as computations involving transcendentals, on a much smaller exam-
ple. We use two GPUs through this chapter; one NVIDIA GeForce GTX470 and one AMD
Radeon HD5870. The theoretical peak performance properties on these cards are from a
hardware perspective far from equal, as showed in Table 4.1. Most numbers in this table
are taken from [38] and [41], which are the respective product web sites for these two GPUs.
NVIDIA do not list the peak performance of the GTX470, but we can give an estimate of
the peak performance of the NVIDIA Fermi GT100 chip, which is the actual chip residing on
the GTX470 card. To be precise, we hereby denote a floating-point operation as FLOP and
many floating-point operations as FLOPs. Floating-point operations per second is denoted
FLOPs

s
, FLOPs/s or FLOPs per second. The Fermi GT100 chip consists of Streaming Multi-

processors (SMs). If we denote the ALU clock speed by f and the number of SMs with m, the
theoretical maximum single-precision performance could be expressed as f ∗m∗ (32∗2). The
constant numbers stem from the fact that the NVIDIA GTX470 has 32 ALUs per SM and
that each ALU has the potential of doing an FMA1. Supplying its clock frequency of 1215
MHz and its SM count of 14, its maximum theoretical GFLOPs per second becomes approxi-
mately 1088. This is a purely theoretical number and should be interpreted as just that. The

1Fused Multiply-Add. The ability to do one multiplication and one addition in one clock cycle

4.3. AN INITIAL EXPERIMENT 63

NVIDIA GeForce GTX470 AMD Radeon HD5870
Number of ALUs/scalar cores 448 1600

Core clock 1215 MHz 850 MHz
Peak single-precision performance 1088 TFLOP/s 2.72 TFLOP/s
Peak double-precision performance 1088 ∗ 1

8
= 136 GFLOP/s 544 GFLOP/s

Memory bandwidth 133.9 GB/s 153.6 GB/s
Memory size 1.28 GB 1 GB

Table 4.1: A specification comparison between the NVIDIA GeForce GTX470 and the AMD
Radeon HD5870.

theoretical peak double-precision performance for the GT100 chip is half the single-precision
performance, or 544 GFLOPs per second. However, NVIDIA state that they have restricted
the double precision performance to 1/8th of the single-precision performance on consumer-
level GeForce cards, to get buyers that need high performance and double-precision to buy
their Tesla series instead. The Tesla series are not directed at gamers, but towards profes-
sional HPC clients, and are many times more expensive. This should mean that the HD5870
theoretically could perform 4 times as good as the GTX470 in double-precision calculations.
The major reason for us to use simple bench examples is that we believe this will simplify
reasoning. We are interested to see how the cards compare, and if computations involving
transcendentals are memory-bound or compute-bound. The main motivation for this is to
find out what kind of hardware would be most suitable for users of MLFit (but also GPU
applications in general). If AMD cards can perform 4 times as fast for approximately the
same price, the choice of vendor should be obvious.

For timing kernels we use OpenCL kernel event timing, which can be used by passing
appropriate flags for the command queue used to execute the kernels and by submitting a
cl_event struct in the kernel call. The timings can after execution be obtained by OpenCL
API calls using this event struct. The timings have been very accurate by our experiences,
but the accuracy is of course vendor/implementation dependent. The workgroup size for the
kernels in the following tests is set to 64 if the kernels involve transcendental functions, and
128 if not. More on these sizes in Section 4.4.

Additionally, we want to introduce our own measure, since we do not know how a “FLOP”
is defined by either AMD or NVIDIA. We introduce the term basic operation, which can
be either an addition or a multiplication. Of course, we assume that a basic operation is
comparable to a FLOP on both cards. It is mainly the eventual difference in performance
between the cards we are interesting in looking at.

4.3. AN INITIAL EXPERIMENT 64

Kernel # 1 2 3 4 5 6
Appr. DP

basic
operations pr.

iteration

10 22 91 2101 21001 210001

Appr. Total
DP basic
operations

1.0 ∗ 107 2.2 ∗ 108 9.1 ∗ 108 2.1 ∗ 1010 2.1 ∗ 1011 2.1 ∗ 1012

Table 4.2: DP basic operations counts for the kernels listed in Appendix A.

4.3.1 Measuring the double-precision basic operations

The theoretical limits of these cards are known, but it remains to see if this performance can
be utilized. Appendix A shows a program listing of some basic OpenCL kernels. We want to
see the effect of increasing arithmetic intensity when comparing the two cards, using double-
precision (DP) floating point numbers. We count basic operations, and we ignore the overhead
associated with e.g. loops. We do not claim that these measurements are completely accurate,
but we think they are good approximations. These kernels are run with 10 000 000 elements,
to be sure to saturate the GPU bandwidth. We have carefully tested that increasing this
number has a negligible effect. Table 4.2 shows the approximate DP basic operation count
for each kernel, and the approximate total number of DP basic operations when running
with 10 000 000 elements. Now, based on this table, we can measure the runtime of each
kernel and find an approximate value for the total DP basic operations per second each card
performs. The results are shown in Figure 4.2. Apparently, the theoretical numbers seem to
be close to true also in practice, atleast when the arithmetic intensity grows. The speedup
for the HD5870 converges around 4x which is on par with the specifications for the two cards.
The GTX470 peaks at around 100 DP basic operations per second , or approximately 81%
of peak performance if we let basic operations and FLOPs be approximately equal. The
HD5870 peaks at around 420 basic operations per second, or approximately 84% of peak
performance. Clearly, global memory is a huge bottleneck for kernels with low arithmetic
intensity.

4.3. AN INITIAL EXPERIMENT 65

(a) Performance.

(b) Speedup.

Figure 4.2: The benchmark results for both NVIDIA GTX470 and AMD Radeon HD5870
running the kernels in Appendix A.

4.3.2 Performance of computations involving transcendentals

In this section we set up some kernels involving transcendental math functions. We then
keep the number of memory reads/writes constant while increasing the arithmetic intensity

4.3. AN INITIAL EXPERIMENT 66

of the kernel, as in the last benchmark. The test consists of the computational kernels
in Appendix B. The idea is that these kernels are more similar to MLFit when it comes
to arithmetic intensity than the kernels in Appendix A. Kernel1 is just doing a simple
addition. Then we progress to multiplication and addition before involving the exponential
in Kernel3. Finally, we just increase the complexity arbitrarily while keeping the number of
global memory accesses, which is 3. Some decimal factors are included in the expressions just
to escape eventual common subexpression eliminations2 done by any one of the two OpenCL
compilers (AMD and NVIDIA). The results in Figure 4.3 show as expected quite obvious
signs of the global memory bottleneck. The first three kernels are so computationally light
that there is just a slight difference in performance between the cards (max 22%). This
means that the computation is entirely memory-bound on both cards. The HD5870 might
be faster in these scenarios because of lower latencies, but it is in general difficult to say
much about that since we do not know for sure what the compilers do. When increasing
the computational complexity, however, we can see a significant difference with the HD5870
peaking at a speedup of 2.71x in the best case. This means that the AMD card clearly
is not utilized as good as in the FLOP benchmark, but this is reasonable taking the lower
arithmetic intensity into account (the FLOP benchmark kernels have large loops and fewer
memory accesses).

In general, these results suggest that it will be more beneficial to use AMD GPUs if
a fit includes kernels with very high arithmetic intensity. The HD5870 is faster than, or
approximately as fast as the GTX470 in every run. The kernels that the PDFs of the eta’K
model consist of often include the exponential function or other transcendentals, but are not
nearly as computationally expensive as kernel5 and kernel6. However, this could be the case
for future PDFs, and it is important to emphasize that. We refer to Appendix E for an
implementation listing of all relevant kernels in the model we use.

4.3.3 The effect of OpenCL vector types

We have already been through the usage of OpenCL vector types (Section 3.2.2) and we
argued that it would not be an elegant solution for CPUs, based on the fact that using
vectorizing compilers is more effective and that vectorized transcendental routines are not
utilized by atleast the AMD APP SDK OpenCL compiler. Vector types can be significant

2Common subexpression elimination is a technique used by compilers to avoid computing expressions
that already has been computed. If the expression log(<identifier>) occurs twice in a computation, it might
well be that either one of the two compilers or both stores the result of the first occurence, and uses that in
all the following occurences of it. This would be a potential critical source of timing errors in our case.

4.3. AN INITIAL EXPERIMENT 67

(a) Performance.

(b) Speedup.

Figure 4.3: Benchmark results from the kernels in Appendix B running on the NVIDIA
GTX470 and the AMD Radeon HD5870 respectively.

4.3. AN INITIAL EXPERIMENT 68

for GPUs also, depending on the underlying architecture. AMDs architecture is different
from NVIDIAs. The HD5870 consists of streaming processor units, each containing 5 stream
cores based on a VLIW (Very Long Instruction Word) architecture, and is in many ways
more similar to the vector registers on a CPU. These 5 stream cores can be divided into
4 general purpose ALUs and one special functional unit which has the ability to execute
one single-precision transcendental calculation in one cycle. The SMs on NVIDIA Fermi
cards, as we mentioned in Section 4.3 also have 4 special functional units (SFU), each able
to execute a transcendental function on one single-precision number in one cycle, per thread
[42]. In essence this means that the granularity of scheduling is different between the two
architectures. AMDs approach relies on that the compiler does a good job utilizing the stream
cores in the VLIW setup, while in the Fermi case, the compute capability reflected in the
CUDA cores are more visible to the scheduler at run-time. In other words, while the GTX470
is based solely on thread-level parallelism (TLP), the HD5870 is based on instruction-level
parallelism (ILP) in addition. Therefore, by our understanding, vector types will essentially
only have a positive effect on the HD5870, atleast when memory accesses are aligned and
memory coalescing3 is achieved for the GTX470.

Figure 4.4 shows kernel6 from appendix A run with and without using double-precision
vector types for both the GTX470 and the HD5870. The results are as expected, except
a slightly performance increase for the HD5870 when using vector types. It can be that
the compiler became able to generate more efficient code, or that memory coalescing was
exploited better because we use an aligned type. However, we knew that it was not possible
to reach much higher since the theoretical peak already was reached (relative to the GTX470).
Therefore, vector types on these GPUs when using double-precision accuracy hardly makes
any sense.

Figure 4.5 however, which is the same case only using single-precision (SP) instead, shows
completely different results. Using ordinary data types, the HD5870 is just performing a tiny
fraction of its true capability (most probably only one of the ALUs). But when using the
float4 vector type provided by OpenCL performance jumps dramatically. This means that
when running with appropriate kernels (compute-bound), and with single-precision accuracy,
OpenCL vector types must be used (atleast in our case) to really exploit the computing
power on the HD5870. This is disappointing, since there should be no problem for AMD

3Memory coalescing is the concept of that memory accesses from more than one thread is combined into
one memory access. This is fulfilled for wavefronts if some requirements are fulfilled (in particular aligned
memory access), depending on the compute capability of NVIDIA GPUs [31]. It is also relevant for AMD
GPUs.

4.4. OPTIMIZATION POSSIBILITIES 69

Figure 4.4: Kernel 6 from appendix A run with and without using double-precision vector
types for both the GTX470 and the HD5870.

to implement this automatically. They know that kernels in most cases follow the SIMD
structure, and in essence this means that to reach absolute portability, vector types must be
used for both cards, avoiding different kernels. We believe the small performance increase
for the GTX470 can be because of increased memory coalescing, just as for the HD5870 in
the previous example.

The primary conclusion of this test is that as long as we use double-precision, there is
not very much to win on using vector types when running with AMD cards. And in our case
we are completely memory-bound, which means that the stream cores are starved anyways.
In other words, vector types makes sense for kernels with very high arithmetic intensity
doing basic arithmetic operations in single-precision accuracy. If transcendentals are used,
these are left to the SFUs, and it does not make any sense to use vector types for them,
taking the architecture into account. Therefore, in our case, vector types are not a topic
for optimization, and is not included in the next section, which discusses GPU optimization
possibilities for MLFit.

4.4 Optimization possibilities

There are a lot of different characteristics of GPUs, but MLFit is a computation-wise straight-
forward application. The general workflow is to load an element from a data array, calculate

4.4. OPTIMIZATION POSSIBILITIES 70

Figure 4.5: Kernel 6 from appendix A run with and without using single-precision vector
types for both the GTX470 and the HD5870.

some function with this element as input, and put the result in a result array. In this section
we describe the opportunities the GPU gives us to eventually optimize these calculations.

4.4.1 Single-precision

Since GPUs originally was made to operate on and render textures, they are optimized for
single-precision since that is sufficient for such computations. We have already seen the huge
performance differences between single-precision and double-precision on these cards in Table
4.1. However, in scientific applications it can be necessary to use double-precision to achieve a
sufficient accuracy. This project is not only about performance, since it is considers software
in production. Tests we have conducted show that MINUIT will not converge when we switch
to single-precision accuracy for the CPU version of MLFit (MINUIT uses double-precision
accuracy exclusively). We have not looked any more into moving to single-precision accuracy,
since it would involve exploring MINUIT extensively. And MINUIT is just one minimizer.

4.4.2 Parallel reduction

MLFit for CUDA was implemented with the final NLL reduction of the logarithm values done
with the CPU. This was to ensure deterministic reductions. However, there exist algorithms
for deterministic parallel reductions on the GPU. These algorithms are often based on a

4.4. OPTIMIZATION POSSIBILITIES 71

workgroup-wise leveled reduction, using a kind of recursive halving of the elements containing
partial sums, often giving good algorithmic complexities. They also typically exploit shared
memory to improve memory access times. This is ideal since we want to utilize as much of
the GPU as possible. The main goal of moving reduction onto the GPU however, is to get
rid of the transfer of variable amounts of data from the GPU to main memory (over the PCI-
Express bus). With a reduction done with the CPU and 1 million double-precision events
(∼ 8 MB), the transfer time can be substantial compared to the time spent on evaluation.
This is a serious bottleneck and is really not beneficial. By doing the reduction on the
GPU and sending 1 final value, the transfer time is much lower, but includes some overhead
still (PCI-Express latency). We have therefore used one of the parallel reduction algorithms
provided by code samples from NVIDIA.

4.4.3 Texture cache

Modern GPUs have (as mentioned in Section 4.1) a special kind of memory optimized for
read-only 2D access and used to access texture data in an efficient way. The source of the
data that is computed is in our case a good candidate to be placed in this kind of memory,
since it is read-only. We have implemented support for texture cache in MLFit, but tests
we have conducted have shown that rounding problems occur when storing/retrieving data
from it. In addition, we did not see any performance improvement. Note that texture-cache
supports single-precision only. However, we have done some modifications to store a double-
precision number as two single-precision numbers. This is a kind of unorthodox way of doing
it, and it might be the reason for these rounding errors, as well as the lack of speedup. This
could of course also be implementation specific, but we cannot take this risk since the results
really have to be correct independent of which OpenCL implementation the user runs. We
will therefore not concentrate any more on texture cache usage.

4.4.4 Result propagation and loop fusion

The technique of propagating results from children and up to the parents in the tree made
significant performance improvements for the CPU version. This first and foremost had to
do with lowering the memory traffic. It is therefore possible that this optimization would
contribute significantly in a GPU scenario, since it is, judging by our initial experiment,
almost guaranteed that we will be memory-bound in many kernel executions. Introducing
result propagation in the CPU version implied a small penalty implementation-wise, in that

4.4. OPTIMIZATION POSSIBILITIES 72

the code gets a bit more expressive in the evaluation functions of each PDF. For OpenCL
however, the situation gets worse. In order to do result propagation calculation, we would
have to have one OpenCL kernel for each composite operation, for each child PDF. At the
moment this would mean two OpenCL kernels for each PDF (one for propagating additions,
and one for products), and this is really destroying programmability. This project is not only
about performance, but also maintaining programmability (as we have stated before), and
we have decided that implementing this optimization for OpenCL is not a good way to go.
We will therefore discard it, and keep the implementation as is. One might argue that this
is unfair when comparing a CPU against a GPU, but this is not what this project is about.
We want to have as much performance as possible without breaking programmability to a
significant degree, and which specific device is fastest is of very little interest to us.

Fusing the normalization loop, however, is possible without any major modifications. We
have implemented this by precomputing the reciprocal of the integral once on the CPU, and
then sending this as an argument to every PDF evaluation kernel.

4.4.5 Constant expressions

As mentioned in Section 3.3.4, it can be beneficial to evaluate constant expressions when
it is tricky for the compiler to do it. This is an even more central area when moving to
the GPU, since the parallelism is implicit in the OpenCL programming model and there is
more than one compiler involved. An OpenCL compiler will compile the kernels and it will
of course be limited to the parameters that the kernel accepts. If we send pre-computed
values as arguments to the kernel, the GPU would not have to do the calculation of these
expressions for each of its threads. This will mean lower load on the available resources of the
multiprocessors that schedule these threads. We have implemented this for the GPU version.

4.4.6 Occupancy

Our work with MLFit is a very general effort of optimization, at least for GPUs, where the
architectures differs in a higher degree than CPUs from different vendors. It is unclear to us
what kind of PDFs physicists will add in their analyses, and we do not know which GPUs they
will use. NVIDIA defines computational occupancy as the number of active wavefronts per
multiprocessor to the maximum number of active wavefronts [31]. This is a direct consequence
of their underlying architecture, since this will be a trade-off between resource usage and
scheduling overhead. If computationally expensive kernels use the majority of resources on

4.5. RESULTS 73

an SM, it is ideal to have small workgroups, increasing the probability of exploiting the SM,
and leaving a bit more work for the scheduler. However, if fewer resources are used, larger
workgroups can be scheduled since the probability of exploiting the SM anyways would be
“high”, of course depending on the numbers. This of course goes also for AMD, since both
architectures implement multiprocessors containing scalar cores.

Because of the generality, and the potential amounts of different hardware MLFit will
be run on, we have not concentrated deeply on tuning the workgroup sizes. However, we
have used a kind of heuristic for determining it. The rule is that if a kernel contains a
transcendental function, the workgroup size is set to a “low” number, in our case 64. If the
kernel does not contain transcendentals, but rather only basic arithmetics, the workgroup
size is set to a “slightly higher” number, in our case 128. These numbers has provided good
results for both the GTX470 and the HD5870. The occupancy numbers for the GTX470
have ranged from 0.33 to 0.67 depending on the kernel. The speedup results are shown in
the next section.

4.5 Results

We have run the same benchmark as we used at the end of Chapter 3, and we use the final
optimized version for the CPU running with 8 SMT threads to fully utilize the Intel Core
i7 965. By the time this is written, there seems to be a trend within the HPC community
to publish GPU results compared to a non-optimized CPU version running on one core.
The small survey in [43] , which in fact is about GPU usage in HEP, is a good example
of this. By doing that, many applications will reveal artificial “speedups”, giving a wrong
impression of the actual computing capabilities inside a modern CPU. In a real scenario, this
is really not interesting from any perspective. In such a comparison it is important to pay
attention to both implementations, and really try to make each of them performant so that
the hardware potential is utilized. Also, it is important to emphasize which price segment one
is operating in. In our case, both the Intel Core i7 965, the NVIDIA GTX470 and the AMD
Radeon HD5870 are comparable with respect to price, and could be regarded as commodity
hardware (yet again, by the time this is written). Of course, we have to remember that our
CPU and GPU implementation differ, because of the non-performance related requirements
we have to take into account.

The results are shown in Figure 4.6. First of all, it is important to note that running with
the GPU instead of the CPU is not beneficial for a low number of events. This is a direct

4.5. RESULTS 74

Figure 4.6: MLFit benchmark, comparison between CPU and GPU.

4.5. RESULTS 75

consequence of the need to copy the final value over the PCI-express bus. Just as a practical
example, running with 8 SMT threads and doing 100 evaluations of the entire model with 10
000 events takes in this case ∼ 0.044 s. When runtimes become as low as that, transferring
data over the PCI-express bus a 100 times can be the performance bottleneck because of the
bus latency. In general, this suggests that the GPU should be used for a sufficient number
of events, and this is suitable since the need for computing power increases as N increase.
Luckily, we just depend on one number, so saturating bus bandwidth will never be an issue.

A significant improvement of the whole routine is the parallel reduction on the GPU. We
clearly see that when doing parallel reduction with the CPU, the GPU is totally bound by
it. Then loop fusions and constant expressions give significant speedups, at least together.
The final tuning is to adjust workgroup sizes according to the “heuristic” we mentioned in
Section 4.4. We emphasize that the runs without the occupancy optimizations was done with
submitting NULL as a workgroup size to the runtime. According to the OpenCL standard
the runtime should then choose the workgroup size it assumes would be the best.

Figure 4.7 shows the results for the comparison between the CPU and both GPUs on the
same benchmark, but without 4 000 000 events because of a memory limit on the HD5870.
The two GPUs clearly perform almost equally in most cases. Having the results from Section
4.3 in mind, this must mean that the computation is highly memory-bound. This seems
reasonable, since the eta’K model involves a substantial fraction of composite PDFs, repre-
senting addition and multiplication. These operations are very fast and the memory accesses
in these PDFs will clearly be a bottleneck. Just to illustrate this further, we give in Figure 4.8
the same benchmark, only with just the Gaussian function instead of the whole model. The
results are revealing. The speedup of the HD5870 compared to the GTX470 is higher, which
means a higher arithmetic intensity on the GPU, and the reason for this is that the Gaussian
kernel itself represents a computation involving higher arithmetic intensity than what the
eta’K model represents in total. In addition, less time is spent on the CPU since we are just
calling kernels and not running any of the overhead associated with e.g. composite PDFs (in
other words, a full model takes more CPU time to evaluate than one single function).

We think this gives a good explanation to the state of the application, and the main
conclusion of these results is that the more complex model (amortizing bus latency) , the more
events (amortizing CPU time), and, most importantly, the more computationally expensive
kernels (amortizing memory access time), the better reason to utilize a GPU. We can in
general say that both GPUs (and especially the HD5870) is severly under-utilized running
this model, because of the bottleneck of global memory.

Timing is done just for evaluation, i.e. we assume that the overhead with setting up the

4.5. RESULTS 76

Figure 4.7: MLFit benchmark, comparison between CPU and both GPUs.

Figure 4.8: Gaussian function evaluation, CPU and both GPUs.

4.5. RESULTS 77

t1(s) t2(s) t3(s) t4(s) t5(s) t̄ σ SE
GTX470 1.3282 1.3293 1.3287 1.3283 1.3276 1.3284 0.00063 0.028%
HD5870 1.1238 1.1211 1.113 1.1207 1.1121 1.118 0.0042 0.187%

Table 4.3: Timings, mean, standard deviation and standard error for 100 NLL evaluations
with 1 000 000 events, both for the GTX470 and the HD5870.

OpenCL runtime and copying data from host to the GPU is amortized. The timing is done
in the same way as when using the CPU, i.e. with the omp_get_wtime call surrounding the
calls to the NLL function. This means that we take the total time also including copying the
data over the PCI-Express bus. Thus, the timings are fair. Table 4.3 shows timings, mean,
standard deviation and standard error for 5 runs with 100 NLL evaluations for both cards.
Both cards deliver accurate timings in comparison with the CPU timings in Table 3.1, and
we can note that the GTX470 is exceptionally accurate.

Results for a professional NVIDIA Tesla C2050 GPU are reported in Appendix F. We have
chosen to put this in a separate appendix since we are primarily concerned with commodity
cards in these chapters.

4.5. RESULTS 78

Chapter 5

Heterogeneous load balancing on
commodity machines

We have in the past chapters shown the developments and optimizations of MLFit both for
CPUs and GPUs, and benchmarked these implementations on a machine with a modern
multi-core CPU and two modern GPUs. Still, it is not possible to exploit this machine
fully by running on both the CPU and the GPU or in a multi-GPU configuration. It is
interesting to look at how one can exploit a heterogeneous architecture like this in a hopefully
implementation-pleasant way. It is possible to program both CPUs and GPUs with OpenCL
(and OpenCL contains facilities for creating tasks to execute on either type of device), but
we have shown that OpenCL for CPUs will not give us the performance we are looking for.
In addition, the way of optimized tree evaluation we have implemented (implicitly parallel)
would not be possible with OpenCL kernel calls for the CPU inside each tree node. In
this chapter we show, with OpenMP and OpenCL combined, how much overhead there are
involved when running with a heterogeneous configuration, and if there is anything to win
on using both a CPU and a GPU together in our case. We believe there can be much to win
on a multi-GPU solution.

5.1 Load balancing

An ideal execution of a compute-intensive program inside one physical computer makes use
of all computation units of the computer. Load balancing is a very fundamental and old
problem, and there has been done a lot of research on it ([44], [45], [46] and [47] are some
publications dealing with different load balancing scenarios within computer science). In our

79

5.2. STRATEGY 80

case, however, we can simplify the concept considerably. We hereby define a compute device
as some device capable of computation. It can be a CPU (the physical chip, with cores), a
GPU, an FPGA or some other custom-made accelerator hardware. Load balancing is often
divided into two different types, namely static, and dynamic [24]. A static load balancing
will be to distribute work across compute devices before execution has started. This will of
course involve a guessing of the distribution, since the actual time of each device’s execution
is not known a priori (of course, in a homogeneous scenario it can be nearly known if each
device’s execution time is highly deterministic). This is indeed what we did with OpenMP
in Chapter 3, where we knew that the cores were homogeneous and that the computations in
each partition were equivalent for all threads. However, modern computers as the one we have
used until now can contain compute devices with different specifications and capabilities, and
it can therefore not be assumed that an equal distribution of work would lead to the optimal
execution time.

Dynamic load balancing tries to even the execution times by splitting the whole workload
into smaller tasks, so that each device can consume task by task. If the tasks are of an
appropriate size, the execution time would be fairly optimal assuming low overhead related
to the scheduling of them and that there is enough work to do to justify the overhead of e.g.
memory copies. In many applications tasks can be dependent of each other, which often will
result in a dependency graph in the implementation. We have already visited this concept
by the use of TBB in Chapter 3. Since our case is quite specific, we feel that it will be
superfluous to write more about the concept of load balancing in general. The next section
will go straight to the point and give our motivations and arguments for the strategy we want
to use.

5.2 Strategy

We use a refining static load balancing for the evaluation of the likelihood function. The
whole evaluation can be regarded as data-parallel, and therefore we split the whole domain
into partitions so that each compute device is responsible for computing one and only one
partition. A central concept we already have discussed is the importance of result determin-
ism. It is crucial that each compute device has a fixed range before actual result computation
starts, since different ranges in the same run would lead to different results when the final
reduction is done. This means that the balancing must be an initial phase before a real evalu-
ation is performed. We have therefore implemented the following strategy for a heterogeneous

5.2. STRATEGY 81

data-parallel load-balancer:

• Start an initial balancing phase by assigning each compute device a range of length
approximately N/k, where N is the total number of elements, and k is the number
of compute devices. This distribution will most probably be highly sub-optimal if the
computational capabilities of the devices differ.

• Iterate by timing each compute device and adjusting the partitioning based on these
timings. Hopefully, this will converge within some time threshold, assuring a nearly
optimal execution. We denote the balancing iterations with the letter j.

The benefits of this strategy is that the result is deterministic and that, given a large enough
workload, overhead associated with the balancing will be amortized. The immediate downside
is that the entire subsequent evaluation will be based on this phase. If conditions in the system
change, e.g. false timings during the initial phase or external load on the hardware during
evaluation, the balancing can be sub-optimal. We see this load balancing as both static and
dynamic. It is static in the way it divides the computation domain into fixed partitions a
priori, and dynamic in the way that it adjusts itself based on real timings.

A good example of work done in the field of heterogeneous programming and load bal-
ancing is OMPSs, described by Ferrer et al. in [48]. OMPSs is a compiler directive driven
approach to heterogeneous programming, and is task-based, much like how OpenMP 3.0
deals with declaring tasks [49]. It is supposed to support both CPUs and GPUs as well as
some other accelerators. The most important feature with OMPSs in our case is that mem-
ory management is implicit in the compiler directives. We have to admit that programming
with OpenCL in large programs can lead to a lot of code just managing memory to and from
devices. But we also believe that this can be a downside, since using compiler directives
exclusively is a large abstraction. There are in essence two main areas that are problematic
with task-based dynamic load balancing in our case:

• A central concept is that the NLL evaluation can be extremely fast, but called many,
many times, e.g. when doing minimization. If a task-based dynamic balancing is to be
used, this will involve overhead in each call. This can potentially ruin performance. If
we use an adjusting static load balancing algorithm, it will converge sooner or later,
and overhead will be zero after that.

• As we pointed out with TBB in chapter 3, a deterministic reduction is not possible
unless a fixed-size partition is assigned to each device.

5.2. STRATEGY 82

The last point is the primary reason why we have excluded task-based dynamic load balancing
as a potential solution for our scenario.

5.2.1 Method

The actual method used for dividing work between compute devices based on their respective
execution times is described in this section. It is as far as we know originally described by
Galindo et al. in [50] and is also used with seemingly good results in [51]. It could be regarded
as reasonably simple and straight-forward, and should be optimal if consecutive timings have
a small deviation/error. More formally this could be expressed as a series of timing values,
where t1, t2, ..., tn are the timings of each device. Our goal is then to make a work partitioning
that minimizes the difference between all these timing values within some threshold. Let ni

denote the partition for compute device i (i.e. the number of elements for that device), and
let ti denote its execution time. The balancing iterations are denoted with the letter j. We
then define the relative power of this device (i.e. its relative compute capability)

RP j
i =

nj
i

tji
, 0 ≤ i < k, 0 ≤ j (5.2.1)

and the total power as

SRP j =
k−1∑
i=0

RP j
i . (5.2.2)

Now each new partition can be computed by

nj+1
i = N ∗ RP j

i

SRP j
(5.2.3)

which hopefully will converge to an optimal distribution within some threshold as this routine
is run over and over again.

5.2.2 Implementation details

First of all, it is important to mention the details about timings in this implementation. Tim-
ing was straightforward for both the CPU and the GPU in the previous chapters. However,
when running in a hybrid scenario timing gets more challenging. The method described in
Section 5.2.1 is implemented in a way similar to the conceptual implementation in listing 5.1.
An essential part of the balancer is the function timeComputeDeviceExecution. However, we

5.2. STRATEGY 83

cannot look at the CPU and the GPU as independent devices anymore. To execute kernel
calls and copy data from the GPU to the host, the CPU must be involved. Before going into
more details about the timing, we describe how threading is implemented in this scenario.

We mentioned in the beginning of the chapter that we wanted to see how OpenMP and
OpenCL could work together, and we have tried to make the implementation as simple as
possible. The way of threading is briefly illustrated in listing 5.2. First of all the number
of threads set by the user is retrieved. We then aim to spawn one extra OpenMP thread
for each GPU in the system, and this is made possible by the omp_set_num_threads call
in the OpenMP API. We mean that this is a very simple and overcoming implementation
since the OpenMP standard guarantees an implicit synchronization at the end of an OpenMP
parallel region. It is important to remember that the OpenCL kernel calls, as we mentioned,
are supposed to be non-blocking and ideally consume minimal CPU time. If this holds, we
believe this implementation has the potential to be fast in a hybrid scenario (CPU + GPU(s)),
i.e. that the evaluation of the tree for one or more GPU(s) would impose a minimal overhead.
It will also be important that the GPU has enough work to do. If the kernel execution time is
small, the fraction of the time the thread responsible for the GPU execution spends on GPU
work will decrease while the fraction of the time spent on the CPU (traversing the tree) will
increase, probably leading to a decreased efficiency since the CPU already is fully occupied
doing computations.

Listing 5.1: A conceptual implementation of the balancing method.
double tmin = 1.0;

double tmax = 2.0;

while(tmax/tmin > threshold)

{

for(int i = 0; i < k; i++)

{

t[i] = timeComputeDeviceExecution(i);

if(t[i] > tmax) tmax = t[i];

if(t[i] < tmin) tmin = t[i];

RP[i] = n[i]/t[i];

...

}

}

The obvious challenge here is to get an accurate timing for the execution on the CPU.
There are two potential strategies:

5.2. STRATEGY 84

• Since we use SPMD branching to manage what kind of work each thread should do, it
is feasible to time the execution of the CPU threads only. This will ignore the eventual
overhead the thread(s) used for managing one or more GPUs incur, so it will in essence
be a heuristic.

• Time the full execution of the CPU threads and the extra thread(s) used for managing
one or more GPUs. After all, this will be the true time the CPU will use. A downside
with this is that the CPU is bound by the GPU, i.e. if the GPU is slower than the
CPU (e.g. for very low workloads) the CPU timing will be false.

Both these approaches have been tried, and the former has in general been more successful.
We have experienced larger timing variations and poorer results with the latter, which atleast
partly can be explained by the fact that one timing error per device contributes to a total
error when doing the timing. In general, one can say that the former should work well when
the thread(s) used for managing one or more GPUs impose a low impact on the CPU. In
essence this means that to get a good result from balancing, the overhead associated with
the API calls to the OpenCL implementation must be low, and ideally as close to zero as
possible. We have used the omp_get_wtime function for timing also in this scenario.

Listing 5.2: Threading implementation utilizing both CPU(s) and GPU(s).
int OMP_NUM_THREADS = omp_get_max_threads(); //Set by user as environmental variable

int numGPUs = getNumberOfGPUs();

omp_set_num_threads(OMP_NUM_THREADS + numGPUs);

#pragma omp parallel

{

int threadID = omp_get_thread_num();

if(<threadID corresponds to a GPU>)

GetValGPU(threadID);

else

GetValCPU(); //Run CPU evaluation with all other threads

//Implicit synchronization at the end of the region

}

Another important point is the convergence threshold. We have used a threshold of 1.03,
which means that the timing between the fastest and the slowest device must be less or equal
to 3%. This is a fair threshold since the errors for each device are lower (see Table 3.1 and
4.3). We have also called the evaluation within the timeComputeDeviceExecution function
5 times per measurement to get an accurate timing. An interesting observation is that the
algorithm can go into an infinite loop. One can imagine that a workload is split between

5.3. BENCHMARK RESULTS 85

two devices, and that the threshold is not reached. If we assume that the time of evaluating
one element in the domain is so large that it will not get the ratio between the two devices
any closer, it means that one of the devices will either give or receive one element of the
domain from or to the other, and continue this way forever. But this can also happen for
more than one element if there are large variations in timings. We have implemented a way
of preventing this by increasing the threshold if convergence is not reached within a certain
amount of iterations. However, in the case where the two devices exchange one element back
and forth, this method can be slow, depending of how far one is from reaching the threshold.
A faster method of preventing this is to set the threshold so that it takes into account the
processing time of one single element at least, since this is our finest granularity. We have
not applied this faster method since the time to process one event in our case is very fast.
But it is worth to mention for other workloads, e.g. a very computationally expensive model
which increases the processing time per event.

5.3 Benchmark results

We have tested the balancing feature on three use cases; two CPU-GPU scenarios and one
multi-GPU scenario. The benchmark is the same as in the previous chapters. The following
sections will describe the results specifically for each case. In the results we have a concept
called perfect speedup from load balancing. This in essence means all speedups relative to
the CPU execution timing. In other words, the CPU will always contribute with a speedup
of 1, while a GPU would contribute with its own speedup compared to the CPU. In the
multi-GPU scenario the perfect speedup is the relative speedup of both GPUs compared to
the CPU, added together.

5.3.1 Test case 1: Intel Core i7 965 + NVIDIA GTX470

The event range used spans from 10 000 events to 4 000 000 events. Timings on the NVIDIA
GTX470 have been incredibly accurate/stable, so the balancer have worked really well. An
illustration of the balancing convergence on a run with 1 000 000 events is shown in Figure
5.1. The balancing converges in 3 steps, which means the timings are really reliable. Table
5.2 shows timing details. The standard error of the timings is here 0.57%.

5.3. BENCHMARK RESULTS 86

Figure 5.1: The balancing convergence of the Core i7 965 and the GTX470 together, running
with 1 000 000 events.

t1(s) t2(s) t3(s) t4(s) t5(s) t̄ σ SE
1.0303 1.0294 1.0188 1.0464 1.0126 1.0275 0.0129 0.57%

Table 5.1: 5 timings, mean, standard deviation and standard error for the balanced run with
the Core i7 965 and the GTX470. 1 000 000 events.

5.3. BENCHMARK RESULTS 87

Figure 5.2: Speedup results from balancing between the Core i7 965 and the GTX470.

The speedup results are shown in Figure 5.2. First of all, we must add that there was
no benefit in running with SMT anymore when involving an extra thread running the GPU
execution. This might have to do with the overhead of running 9 threads instead of 5, when
one of the threads are strictly diverging from the others, but it is difficult to pinpoint what
exactly is the reason for this. The ideal case would be optimal balancing independent of
the number of events, since the workload can be small while the routine is called many,
many times. Unfortunately this is not the case. For 10 000, 50 000 and even 100 000 events
the balanced version is only slightly faster than running on just the GPU. According to the
speedup graph for the GPU, it is in general computationally starved for both 10 000, 50 000
and 100 000 events. This can mean that the fraction of the time the GPU spends on actual

5.3. BENCHMARK RESULTS 88

computation is small compared to the time spent by the extra thread traversing the tree
and executing kernels, and also the penalty this thread incurs on the other ones doing actual
computations on the CPU. This again will propagate and maybe imply a larger error when
doing the actual evaluation. If the GPU thread incurs substantial overhead, the timings
will be wrong to a certain degree, since they represent the timings of an execution free of
overhead.

Another important point to mention is that when introducing the CPU as a worker in
scenarios with low workload, it will take work from a non-saturated GPU. Now, the speedup
of the GPU compared to the CPU for a high number of events is in general higher than for a
low number of events. This means that it is in general extremely difficult (if not impossible)
to reach theoretically perfect speedup, as long as the GPU is not saturated. This is the most
important observation of the plots in this and the following sections.

On the other hand, as the GPU gets saturated the balanced version starts to climb
up under the theoretical maximum, which prooves an optimal balancing. This is a direct
consequence of the saturation and the fact that the PDF evaluations take up most of the time,
and thereby the amortization of the overhead associated with the extra OpenMP thread.
Based on this plot, a preliminary conclusion of this balancing technique is that escaping
overhead is difficult when the number of events is low, which is an unfortunate fact having
the “low workload, very many evaluations” scenario in mind. It is also important to mention
that balancing between a CPU and a GPU only makes sense when they perform comparable.
Load balancing in this case works nearly optimal only when the GTX470 is ∼ 3x faster than
the Core i7 965, where it gives a total speedup of ∼ 1.33x.

5.3.2 Test case 2: Intel Core i7 965 + AMD Radeon HD5870

The load balancing between the Core i7 965 and the GTX470 showed promising and near-
optimal results, atleast when amortizing overhead by increasing workload. The balancing
convergence for the Core i7 965 and the HD5870 can be seen in Figure 5.3. Convergence
takes longer time, and we belive this is a direct consequence of the larger error when timing
the HD5870, according to Table 4.3. Table 5.2 shows timing details for this combination.
The standard error is 1.83%, almost four times as large as when balancing with the GTX470.

5.3. BENCHMARK RESULTS 89

t1(s) t2(s) t3(s) t4(s) t5(s) t̄ σ SE
1.033 1.016 1.1157 1.019 1.0374 1.04422 0.0409 1.83%

Table 5.2: 5 timings, mean, standard deviation and standard error for the balanced run with
the Core i7 965 (3 threads) and the HD5870. 1 000 000 events.

Figure 5.3: The balancing convergence of the Core i7 965 and the HD5870 together, running
with 1 000 000 events.

5.3. BENCHMARK RESULTS 90

Figure 5.4: Speedup results from balancing between the Core i7 965 and the Radeon HD5870.

Speedup results are shown in Figure 5.4. The overhead associated with evaluating the
tree and calling kernels must be more expensive for the CPU when running AMDs OpenCL
implementation. We base this on the difference between the balanced execution with 3
threads and the one with 4 threads. Removing one thread obviously makes the balanced
configuration beneficial, while running with 4 threads actually leads to performance loss
compared to running evaluation with only the GPU. This is a clear sign of that thread
number 5 has too much work to do, and disturbs the other 4 threads doing computation.

Figure 5.4 is different from Figure 5.2 in that the former does not include a run for 4 000

5.3. BENCHMARK RESULTS 91

t1(s) t2(s) t3(s) t4(s) t5(s) t̄ σ SE
0.6635 0.6888 0.6625 0.7592 0.6452 0.6838 0.0449 2.01%

Table 5.3: 5 timings, mean, standard deviation and standard error for the balanced run with
the GTX470 and the HD5870. 1 000 000 events.

000 events. This has to do with memory restrictions (not enough space) on the HD5870. It
would be possible to run with 2 000 000 events, but we have experienced extremely unreliable
timings with the HD5870 for a that high number of events. This can be a problem with the
SDK implementation, the driver or the physical card. That said, which level the problem
lies in is not interesting to us. It is more interesting to see how sensitive the balancer is to
inaccurate timings.

Now, if we compare Figure 5.2 and Figure 5.4 in the case of 500 000 events, we can see that
the GTX470 is almost perfectly balanced with the CPU when running with 4 computational
CPU threads, while the same cannot be said about the HD5870 when running with just 3.
We believe this is because the HD5870 initially is faster than the GTX470, and in addition
to that, it is even faster when running with just 3 CPU threads. Also, load balancing will
lead to a higher saturation point for the GPU as we mentioned in the last section (which is
the most important observation also for this plot). Unfortunately, this makes the benefit of
the hybrid solution rather small in the AMD case (∼ 1.11x speedup for large workloads).

5.3.3 Test case 3: NVIDIA GTX470 + AMD Radeon HD5870

Our final test case is a multi-GPU scenario. We believe that this scenario has the greatest
potential, since it relieves the CPU from computation, which again should make any overhead
negligible. We therefore expect close to theoretically perfect speedup in this case, atleast
when N grows. Timing details are shown in Table 5.3. It is important to remember that the
workload practically is split in half when both GPUs are used, and we believe that can be
a reason for the relatively high error compared to running with just the HD5870 (which is
least reliable timing-wise).

5.3. BENCHMARK RESULTS 92

Figure 5.5: Speedup results from balancing between the GTX470 and the Radeon HD5870.

The results are shown in Figure 5.5. The principle of saturation point we mentioned is
maybe most relevant in this case. The speedup on 1 000 000 events is comparable to the
theoretical maximum at 500 000 events, suggesting quite similar load between the two cards,
which is reasonable taking their similar performance into account. We can clearly see that
the total climbs up under the theoretical maximum at 2 000 000 events in total as saturation
is reached for both cards (2 000 000 events for two similar cards leads to approximately 1 000
000 events for each). Although the theoretical maximum is not reached for 500 000 events
for instance, it clearly is beneficial to load balance, increasing speedup from ∼ 3.5x to ∼ 5x.
Running with a multi-GPU configuration is, at least for GPUs of this caliber, most ideal for
very, very large workloads.

5.4. CONSIDERATIONS ON OPTIMAL EXECUTION CONFIGURATIONS 93

#devices (n) n2
∑n

r=1
n!

r!(n−r)!
n3

1 1 1 1
2 4 3 8
3 9 7 27
4 16 15 64
5 25 31 125
6 36 63 216
7 49 127 343

Table 5.4: A comparison between equation 5.4.2 and some well-known polynomials.

5.4 Considerations on optimal execution configurations

We want to discuss briefly how our implementation could decide the best execution config-
uration, i.e. which devices to use and eventually which not to use. As we have seen from
many of the previous results, the choice of compute device(s) is important for performance.
The most straight-forward and brute-force method of finding the optimal way of executing
the fitting procedure is to enumerate all possible combinations of devices and pick the one
that reveals the smallest timing. More formally, if we have three devices and denote each
device with a D, then we want to enumerate all combinations, which in this case would be
D1, D2, D3, D1D2, D1D3, D2D3 and D1D2D3. The formula for how many ways to pick r

elements out of a population of n elements when the order is irrelevant is according to [52]

(
n

r

)
=

n!

r!(n− r)!
. (5.4.1)

Now, since we do not know for sure that running with three devices will necessarily be faster
than running with two (or one for that matter), the number of combinations needed to be
tested is

n∑
r=1

n!

r!(n− r)!
(5.4.2)

which obviously is computationally expensive, since the runtime of each combination must
be obtained in addition. Table 5.4 compares the function value of this function with respect
to the numer of devices, against some well-known polynomials. The complexity is not good,
but it can be reasonable in cases where few devices are used. Its strength is that it guarantees
an optimal running configuration, given that timings are accurate/reliable. An algorithm for
generating these combinations can be written naively, or alternatively faster approaches are

5.4. CONSIDERATIONS ON OPTIMAL EXECUTION CONFIGURATIONS 94

described detailedly in [53]. The point is that this method must never be used for many
devices.

Another approach which can be used for a higher amount of devices and can be classified
as some sort of heuristic is the following:

• Time each device and start with the device with the lowest timing.

• Successively add the next best device to the configuration.

• If adding a device to a configuration leads to an execution with a higher timing, discard
that device and proceed to the next (or eventually discard all the other devices, since
they are assumed to slow down the execution).

This method is greedy and faster, with an approximated complexity of just O(2n) ≡ O(n).
However, these are just suggestions. The balancing feature should be tried by users in
practice before any of these methods should be taken into consideration. Anything else
would be premature engineering.

Chapter 6

Conclusions and future work

Our work has involved working closely with both CPUs and GPUs and we feel that there
are some clear conclusions to draw. It has been a very practical thesis in many ways, but we
believe there are quite a few findings that are just as relevant in general high-level software
development geared towards performance.

6.1 Conclusions

First of all, this has been an interesting software package to work with, since it was non-
trivial to make it fast and scalable. This is because all the high-level mechanisms from C++
that is used, and this reflects reality strongly. Most professional software is today written in
either C or languages of a higher level, and thus we mean that this work can be interesting
for other programmers dealing with forcing performance into high-level applications.

We started with some research questions and we feel we reached quite good answers to
them after this work. The optimizations done in Chapter 3 made the whole application
significantly faster while sacrifizing programmability to a certain degree. We estimated a
single-core speedup of ∼ 7.8x compared to RooFit and we achieved a reasonably scalable
application on a commodity processor (∼ 3.6x on 4 cores, and ∼ 4.7x with 8 SMT threads).

Some of the most interesting findings was the experience with OpenCL. As long as the
CPU implementations for OpenCL impose large overheads and lack of auto-vectorization (as
well as lack of vectorization for transcendentals), they are really not attractive for professional
use. The only benefit from using OpenCL for CPUs is code reuse and a somewhat unified
programming model, and that could be a significant benefit for large software projects which
aim to use both CPUs and GPUs for computation.

95

6.1. CONCLUSIONS 96

We predict that the programming of GPUs will remain as an offload-model for a long time
still, atleast for applications geared towards maximum performance. OpenMP is supported
by all main compilers in the market, and it works really well. As immature as OpenCL is at
the time being, the only rational approach in a professional software setting where raw speed
is required is to use plain C/C++, compile it in an optimized way, and use OpenCL kernels
(or CUDA) as offload functions for accelerators. We also saw that OpenCL kernels for the
CPU can be unsuitable in high-level applications cf. the implicitly parallel evaluation of the
PDF tree/model when optimizations are to be done, because of the lack of C++ support.
That said, we must admit that this has been a real stress test of OpenCL.

Chapter 4 revealed some interesting results regarding the GPUs in the market at the time
being. While AMD and NVIDIA show off the theoretical peaks of their GPUs, the arithmetic
intensity of a kernel must be enormous to exploit them, since global memory access brings
enormous latencies. But clearly, if an application has intensive number crunching kernels
with few memory operations, AMD GPUs are superior at the commodity level at the time
being, if high-level programming constructs as e.g. polymorphism is not needed. We saw that
combining programs written in a high-level way with GPUs can be difficult, as well as doing
significant optimizations. Ideally, for maximum performance, users of RooFit should write
their function in one kernel (compressing all functions into one), but then the entire point
with the application is gone. Of course, for experiments where data analysis time can be
very large, this could be the most pragmatic way of doing it. Then one very complex kernel
can be load-balanced between a set of commodity GPUs if necessary, or run on a multi-core
CPUs if the number of events is low.

The implementation of the load balancing uses a quite straightforward method of balanc-
ing. This is because we strongly believe it is the only rational approach in this case. Initially
it is a trivial method, but it soon becomes more complex when taking timings into account.
The user has two options; with p CPU cores he can use either p or p − 1 computational
CPU threads, in addition to threads managing GPU execution. With p computational CPU
threads, the only flaw with the implementation is that the timing of the CPU execution
does not take into account the overhead of the threads handling the GPU execution, because
timing the entire routine was highly unstable. We did not find any good solution to this,
since it in essence was out of our control. The solution was to use a heuristic, i.e. the timing
of the CPU evaluation only. The heuristic will work very well if the OpenCL implementation

• incurs low overhead when its API functions are called.

• provides stable and accurate timings. This of course also has to do with the whole

6.1. CONCLUSIONS 97

chain; SDK/implementation, maybe operating system, driver and physical card.

If these requirements are not met, p − 1 computational CPU threads should be used. In
the case of a quad-core processor this can mean a significant loss of power, but the number
of cores increase fast by the time this is written, so for e.g. a 10-core processor this effect
should be relatively small. We showed, with the NVIDIA GTX470 GPU and NVIDIAs
OpenCL implementation, that the balancer (running with p computational CPU threads)
will be optimal as long as these requirements are fulfilled and workload is high, saturating
the GPU. We mean that for this application, the main conclusions of doing load balancing
on a heterogeneous commodity machine with this kind of software are:

• Each compute device should perform comparable. If the first device is 5 times faster
than the second then the overhead bound to balancing could make the final solution not
beneficial. This was something we treated as a necessary pre-condition to even compare
the CPU and the GPU, and it turned out that they were directly (1:1) comparable in
some cases, but unfortunately these cases were not ideal cases for load balancing.

• If the CPU does computation with some threads itself, then all threads managing GPUs
should impose an overhead close to zero. If not, the computational CPU threads can
be disturbed, and the consequence may be sub-optimal runtimes compared to running
with just one of the devices.

Another conclusion is that frameworks like OMPSs are not necessarily suitable for all kinds
of parallel applications. In some scenarios, balancing must be specifically implemented to
fulfill the requirements of a program.

If one takes the step from theory to what might actually be done, we think that users that
has large computational jobs in front of them would be best of by utilizing a set of GPUs on
a commodity machine. As Chapter 5 showed, load balancing between GPUs will be ideal as
long as there is enough work to do, i.e. if kernels are very complex or the number of events is
large (both fulfilled would be optimal). Our results also show that using a fast CPU (like the
Intel Core i7 965) utilizing vectorization and all the cores is highly ideal when the number of
events is low, so the methods of choosing optimal execution configurations can be relevant.
If we compare the balanced execution with the GTX470 and the HD5870, it is almost 200x

faster than running the old RooFit with a single core (∼ 7.8∗ ∼ 3.6∗ ∼ 7 ≈ 196), just to
give readers an idea of the potential with respect to the situation the way it is implemented
today (and this can be achieved for roughly twice the price).

6.2. FUTURE WORK 98

6.2 Future work

There are still some problems with MINUIT regarding minimization on GPUs bound to its
strict requirements for accuracy. We have not looked into this in this work, but rather focused
on the evaluation part of the likelihood. Future work will involve investigating how MINUIT
can be changed or recompiled to allow usage of other devices than the CPU for minimization.

Apart from that we mean that most of the work with this application for commodity
machines is done (i.e. on the node level). By that we mean that we do not see any other op-
timizations that can be done without breaking the interface and conventions RooFit consists
of. A remaining work is of course to implement the methods used in MLFit, the prototype,
into the main branch RooFit.

By our architectural optimizations, we hope that the performance characteristics will per-
sist also when changing the physical model. However, this must be tested. Real experiments
should use this version and provide feedback on how it works in practice for other models
too.

Bibliography

[1] Roger Barlow. Introduction to statistical issues in particle physics, 2003. URL http:

//www.citebase.org/abstract?id=oai:arXiv.org:physics/0311105.

[2] Cern. http://cern.ch. Accessed 18.07.2011.

[3] Gordon Kane, editor. Perspectives on LHC Physics. World Scientific Publishing Com-
pany, 1 edition, June 2008. ISBN 9812833897. URL http://www.amazon.com/exec/

obidos/redirect?tag=citeulike07-20\&path=ASIN/9812833897.

[4] S. Weinberg Phys. Rev. Lett. 19 1264 (1967) S. L. Glashow, Nucl. Phys. B22 579 (1961)
and A. Salam. Elementary Particle Theory, ed. N. Svartholm, (Almqvist and Wiksell,
Stockholm, 1968) p. 367.

[5] The atlas experiment. http://atlas.ch. Accessed 31.07.2011.

[6] Cern openlab. https://proj-openlab-datagrid-public.web.cern.ch/

proj-openlab-datagrid-public. Accessed 18.07.2011.

[7] B. Aubert et al. b meson decays to charmless meson pairs containing η or η′ mesons.
Phys. Rev. D, 80(11):112002, Dec 2009. doi: 10.1103/PhysRevD.80.112002.

[8] Slac national accelerator laboratory. http://www.slac.stanford.edu/. Accessed
18.07.2011.

[9] Encyclopaedia Britannica Online. "barn". http://www.britannica.com/EBchecked/

topic/53558/barn. Accessed 18.07.2011.

[10] M. Bona et al. SuperB: A High-Luminosity Asymmetric e+e− Super Flavor Factory.
Conceptual Design Report. 2007.

[11] Michelangelo L. Mangano. The super-lhc. 2009. URL http://arxiv.org/abs/0910.

0030. cite arxiv:0910.0030 Comment: To appear in Contemporary Physics.

99

BIBLIOGRAPHY 100

[12] W. Verkerke and D. Kirkby. The roofit toolkit for data modeling. proceedings of PHY-
STAT05. Imperial College Press, London, 2006.

[13] R. Brun and F. Rademakers. Root - an object oriented data analysis framework. Nuclear
Instruments and Methods in Physics Research Section A, 389:81, 1997.

[14] H. Albrecht et al. (argus collaboration), Nucl. Phys. B241, 278 (1990).

[15] F. James. Statistical methods in Experimental Physics. 2. edition.

[16] S. Jarp, A. Lazzaro, J. Leduc, A. Nowak, and F. Pantaleo. Evalua-
tion of likelihood functions for data analysis on graphics processing units.
http://cdsweb.cern.ch/record/1345075/, 2010.

[17] G. Cowan. Statistical Data Analysis. Clarendon Press, Oxford, 1998.

[18] F. James. In MINUIT - Function Minimization and Error Analysis, CERN Program
Library Long Writeup D506, 1972.

[19] W. C. Davidon. Variable metric method for minimization. SIAM J. Optim., 1:1–17,
1991.

[20] R. Fletcher. Comput. j. 13, (1970) 317.

[21] Alfio Lazzaro and Lorenzo Moneta. 2010 j. phys.: Conf. ser. Nucl. Phys. B219 042044.

[22] Jonathan R Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain, 1994.

[23] S. Jarp, A. Lazzaro, J. Leduc, A. Nowak, and F. Pantaleo. Parallelization of maximum
likelihood fits with openmp and cuda. http://cdsweb.cern.ch/record/1328927, 2011.

[24] Barry Wilkinson and Michael Allen. Parallel programming - techniques and applications
using networked workstations and parallel computers (2. ed.). Pearson Education, 2005.

[25] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical Al-
gorithms, 2nd Edition. Addison-Wesley, 1981. ISBN 0-201-03822-6.

[26] Peter Kornerup, Vincent Lefevre, Nicolas Louvet, and Jean-Michel Muller. On the com-
putation of correctly-rounded sums. IEEE Transactions on Computers, 99(PrePrints),
2011. ISSN 0018-9340. doi: http://doi.ieeecomputersociety.org/10.1109/TC.2011.27.

BIBLIOGRAPHY 101

[27] Peter Markstein. The new ieee-754 standard for floating point arithmetic. In Annie Cuyt,
Walter Krämer, Wolfram Luther, and Peter Markstein, editors, Numerical Validation
in Current Hardware Architectures, number 08021 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2008. Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany. URL http://drops.dagstuhl.de/opus/

volltexte/2008/1448.

[28] Benjamin C Allanach, D Grellscheid, and Fernando Quevedo. Genetic algorithms and
experimental discrimination of susy models. J. High Energy Phys., 07(hep-ph/0406277.
DAMTP-2003-142):069. 23 p, Jun 2004.

[29] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and
Olaf O. Storaasli. State-of-the-art in heterogeneous computing. Sci. Program., 18:1–
33, January 2010. ISSN 1058-9244. URL http://portal.acm.org/citation.cfm?id=

1804799.1804800.

[30] Khronos Group. Khronos group, open standards for media authoring and acceleration.
http://khronos.org. Accessed 16.07.2011.

[31] NVIDIA Corporation. Opencl programming guide for the cuda architecture, version
2.3. http://www.nvidia.com/content/cudazone/download/OpenCL/NVIDIA_OpenCL_
ProgrammingGuide.pdf, . Accessed 10.07.2011.

[32] Advanced Micro Devices Inc. Amd app sdk. http://developer.amd.com/sdks/

amdappsdk/pages/default.aspx, . Accessed 02.04.2011.

[33] Intel Corporation. Intel avx. http://software.intel.com/en-us/avx/, . Accessed
30.06.2011.

[34] James Reinders. Intel threading building blocks. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, first edition, 2007. ISBN 9780596514808.

[35] Stuart F. Oberman, Student Member, and Michael J. Flynn. Design issues in division
and other floating-point operations. IEEE Transactions on Computers, 46:154–161,
1997.

[36] Deborah T. Marr, Frank Binns, David L. Hill, David A. Koufaty, J. Alan Miller, and
Michael Upton. Hyper-threading technology architecture and microarchitecture. 2002.

BIBLIOGRAPHY 102

[37] Intel Corporation. 2nd generation intel(r) core(tm) processor family desktop and in-
tel(r) pentium(r) processor(r) family desktop. http://download.intel.com/design/

processor/datashts/324641.pdf, . Accessed 10.07.2011.

[38] NVIDIA Corporation. Geforce gtx 470. http://www.nvidia.com/object/product_

geforce_gtx_470_us.html, . Accessed 10.07.2011.

[39] John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. Languages and compilers for
parallel computing. chapter MCUDA: An Efficient Implementation of CUDA Kernels
for Multi-core CPUs, pages 16–30. Springer-Verlag, Berlin, Heidelberg, 2008. ISBN
978-3-540-89739-2. doi: http://dx.doi.org/10.1007/978-3-540-89740-8_2. URL http:

//dx.doi.org/10.1007/978-3-540-89740-8_2.

[40] Y. Sneen Lindal. Parallelization of a state-of-the-art sph solver for water simulations on
modern gpus. NTNU, 2010.

[41] Advanced Micro Devices Inc. Ati radeon(tm) hd 5870 graphics. http:

//www.amd.com/us/products/desktop/graphics/ati-radeon-hd-5000/hd-5870/

Pages/ati-radeon-hd-5870-overview.aspx#2, . Accessed 10.07.2011.

[42] NVIDIA Corporation. Nvidias next generation cuda(tm) compute architecture: Fermi,
version 1.1. http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_

Fermi_Compute_Architecture_Whitepaper.pdf, . Accessed 10.07.2011.

[43] Mihai Niculescu and Sorin-Ion Zgura. Computing trends using graphic processor in high
energy physics. June 2011. URL http://arxiv.org/abs/1106.6217.

[44] George Cybenko. Dynamic load balancing for distributed memory multiprocessors. Jour-
nal of Parallel and Distributed Computing, 7(2):279 – 301, 1989. ISSN 0743-7315. doi:
DOI:10.1016/0743-7315(89)90021-X. URL http://www.sciencedirect.com/science/

article/pii/074373158990021X.

[45] Mor Harchol-Balter and Allen B. Downey. Exploiting process lifetime distributions for
dynamic load balancing. ACM Trans. Comput. Syst., 15:253–285, August 1997. ISSN
0734-2071. doi: http://doi.acm.org/10.1145/263326.263344. URL http://doi.acm.

org/10.1145/263326.263344.

[46] V. Cardellini, M. Colajanni, and P.S. Yu. Dynamic load balancing on web-server systems.
Internet Computing, IEEE, 3(3):28 –39, may/jun 1999. ISSN 1089-7801. doi: 10.1109/
4236.769420.

BIBLIOGRAPHY 103

[47] Behrooz A. Shirazi, Krishna M. Kavi, and Ali R. Hurson, editors. Scheduling and Load
Balancing in Parallel and Distributed Systems. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1995. ISBN 0818665874.

[48] Roger Ferrer, Judit Planas, Pieter Bellens, Alejandro Duran, Marc Gonzalez, Xavier
Martorell, Rosa M. Badia, Eduard Ayguade, and Jesus Labarta. Optimizing the ex-
ploitation of multicore processors and gpus with openmp and opencl. In Proceedings
of the 23rd international conference on Languages and compilers for parallel computing,
LCPC’10, pages 215–229, Berlin, Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-
19594-5. URL http://portal.acm.org/citation.cfm?id=1964536.1964551.

[49] Eduard Ayguadé, Nawal Copty, Alejandro Duran, Jay Hoeflinger, Yuan Lin, Federico
Massaioli, Xavier Teruel, Priya Unnikrishnan, and Guansong Zhang. The design of
openmp tasks. IEEE Trans. Parallel Distrib. Syst., 20:404–418, March 2009. ISSN
1045-9219. doi: 10.1109/TPDS.2008.105. URL http://portal.acm.org/citation.

cfm?id=1512157.1512430.

[50] Ismael Galindo, Francisco Almeida, and Jose Manuel Badia-Contelles. Dynamic load
balancing on dedicated heterogeneous systems. In Alexey L. Lastovetsky, M. Tahar
Kechadi, and Jack Dongarra, editors, PVM/MPI, volume 5205 of Lecture Notes in
Computer Science, pages 64–74. Springer, 2008. ISBN 978-3-540-87474-4. URL
http://dblp.uni-trier.de/db/conf/pvm/pvm2008.html#GalindoAB08.

[51] Alejandro Acosta, Robert Corujo, Vicente Blanco Pérez, and Francisco Almeida. Dy-
namic load balancing on heterogeneous multicore/multigpu systems. In HPCS, pages
467–476, 2010.

[52] Eric R. Ziegel. Probability and statistics for engineering and the sciences (6th ed.),
by jay l. devore. Technometrics, 46(4):497+. ISSN 0040-1706. URL http://www.

ingentaconnect.com/content/asa/tech/2004/00000046/00000004/art00034.

[53] Donald E. Knuth. The Art of Computer Programming, Volume 4, Fascicle 3: Generating
All Combinations and Partitions. Addison-Wesley Professional, 2005. ISBN 0201853949.

[54] Tesla c2050 / c2070 gpu computing processor - supercomputing at 1/10th the
cost. http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_

lores.pdf. Accessed 31.07.2011.

BIBLIOGRAPHY 104

Appendix A

OpenCL test kernels with varying
arithmetic intensity

Listing A.1: OpenCL kernels with varying arithmetic intensity
__kernel void kernel1(global double* a, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval))));

results[i] = aval;

}

__kernel void kernel2(global double* a, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval)+bval*bval*(bval+aval-(aval*

bval+aval*(bval-aval*(aval-bval)+aval))))));

results[i] = aval;

}

__kernel void kernel3(global double* a, global double* results, int N)

{

int i = get_global_id(0);

105

106

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

for(int i = 0; i < 10; i++)

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval))));

results[i] = aval;

}

__kernel void kernel4(global double* a, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

for(int i = 0; i < 100; i++)

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval)+bval*bval*(bval+aval-(aval*

bval+aval*(bval-aval*(aval-bval)+aval))))));

results[i] = aval;

}

__kernel void kernel5(global double* a, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

for(int i = 0; i < 1000; i++)

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval)+bval*bval*(bval+aval-(aval*

bval+aval*(bval-aval*(aval-bval)+aval))))));

results[i] = aval;

}

__kernel void kernel6(global double* a, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = aval*1.5;

for(int i = 0; i < 10000; i++)

aval += aval*(bval+bval*(aval*bval*(bval+bval*(aval+aval)+bval*bval*(bval+aval-(aval*

bval+aval*(bval-aval*(aval-bval)+aval))))));

results[i] = aval;

107

}

108

Appendix B

OpenCL test kernels involving
transcendentals

Listing B.1: OpenCL test kernels involving transcendentals
__kernel void kernel1(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = a[i] + b[i];

}

__kernel void kernel2(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = 5.0*a[i] + b[i];

}

__kernel void kernel3(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = 5.0*a[i] + exp(b[i]);

}

__kernel void kernel4(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

109

110

if(i >= N) return;

results[i] = 5.0*a[i] + log(b[i]);

}

__kernel void kernel5(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = b[i];

results[i] = log(log(aval*2.5))/log(bval)*log(aval)*pow(aval, 3.5)*pow(aval, 3.2)*log(

bval*2.1);

}

__kernel void kernel6(global double* a, global double* b, global double* results, int N)

{

int i = get_global_id(0);

if(i >= N) return;

double aval = a[i];

double bval = b[i];

results[i] = log(log(aval*2.5))/log(bval)*log(aval)*pow(aval, 3.5)*pow(aval, 3.2)*log(

bval*2.1)/log(pow(bval*aval, 3.4));

}

Appendix C

The eta’K model implementation

Listing C.1: The eta’K model implementation
// Data analysis of branching fraction measurement of eta’(rg) K0S (PhysRevD.80.112002)

#include "Variable.h"

#include "PdfGaussian.h"

#include "PdfProd.h"

#include "PdfAdd.h"

#include "PdfBreitWigner.h"

#include "PdfPolynomial.h"

#include "PdfBifurGaussian.h"

#include "PdfArgusBG.h"

// Define the model

RooAbsPdf *ModelEtapRGKs(RooRealVar &x, RooRealVar &y, RooRealVar &z,

const Int_t N)

{

// Var x

RooRealVar *muA1x = new RooRealVar("muA1x","",-0.0018,-0.01,0.01);

muA1x->setError(0.001);

RooRealVar *sigmaA1x = new RooRealVar("sigmaA1x","",0.01512,0,0.1);

sigmaA1x->setError(0.001);

RooAbsPdf *gaussA1x = new RooGaussian("gaussA1x","",x,*muA1x,*sigmaA1x);

RooRealVar *coeff1B1x = new RooRealVar("coeff1B1x","",-0.3156,-1,1);

coeff1B1x->setError(0.001);

List<Variable> coefficientsB1x(*coeff1B1x);

111

112

RooAbsPdf *polyB1x = new RooPolynomial("polyB1x","",x,coefficientsB1x);

RooRealVar *coeff1C1x = new RooRealVar("coeff1C1x","",-0.7728);

RooRealVar *coeff2C1x = new RooRealVar("coeff2C1x","",0.0067);

RooRealVar *coeff3C1x = new RooRealVar("coeff3C1x","",0.1047);

RooRealVar *coeff4C1x = new RooRealVar("coeff4C1x","",-0.1120);

List<Variable> coefficientsC1x;

coefficientsC1x.add(*coeff1C1x);

coefficientsC1x.add(*coeff2C1x);

coefficientsC1x.add(*coeff3C1x);

coefficientsC1x.add(*coeff4C1x);

RooAbsPdf *polyC1x = new RooPolynomial("polyC1x","",x,coefficientsC1x);

RooRealVar *muD1x = new RooRealVar("muD1x","",0.1115);

RooRealVar *sigmaD1x = new RooRealVar("sigmaD1x","",0.0464);

RooAbsPdf *gaussD1x = new RooGaussian("gaussD1x","",x,*muD1x,*sigmaD1x);

RooRealVar *coeff1D2x = new RooRealVar("coeff1D2x","",0.4146);

List<Variable> coefficientsD2x(*coeff1D2x);

RooAbsPdf *polyD2x = new RooPolynomial("polyD2x","",x,coefficientsD2x);

RooRealVar *fracDx = new RooRealVar("fracDx","",0.3821);

RooAbsPdf *addDx = new RooAddPdf("addDx","",*gaussD1x,*polyD2x,*fracDx);

RooRealVar *coeff1E1x = new RooRealVar("coeff1E1x","",-0.9392);

RooRealVar *coeff2E1x = new RooRealVar("coeff2E1x","",-0.0793);

RooRealVar *coeff3E1x = new RooRealVar("coeff3E1x","",0.2838);

RooRealVar *coeff4E1x = new RooRealVar("coeff4E1x","",-0.1428);

List<Variable> coefficientsE1x;

coefficientsE1x.add(*coeff1E1x);

coefficientsE1x.add(*coeff2E1x);

coefficientsE1x.add(*coeff3E1x);

coefficientsE1x.add(*coeff4E1x);

RooAbsPdf *polyE1x = new RooPolynomial("polyE1x","",x,coefficientsE1x);

// Var y

RooRealVar *muA1y = new RooRealVar("muA1y","",5.2798,5.27,5.29);

muA1y->setError(0.001);

RooRealVar *sigmaA1y = new RooRealVar("sigmaA1y","",0.002640,0,0.01);

sigmaA1y->setError(0.001);

RooAbsPdf *gaussA1y = new RooGaussian("gaussA1y","",y,*muA1y,*sigmaA1y);

RooRealVar *mB1y = new RooRealVar("mB1y","",y.getMax());

113

RooRealVar *cB1y = new RooRealVar("cB1y","",-27.8171,-40,-10);

cB1y->setError(0.001);

RooAbsPdf *argusB1y = new RooArgusBG("argusB1y","",y,*mB1y,*cB1y);

RooRealVar *mC1y = new RooRealVar("mC1y","",y.getMax());

RooRealVar *cC1y = new RooRealVar("cC1y","",-65.2194);

RooAbsPdf *argusC1y = new RooArgusBG("argusC1y","",y,*mC1y,*cC1y);

RooRealVar *muC2y = new RooRealVar("muC2y","",5.2808);

RooRealVar *sigmaC2y = new RooRealVar("sigmaC2y","",0.0041);

RooAbsPdf *gaussC2y = new RooGaussian("gaussC2y","",y,*muC2y,*sigmaC2y);

RooRealVar *fracCy = new RooRealVar("fracCy","",0.8576);

RooAbsPdf *addCy = new RooAddPdf("addCy","",*argusC1y,*gaussC2y,*fracCy);

RooRealVar *muD1y = new RooRealVar("muD1y","",5.2785);

RooRealVar *sigmaD1y = new RooRealVar("sigmaD1y","",0.0054);

RooAbsPdf *gaussD1y = new RooGaussian("gaussD1y","",y,*muD1y,*sigmaD1y);

RooRealVar *mE1y = new RooRealVar("mE1y","",y.getMax());

RooRealVar *cE1y = new RooRealVar("cE1y","",-61.2961);

RooAbsPdf *argusE1y = new RooArgusBG("argusE1y","",y,*mE1y,*cE1y);

RooRealVar *muE2y = new RooRealVar("muE2y","",5.2784);

RooRealVar *sigmaE2y = new RooRealVar("sigmaE2y","",0.0050);

RooAbsPdf *gaussE2y = new RooGaussian("gaussE2y","",y,*muE2y,*sigmaE2y);

RooRealVar *fracEy = new RooRealVar("fracEy","",0.6793);

RooAbsPdf *addEy = new RooAddPdf("addEy","",*argusE1y,*gaussE2y,*fracEy);

// Var z

RooRealVar *muA1z = new RooRealVar("muA1z","",-0.5518,-1,1);

muA1z->setError(0.001);

RooRealVar *sigmaA1z = new RooRealVar("sigmaA1z","",0.3314,0,1);

sigmaA1z->setError(0.001);

RooAbsPdf *gaussA1z = new RooGaussian("gaussA1z","",z,*muA1z,*sigmaA1z);

RooRealVar *muB1z = new RooRealVar("muB1z","",-1.1352,-1.5,-0.5);

muB1z->setError(0.001);

RooRealVar *sigmaLB1z = new RooRealVar("sigmaLB1z","",0.3321,0,1);

sigmaLB1z->setError(0.001);

RooRealVar *sigmaRB1z = new RooRealVar("sigmaRB1z","",0.4441,0,1);

sigmaRB1z->setError(0.001);

RooAbsPdf *bifurgaussB1z = new RooBifurGauss("bifurgaussB1z","",z,*muB1z,*sigmaLB1z,*

sigmaRB1z);

114

RooAbsPdf *polyB1z = new RooPolynomial("polyB1z","",z);

RooRealVar *fracBz = new RooRealVar("fracBz","",0.99);

RooAbsPdf *addBz = new RooAddPdf("addBz","",*bifurgaussB1z,*polyB1z,*fracBz);

RooRealVar *muC1z = new RooRealVar("muC1z","",-0.6762);

RooRealVar *sigmaLC1z = new RooRealVar("sigmaLC1z","",0.3241);

RooRealVar *sigmaRC1z = new RooRealVar("sigmaRC1z","",0.3477);

RooAbsPdf *bifurgaussC1z = new RooBifurGauss("bifurgaussC1z","",z,*muC1z,*sigmaLC1z,*

sigmaRC1z);

RooRealVar *muD1z = new RooRealVar("muD1z","",-0.6529);

RooRealVar *sigmaLD1z = new RooRealVar("sigmaLD1z","",0.3472);

RooRealVar *sigmaRD1z = new RooRealVar("sigmaRD1z","",0.3577);

RooAbsPdf *bifurgaussD1z = new RooBifurGauss("bifurgaussD1z","",z,*muD1z,*sigmaLD1z,*

sigmaRD1z);

RooRealVar *muE1z = new RooRealVar("muE1z","",-0.6336);

RooRealVar *sigmaLE1z = new RooRealVar("sigmaLE1z","",0.3440);

RooRealVar *sigmaRE1z = new RooRealVar("sigmaRE1z","",0.3570);

RooAbsPdf *bifurgaussE1z = new RooBifurGauss("bifurgaussE1z","",z,*muE1z,*sigmaLE1z,*

sigmaRE1z);

RooRealVar *nA = new RooRealVar("nA","",10,0,N); nA->setError(1);

RooRealVar *nB = new RooRealVar("nB","",40,0,N); nB->setError(1);

RooRealVar *nC = new RooRealVar("nC","",30,0,N); nC->setError(1);

RooRealVar *nD = new RooRealVar("nD","",10,0,N); nD->setError(1);

RooRealVar *nE = new RooRealVar("nE","",10,0,N); nE->setError(1);

List<Variable> nevents;

nevents.add(*nA); nevents.add(*nB); nevents.add(*nC); nevents.add(*nD); nevents.add(*nE)

;

RooAbsPdf *pdfA = new RooProdPdf("pdfA","",List<AbsPdf>(*gaussA1x,*gaussA1y,*gaussA1z));

RooAbsPdf *pdfB = new RooProdPdf("pdfB","",List<AbsPdf>(*polyB1x,*argusB1y,*addBz));

RooAbsPdf *pdfC = new RooProdPdf("pdfC","",List<AbsPdf>(*polyC1x,*addCy,*bifurgaussC1z))

;

RooAbsPdf *pdfD = new RooProdPdf("pdfD","",List<AbsPdf>(*addDx,*gaussD1y,*bifurgaussD1z)

);

RooAbsPdf *pdfE = new RooProdPdf("pdfE","",List<AbsPdf>(*polyE1x,*addEy,*bifurgaussE1z))

;

List<AbsPdf> Pdfs;

Pdfs.add(*pdfA); Pdfs.add(*pdfB); Pdfs.add(*pdfC); Pdfs.add(*pdfD); Pdfs.add(*pdfE);

115

return new RooAddPdf("extended","",Pdfs,nevents);

}

116

Appendix D

A tree illustration of the eta’K model

117

118

Figure D.1: Tree illustration of the eta’K model. Double-circled red nodes are composite
PDFs, single-circled are ordinary PDFs and blue nodes are variables.

Appendix E

OpenCL kernels for the PDFs used in the
eta’K model

Listing E.1: OpenCL kernels for the PDFs used in the eta’K model
/**

* AbsPdf log value kernel

*/

__kernel void logValue(__global double *results, const int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = log(results[i]);

}

/**

* AbsPdf normalization kernel

*/

__kernel void normalizeResults(const double invIntegral, __global double *results, const

int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] *= invIntegral;

}

/**

119

120

* PdfAdd kernel

*/

__kernel void evaluatePdfAdd(__global double *data1, __global double *data2,

double coeff1, double coeff2, __global double *results, const int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = mad(coeff1, data1[i], coeff2 * data2[i]);

}

/**

* PdfProd kernel

*/

__kernel void evaluatePdfProd(__global double *data1, __global double *data2,

__global double *results, const int N)

{

int i = get_global_id(0);

if(i >= N) return;

results[i] = data1[i] * data2[i];

}

/**

* Argus BG evaluation kernel

*/

__kernel void evaluatePdfArgusBG(const double invm0, const double c, __global const

double *data, const int variableOffset, __global double *results, const int N, const

double invIntegral)

{

int i = get_global_id(0);

if(i >= N) return;

const int offset = i + variableOffset;

double d = data[offset];

double t = d*invm0;

if(t >= 1.)

{

results[i] = 0.0;

}

else

{

double u = ((double)1.) - t*t;

121

results[i] = d*sqrt(u)*exp(c*u) * invIntegral;

}

}

/**

* Bifur Gaussian evaluation kernel

*/

__kernel void evaluatePdfBifurGaussian(const double mu, const double coeff1, const double

coeff2, __global const double *data, const int variableOffset, __global double *

results, const int N, const double invIntegral)

{

int i = get_global_id(0);

if (i >= N) return;

double x = data[i + variableOffset];

double arg = x - mu;

double coeff = 0.0;

if (arg < 0.0)

{

coeff = coeff1;

}

else

{

coeff = coeff2;

}

results[i] = exp(coeff*arg*arg) * invIntegral;

}

/**

* Gaussian evaluation kernel

*/

__kernel void evaluatePdfGaussian(const double mu, const double sigma, __global const

double *data, const int variableOffset, __global double *results, const int N, const

double invIntegral)

{

int i = get_global_id(0);

if (i >= N) return;

double x = data[i + variableOffset];

double temp = (x-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp) * invIntegral;

122

}

/**

* Polynomial evaluation kernel

*/

__kernel void evaluatePdfPolynomial(__global const double *coeff, unsigned int ncoeff,

__global const double *data, const int variableOffset, __global double *results,

const int N, const double invIntegral)

{

int i = get_global_id(0);

if (i >= N) return;

const int offset = i + variableOffset;

double result = coeff[ncoeff];

for (;ncoeff>0;--ncoeff)

result = mad(result, data[offset], coeff[ncoeff-1]);

results[i] = result * invIntegral;

}

Appendix F

NVIDIA Tesla benchmarks

We want to briefly show a few results comparing an NVIDIA Tesla C2050 professional GPU
to the NVIDIA GTX470 and the AMD Radeon HD5870 from chapter 4. The Tesla series
from NVIDIA are directed towards professional use, and do not have the same restrictions
of double-precision performance as e.g. the GTX gamer GPUs. Table F.1 shows the speci-
fications of the Tesla C2050 GPU. These figures are taken from tes [54], which is a product
sheet from NVIDIA. The core frequency is slighly lower than on the GTX470, and thereby
the single-precision peak performance is also slightly lower. But the double-precision peak
performance is approximately four times as high.

Recall the basic operation test we did in section 4.3. The same test including the Tesla
C2050 is shown in figure F.1. The results speak for themselves. The theoretical difference in
peak performance is clear for both double-precision and single-precision accuracy.

But, what happens when running with the transcendental kernels made to be more similar
to the typical kernels in the eta’K model? Figure F.2 shows these results. The plot is identical
to Figure 4.3 but with a linear vertical axis instead of logarithmic, in addition to including
the Tesla results. In essence these results prooves that there is nothing to gain on a Tesla

NVIDIA Tesla C2050
Number of ALUs/scalar cores 448

Core clock 1150 MHz
Peak single-precision performance 1030 GFLOP/s
Peak double-precision performance 515 GFLOP/s

Memory bandwidth 144 GB/s
Memory size 3 GB

Table F.1: The specifications of the NVIDIA Tesla C2050 professional GPU.

123

124

(a) Double-precision accuracy.

(b) Single-precision accuracy.

Figure F.1: Equivalent to figure 4.2, but with the Tesla C2050 in addition.

125

Figure F.2: Tesla results for the kernels involving transcendentals in Appendix B.

GPU if kernels are memory-bound. In essence, this should mean that the eta’K evaluation
should perform fairly similar whether one runs with a GTX470 or with a Tesla, and this is
indeed confirmed in Figure F.3. The difference when N grows high is most probably because
of the higher memory bandwith of the Tesla. The conclusion is clear.

126

Figure F.3: MLFit benchmark including results for the Tesla C2050. Eta’K model evaluation.

Appendix G

CERN openlab report: First encounter

with OpenCL for multicore CPUs

127

First encounter with OpenCL for multicore CPUs

Yngve Sneen Lindal, Sverre Jarp, Alfio Lazzaro, Julien Leduc, Andrzej Nowak

July 13, 2011

yngve.sneen.lindal@cern.ch

1

Contents

1 Introduction 3
1.1 Maximum likelihood fits . 3
1.2 NLL evaluation . 4

2 NLL Evaluation with OpenCL 5

3 Drawbacks of OpenCL on CPUs 6
3.1 Explicit vectorization . 7
3.2 Thread scheduling . 8

4 Conclusion 9

5 Intel OpenCL wish list 9

2

1 Introduction

This short report is centered around the same application as described in [1]. Therefore, sections 1.1
and 1.2 are copied from [1], so that the reader can have a short introduction of the application we are
working with. This application was parallelized using OpenMP and CUDA with good scalability and
performance. We reached a speedup factor of 3.8x using OpenMP using 4 threads. We use this result
as a reference for a new implementation in OpenCL which is described in the rest of this report. We
aim to have a common implementation (equal kernels) of this application for the CPU and the GPU.

1.1 Maximum likelihood fits

The maximum likelihood (ML) fitting procedure is a popular statistical technique used to estimate
parameters of a statistical model on a given data sample [2]. Data samples are a collection of N
independent events, an event being the measurement of a set of variables x̂ = (x1, . . . , xn) (energies,
masses, spatial and angular variables...) recorded in a brief span of time by physics detectors. The
events can be classified in different species, which are generally denoted with signals, for the events of
interest for their physics phenomena, and backgrounds, all that remains. Each variable xj is distributed
for the given species s with a probability distribution function (PDF) Pj

s (x
j ; θ̂js), where θ̂

j
s are free (not

constant) parameters of the PDF. If the variables are uncorrelated each other, then the total PDF for
the species s is expressed by

Ps(x̂; θ̂s) =
∏
j

Pj
s (x

j ; θ̂js). (1)

The ML technique allows to estimate the values of the free parameters, as well the number of events
belonging to each species ns, by maximizing the function

L =
e−
∑

s
ns

N !

N∏
i=1

∑
s

nsPs(x̂i; θ̂s), (2)

which is called extended likelihood function. We should underline that x̂i are measured and the Pj
s

functions are well-known, so L only depends on the free parameters we want to fit on the data sample.
The search of maximum for L can be carried out numerically. Usually, it is used to minimize the
equivalent function − ln(L), the negative log-likelihood (NLL). So the NLL to be minimized has the
form1:

NLL =
∑
s

ns −
N∑
i=1

(
ln
∑
s

nsPs(x̂i; θ̂s)

)
, (3)

that is a sum of logarithms. The most common method used in the high energy physics (HEP)
community for the minimization is based on the MIGRAD algorithm inside the MINUIT package.
MIGRAD performs the minimization using the variable metric method [3]. This method involves
the calculation of the derivatives of the NLL for each free parameter. Since very often we are deal
with minimizing a function for which no derivatives are provided, MIGRAD is able to estimate the
derivatives of the function by finite differences [4]. The whole procedure of minimization requires
several evaluations of the NLL, which requires itself the calculation of the corresponding PDFs for each
variable and each event of the data sample. Hence, depending on the complexity of the NLL function
with several free parameters, many independent variables and large data samples, the minimization

1We omit the N ! term in the expression, which does not depend on the parameters.

3

procedure can be very time-consuming. In this case it is important (or even mandatory) to speed-up
the evaluation of the NLL [5]. The common software used in HEP community for the evaluation of
the NLL is RooFit [6], which is part of the general data analysis framework ROOT [7]. Currently
RooFit implements an algorithm for the NLL evaluation which cannot take fully advantage from data
vectorization and other code optimizations (like function inlining) due to its implementation based on
C++ virtual methods [5]. To overcome these limitations, we have designed and implemented a new
optimized algorithm on CPUs, and parallelized it using a data parallelism paradigm implemented with
OpenMP. The algorithm has been also implemented to run on a Graphics Processing Unit (GPU)
device by using CUDA language provided by NVIDIA. This work is thoroughly documented in [1].

1.2 NLL evaluation

RooFit package is formed by a set of C++ classes constructed on top of ROOT framework dedicated
to likelihood-based analyses. Basically for each mathematical concept there is a corresponding C++
class, e.g. classes for the PDFs and variables definition. Then there is a special class which takes care
of finalizing the NLL calculation. Furthermore RooFit provides an interface to the MINUIT package.
We should underline that all floating point operations are performed in double precision. Data are
organized in memory like a matrix where the columns contain the values for each variable, and the
rows represent the values of the variables belonging to each event. All classes for PDFs inherit from
a common abstract class, which provides the common interface. So each class has a virtual method
to get the value of the PDF. Combinations of PDFs are possible with classes for adding, multiplying
and convoluting basic PDFs. In order to calculate the NLL from the formula (3), the current available
RooFit algorithm consists of the following steps (in order):

• For a given set of values of NLL free parameters, loop over the events i = 1...N :

– read the values of the variables for event i;

– calculate the PDFs for the event i;

– combine, by means of addition and multiplication, the results of the individual PDFs to
calculate the total PDF value for the event i;

– calculate the logarithm of the total PDF value, which is the term in the sum of the NLL;

– accumulate the terms of the sum.

• Finalize the calculation of the NLL.

The key part of this procedure is the calculation of all PDFs for each event, and then there is a single
loop over all events. Since this is done by having recourse to calls of the virtual method of each PDF,
this algorithm does not allow particular code optimization, like inlining and data vectorization, and
it introduces the obvious overhead due to the virtual method calls. In order to take benefit from
code optimization, we redesigned the algorithm to reduce the number of calls to virtual methods.
Furthermore, the data are stored differently: the values of each variable are organized in independent
arrays, so that we can profit from the coalescing of memory accesses for each variable. The new
algorithm follows a different procedure with respect to the RooFit algorithm described above:

• For a given set of values of the parameters and a given PDF, we evaluate the PDF on each event
of the data sample (which means calculating the PDF on the corresponding arrays of variables),
and we save the results of this calculation in an array. So we do a loop over all events i = 1...N
and calculate the PDF for each of them.

4

• Repeat the previous step for all PDFs, so we end up with several arrays of partial results (an
array for each PDF). Each array of results is composed by N elements, i.e. a result for each
event.

• Combine, by means of addition and multiplication, all arrays of partial results, corresponding to
each event, providing a final array of results, i.e. the array of results of the total PDF.

• Calculate the logarithm of the total PDF results.

• Do the sum of the total PDF results and finalize the calculation of the NLL.

The key part of this procedure is the calculation of each PDF for all events, so that instead of one
single global loop over the events, now we have independent local loops for each PDF (and their
combinations). For the implementation of this new algorithm in RooFit, we add a new virtual method
for each PDF class with a reference to the data sample as parameter. Inside this method we perform
the local loop over all values of the variables of the corresponding PDF, storing the results of the
calculations in an array of partial results. Then the method returns a reference to this array. Since
this new virtual method is called just once per each PDF during a NLL evaluation, and then within local
loops we perform the calculations of the mathematical functions for all events, we can conclude that
the number of calls to virtual methods does not depend by the number of events. Furthermore, thanks
to the new data structure organized as arrays for each variable, this code can easily be vectorized for
the calculation of each PDF. The loop over the final results of the total PDF to calculate and finalizing
the NLL evaluation is done in the usual class for the NLL finalization. We should note that a drawback
of this new algorithm is that we have to manage all the arrays for the temporary results.

2 NLL Evaluation with OpenCL

The NLL evaluation requires an evaluation of a function over a vector of elements which can be easily
parallelized using OpenMP. An example of an evaluation of a Gaussian function is shown in figure 1a.
This code is auto-vectorized if compiled by the Intel compiler, so the programmer don’t need to think
about that. Also, work partitioning is automatically taken care of by OpenMP.

5

void evaluatePdfGaussian(const double mu, const double sigma, const double* data,

double* results, const int N)

{

#pragma omp parallel for

for(int i = 0; i < N; i++)

{

double temp = (data[i]-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp);

}

}

(a) OpenMP

__kernel void evaluatePdfGaussian(__const double mu, __const double sigma, __global

const double *data, __global double *results, __const int N)

{

int i = get_global_id(0);

if (i >= N) return;

double x = data[i];

double temp = (x-mu)/sigma;

temp *= temp;

results[i] = exp(-0.5*temp);

}

(b) OpenCL

Figure 1: OpenMP and OpenCL versions of a Gaussian evaluation function. Mu and sigma are doubles
and data and results are pointers to arrays of double.

AMD has recently released an OpenCL SDK called AMD App SDK (v. 2.3 released on 29.01.2011),
which supports programming both AMD GPUs and x86-compatible CPUs. In this work we therefore
use the AMD App SDK for the CPU and the NVIDIA OpenCL SDK for the GPU. Being able to
program any device in the same programming model seems ideal, but unfortunately this does not come
without a penalty. We will in the next sections describe our experiences with targeting different devices
in the same program and with the same programming model, and try to highlight the limitations that
we find most critical. The goal would be to be able to use the OpenCL kernel in figure 1b for both
CPUs and GPUs, and that it would be comparable performance-wise to the OpenMP version.

3 Drawbacks of OpenCL on CPUs

Threads on modern GPUs are very lightweight, and scheduled by hardware mechanisms. In an applica-
tion performing calculations on e.g. vectors, it is therefore appropriate to make each thread typically
target one single element in that vector. If the number of threads are smaller than the number of

6

__kernel __attribute__((vec_type_hint(double2))) void evaluatePdfGaussian(__const

double mu, __const double sigma, __global const double *data, __global double *

results, __const int N)

{

int i = get_global_id(0);

if (i >= N/2) return;

double2 x = vload2(i, data);

double2 temp = (x-mu)/sigma;

temp *= temp;

double2 result = exp(-0.5*temp);

vstore2(result, i, results);

}

Figure 2: The vectorized version of the kernel in figure 1b

elements, threads that are done with their execution will be rescheduled to compute another element
without much scheduling overhead. This is automatically taken care of by the OpenCL library/driver,
which clearly eases the programming effort. It is tempting to use one unified programming model for
a range of devices, however, using the OpenCL implementation in AMD App SDK for the CPU is
not necessarily straightforward if you want to achieve performant code. Figure 1b shows an OpenCL
kernel suitable for running on a GPU. Using this implementation for the GPU we achieve nearly equal
performance as the corresponding CUDA implementation. It would be ideal if this kernel could be
highly performant also on the CPU. However, this is not the case for two main reasons: AMD App
SDK does no auto-vectorization and the way to do threading on the GPU is different from the CPU.

3.1 Explicit vectorization

Since the OpenCL compiler in the AMD App SDK does not support autovectorization, one has to
explicitly program with vector types defined in the OpenCL standard to make the compiler produce
vectorized x86 code (SSE). By introducing explicit vectorization in the code we now have a different
kernel, and the benefit of a unified programming model is dramatically reduced, since we have to have
one edition of the same kernel for both GPUs and CPUs2. It would be a lot easier if the OpenCL
compiler had autovectorization capabilities. Figure 2 shows the vectorized edition of the kernel in
figure 1b. On the other hand, the syntax for loading and storing vector types in OpenCL is clean and
easy to understand, and vector types have mathematical operators implemented.

Note that since we have to program this by hand, we have to have arrays of even length the way
the source code is now. Also, if we want to use larger vector registers in the future (e.g. AVX), we

2AMD/ATI GPUs could also benefit performance-wise when using vector data types, since it may make it easier for
the compiler to pack data into the VLIW units of the AMD cards. This is not the case with NVIDIA GPUs, which in
practice would give us one kernel for each GPU vendor too. Note that this is not a necessity to achieve good performance,
but it’s still there.

7

__kernel __attribute__((vec_type_hint(double2))) void evaluatePdfGaussian(__const

double mu, __const double sigma, __global const double *data, __global double *

results, __const int N, __const int numComputeElements)

{

int i = get_global_id(0);

if (i >= N) return;

int part = N/numComputeElements;

for(int index = i*part; index < (i+1)*part - 1; index+=2)

{

double2 x = vload2(index/2, data);

double2 temp = (x-mu)/sigma;

temp *= temp;

double2 result = exp(-0.5*temp);

vstore2(result, index/2, results);

}

}

Figure 3: Same as figure 2, but with more work per thread

have to change all the vector types in the code, which is painfully inflexible (it could maybe be possible
with a typedef workaround, though).

3.2 Thread scheduling

With the AMD App SDK, the kernel in figure 2 will not perform very well on a CPU, even though
vectorized code is emitted. This has to do with how the AMD App SDK handles thread scheduling
internally. We don’t know the details under the hood, but AMD encourage users (in their online
examples) to give CPU threads more work than GPU threads. Tests we’ve conducted, showed that
running CPU kernels as the one in figure 2 resulted in a performance achievement of roughly 33%
compared to an autovectorized OpenMP version. However, by splitting the data into an appropriate
amount for each thread, we achieved speeds similar to it.

Figure 3 shows a kernel that does more work per thread. Note that this kernel assumes that the
number of compute elements divides N. Doing more work per thread forces the developer to think
about work distribution, and then most of the benefits with this programming model are lost. This
is not very difficult to achieve, but it should be implicit in the programming model, just as it is when
targeting GPUs. It does not make any sense to use different OpenCL implementations tuned for each
device, since then you’re basically back to where you started. The ideal case would be to have the same
kernel for both the CPU and the GPU (“SIMT for the CPU”), and that the OpenCL SDK took care of
this automatically. As we clearly see, the kernels in figure 1b and 3 respectively are very different from
each other. Also, note that the Gaussian function is a trivial function to implement. Other functions
(or kernels in general) might be much more complex.

8

4 Conclusion

The way the AMD App SDK implements the OpenCL standard is inappropriate for multicore ap-
plications that are written to be performant and easily programmable/modifiable. The concept of
lightweight threads is reflected strongly in the programming model, but the AMD App SDK does not
implement this effectively for CPU threads. An ideal implementation should make it possible to write
kernels in a “one element per thread” style for CPUs and deliver high performance. Leaving this work
for the programmer leads to an uneffective framework to develop multicore programs in.

In addition, we think autovectorization is necessary for making OpenCL attractive for multicore
programming. It is always a plus to have vector types to customarily optimize programs, but being
forced to implement vectorization on a source level basis across entire OpenCL programs is tedious.

All in all, having to do these two major changes to the code doesn’t make our application easily
extendable. It may be easy for someone on the outside suggesting major features such as autovec-
torization and work-distribution, without regarding the amount of work required to implement it.
However, the vendors providing OpenCL implementations does exactly this in their existing products,
and one can never escape the fact that by the way the AMD App SDK is implemented for multicore
CPUs today, it is inferior to other multicore programming tools such as OpenMP and TBB that can
lean themselves on auto-vectorizing compilers, while still delivering a relatively pleasant interface for
programmers.

It is worth to mention that there is another project by the PGI group which aims to run CUDA
C code on x86 CPUs [8] with good performance (e.g. supporting SIMD units). Ideally, an OpenCL
SDK would also support this.

5 Intel OpenCL wish list

Since we do most of our work in Linux (as many others), a Linux version of OpenCL (maybe an alpha
version) from Intel in near future would be welcome. We also hope that Intel would consider looking
into the two main problematic areas we’ve highlighted in this report; autovectorization and making
the work distribution among threads implicit in the programming model, since our final goal is to
have a common implementation for CPUs and GPUs. As long as these two areas aren’t implicit, using
OpenCL as a solution for both CPUs and GPUs is inappropriate for the work we are doing.

References

[1] S Jarp, A Lazzaro, J Leduc, A Nowak, and F Pantaleo. Parallelization of maximum likelihood fits
with openmp and cuda. http://cdsweb.cern.ch/record/1328927, 2011.

[2] G. Cowan. Statistical Data Analysis. Clarendon Press, Oxford, 1998.

[3] W. C. Davidon. Variable metric method for minimization. SIAM J. Optim., 1:1–17, 1991.

[4] F. James. In MINUIT - Function Minimization and Error Analysis, CERN Program Library Long
Writeup D506, 1972.

[5] A. Lazzaro and L. Moneta. J. Phys.: Conf. Series, 219:042044, 2010.

9

[6] W. Verkerke and D. Kirkby. The roofit toolkit for data modeling. proceedings of PHYSTAT05.
Imperial College Press, London, 2006.

[7] R. Brun and F. Rademakers. Root - an object oriented data analysis framework. Nuclear Instru-
ments and Methods in Physics Research Section A, 389:81, 1997.

[8] http://www.pgroup.com/resources/cuda-x86.htm. Accessed 24.03.2011.

10

138

Page intentionally left blank

	Title Page
	thesis-final.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

