
© 2004 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

perfmon2:
a performance
monitoring interface for
Linux

Stéphane Eranian
HP Labs
January 2005
CERN, Geneva, Switzerland

January 20, 2005 2

Agenda

• What is performance monitoring?
• What is the PMU?
• Overview of the perfmon2 interface
• Current implementations
• porting to Xen/ia64
• Examples of performance tools for Linux/ia64

January 20, 2005 3

What is performance monitoring?

• The action of collecting information related to how an
application/system performs when executing.

• Information obtained by instrumenting the code
−Extract program-level information
−Statically: by compilers (-pg option)
−Dynamically: e.g., HP Caliper, Intel PIN tool
−example: count basic-block execution

• Information obtained from processor/chipsets
−Extract micro-architectural level information
−Uses hardware performance counters
−Example: count TLB misses

January 20, 2005 4

What is the PMU?
• Piece of CPU HW collecting micro-architectural events:

−From pipeline, system bus, caches, ...

• All modern processors have a PMU
−May even be part of the architecture, e.g., Itanium®

• PMU has existed for a long time (think debug)
−Not always made public or documented properly

• PMU is highly specific to processor implementation
−Large differences even inside same processor family

• New trend is to expose PMU to users
−Foster developments of good performance tools

• Many new PMUs go beyond just collecting counts

January 20, 2005 5

Performance monitoring and IPF
• IPF performance is based mostly on code quality

−EPIC: parallelism of the machine is exposed to users
• Optimization decisions made at compile time

−Must extract as much parallelism as possible from source
• Performance feedback needed by compilers

−Profile Guided Optimization (PBO) to tweak optimizations
−Static optimization

• Performance feedback needed by Managed Runtimes (MRE)
−Needed to tweak embedded JIT compiler
−Dynamic optimization

• Must have very good monitoring infrastructure
−Need access to low-level performance informatio

January 20, 2005 6

The Itanium® PMU
• IPF architecture specifies PMU interface (framework):

−Up to 256 control (PMC) and 256 data (PMD) registers
−Minimal config: 4 counters, 2 events, overflow intr.

capability

• Lots of room for extensions:
−Itanium®: 14 PMC, 18 PMD

• 4 counters (32bits), ≈230 events
• Opcode match, range restrictions, D-EAR, I-EAR, BTB

−Itanium® 2: 16 PMC, 18 PMD
• 4 counters (47bits), ≈475 events
• Opcode match, range restrictions, D-EAR, I-EAR, A-EAR, BTB

−Montecito(2005): expect more exciting features

January 20, 2005 7

Accessing the PMU

• Some operations require priviledged access
−e.g.: processing of PMU interrupts, setup of PMU registers

• Some PMUs allow certain operations at user level:
−Itanium®: read PMD, start and stop with simple instructions

• OS support required: device driver or system call?
−System call: makes it a builtin feature
−Device driver: makes it more modular and optional
−System call: HPUX, Linux,MacOS (per-thread and syswide)
−Device driver: Windows (syswide)

January 20, 2005 8

The perfmon challenge
• No standard kernel interface exist on Linux

−Various patches exist for IA-32, PowerPC, X86_64
−Most interesting is perfctr
−Other OS may have proprietary interfaces

• Slows down developments of modern tools
−Unexploited hardware resources to help boost performance

• PMU is specific to each processor implementation
• Huge variations make it difficult to abstract hardware
• Challenge:

How to design a generic, yet powerful and extensible, kernel
interface to access the PMU of modern processors which
could support a variety of performance tools?

January 20, 2005 9

The perfmon2 interface
• Provides a generic interface to access PMU

−Not dedicated to one app, avoid fragmentation

• Must be portable across all PMU models:
−Almost all PMU-specific knowledge in user level libraries

• Supports per-thread monitoring
−Self-monitoring, unmodified binaries, attach/detach
−multi-threaded and multi-process workloads

• Supports system-wide monitoring
• Supports counting and sampling
• No modification to applications or system
• Builtin, efficient, robust, secure, simple,documented

January 20, 2005 10

Perfmon2 interface
• Uses a system call

−More fexibility, ties with ctxsw, exit, fork
−Kernel compile-time option on Linux

• Perfmon2 context enscapsulates all PMU state
−Each context uniquely identified by file descriptor

int perfmonctl(int fd, int cmd, void *arg, int narg)
PFM_CREATE_CONTEXT PFM_READ_PMDS PFM_START
PFM_WRITE_PMCS PFM_LOAD_CONTEXT PFM_STOP
PFM_WRITE_PMDS PFM_UNLOAD_CONTEXT PFM_RESTART
PFM_CREATE_EVTSET PFM_DELETE_EVTSET PFM_GETINFO_EVTSET
PFM_GETINFO_PMCS PFM_GETINFO_PMDS PFM_GET_CONFIG
PFM_SET_CONFIG

January 20, 2005 11

Perfmon2 PMU registers
• Logical PMU registers exposed by interface:

−PMC: configuration registers
−PMD: data registers (counters, buffers, ...)

• Counters are always exported as 64-bit wide
• Mapping to actual registers depends on PMU
• Mapping returned by PFM_GETINFO_PM[CD]S

−Calls return actual register name and index or address
−Example: PMC4 = MSR @ 0x300

• Possibility to have virtual PMD registers
−Can map to OS or processor resource
−Example: PMD356 = amount of free physical memory

January 20, 2005 12

Typical self-monitoring session
pfarg_ctx_t ctx;
pfarg_load_t load;
pfarg_pmd_t pd[1]; pfarg_pmc_t pc[1];
pfmlib_input_param_t inp;
pfmlib_output_param_t outp;...
pfm_find_event(“CPU_CYCLES”, &inp.pfp_events[0]);
inp.pfp_plm = PFM_PLM3; inp.pfp_count = 1;
pfm_dispatch_events(&inp, NULL, &outp);
pd[0].reg_num = pc[0].reg_num = outp.pfp_pc[0].reg_num;
perfmonctl(0,PFM_CREATE_CONTEXT, &ctx,1);
perfmonctl(ctx.ctx_fd, PFM_WRITE_PMCS, pc, 1);
perfmonctl(ctx.ctx_fd, PFM_WRITE_PMDS, pd, 1);
load.load_pid = getpid();
perfmonctl(ctx.ctx_fd, PFM_LOAD_CONTEXT, &load, 1);
perfmonctl(ctx.ctx_fd, PFM_START, NULL, 0);
/* run code to measure */
perfmonctl(ctx.ctx_fd, PFM_STOP, NULL, 0);
perfmonctl(ctx.ctx_fd, PFM_READ_PMDS, pd, 1);
printf(“total cycles %”PRIu64”\n”, pd[0].reg_value);
close(fd);

January 20, 2005 13

Monitoring an unmodified binary
• Can fork/exec binary or attach to a running thread
• Ability to follow across fork/pthread_create using

ptrace()

fd

file_table pfm_context

pfmon gzip

PFM_CREATE_CONTEXTPFM_LOAD_CONTEXTPFM_READ_PMDSPFM_START

January 20, 2005 14

System wide monitoring

• Monitor across processes
• Built as union of cpu-wide

sessions
−Simplicity of kernel implementation
−Better scalability
−Better atune to hardware (P4 PEBS)
−Use sched_setaffinity() for pinning

• Ability to exclude idle task
• Cannot run concurrently with

per-thread session

0

Tool

1 2 3

January 20, 2005 15

Perfmon2 event notification
• Can receive a message on:

−A counter overflow: when it wraps from 264 to 0
−a thread termination

• Message channel is a simple queue
• Exploit existing file infrastructure:

−Extraction via read()
−Support for select/poll to poll on multiple descriptors
−Asynchronous notification via signal (SIGIO)

• Tuneable behavior on overflow notification
−Monitoring is stopped, resumed with PFM_RESTART
−Possibility to block monitored thread to limit blind spots

January 20, 2005 16

Support for sampling
• Support time-based sampling from user level
• Support for Event-Based Sampling (EBS) in kernel

−Sampling period p expressed as 264-p occurrences of event

• As many sampling periods as there are counters
−Allows overlapping sampling measurements

• Support for randomized sampling period
−Very important to avoid avoid biased samples
−setup is per counter

• Suport optional kernel level sampling buffer
−amortize cost of overflow notification
−Samples stored in kernel buffer, notification when buffer full

January 20, 2005 17

Kernel level sampling buffer
• Buffer remapped into user level address space

−Avoid large data copies
−Remapped read-only via an mmap() call

• support custom sampling formats via kernel modules

fd

file_table pfm_context

tool

January 20, 2005 18

Custom sampling buffer formats
• No single format can satisfy all needs

−Keep complexity very low

• Provides interface for plug-in formats:
−Easier to port existing tools, e.g., Oprofile or VTUNE
−Exploit kernel infrastructure: kernel modules

• Each format provides:
−A 128-bit UUID for identification
−A handler function called on each counter overflow

• Each format controls:
−Where and how samples are stored
−What gets recorded, how the samples are exported
−When a “buffer full” condition is declared

January 20, 2005 19

Custom sampling format infrastructure
• Modules may have private interface to export data
• Modules do not have to use buffer remapping service

perfmon subsystem

private interface

validate()
getsize()
init()
handler()
restart()
exit()

Custom sampling format
moduleregister_buffer_format()

unregister_buffer_format()
pfm_mod_read_pmds()
pfm_mod_write_pmds()
pfm_mod_write_pmcs()

Fixed
sampling
format

January 20, 2005 20

Existing sampling formats
• Default format (builtin):

−Simple linear buffer
−Very generic samples: fixed header + PMD in body
−Samples stored sequentially

• Oprofile format:
−10 lines of codes, reuse 100% of existing code

• n-way sampling format (released separately):
−Implements split buffer (up to 8-way)
−Process one part while storing in others: minimize blind spots

• Kernel call stack format (experimental):
−Combines PMU sampling with kernel stack unwinder
−Record kernel call stacks on counter overflow

January 20, 2005 21

Event sets and multiplexing
• What is the problem?

−Number of counters is always limited (4 for Itanium®2)
−Some events cannot be measured at the same time
−Some measurements require a lot of events:

• Example: cycle breakdown on Itanium®2 requires at least 15 events

• Solution:
−Create sets of up to m events when PMU has m counters
−Time share PMU between sets

January 20, 2005 22

Event sets
• Each set encapsulates the full PMU state

−All PMC and PMD registers

• Each set is identified by user-specified unique number
−Up to 65k sets are supported
−set0 created by default (cannot be removed)

• Only one set can be active at a time
• Sets can dynamically be added, modifed, removed
• Sets are ordered based on their unique number

−order determines the switching order

set0

pfm_context

set0

pfm_context

set5 set0

pfm_context

set3 set5

January 20, 2005 23

Event sets (cont'd)
• Runtime information about a set:

−Use PFM_GETINFO_SETS
−Infos: number of activations, aggregated duration of

activation

• System-wide per-set modes:
−Exclude idle task execution
−Exclude interrupt-triggered execution (Itanium® only)
−Exclude all but interrupt-triggered execution (Itanium® only)

January 20, 2005 24

Set multiplexing
• List of sets managed in round-robin fashion
• Two modes of switching: timeout or overflow

−Selected per set, can mix and match

• Timeout-based switching:
−Timeout specified per set
−granularity depends on OS timer (Linux/ia64 = 1ms)

• Overflow-based switching:
−after n overflows of a “trigger” counter
−Multiple simultaneous triggers are supported

• Possibility to build cascading counters
−Activate a set of counters after a certain threshold is reached

January 20, 2005 25

Linux/ia64 perfmon implementations

• In Linux/ia64 since 2.4.0
• In all 2.4-based kernels: perfmon1

−First generation interface
−Included in SLES-8, RHAS-2.1, RHEL-3.0 (but broken)
−Several limitations : no monitoring across fork()

• In all 2.6-based kernels: perfmon2
−Second generation interface
−Included in SLES9 and RHAS4
−Not backward compatible with perfmon-1
−Currently includes: sampling formats
−Event set support not yet public

January 20, 2005 26

Porting perfmon2 to Xen/ia64

• Two possibilities:
−port to guest OS (XenoLinux/ia64)
−port to hypervisor with Domain0 as controller

• Port to XenoLinux/ia64
−monitor each domain separately
−easier because familiar environment
−ring0 vs ring1 issues

• Port to hypervisor
−allow cross-domain monitoring
−non Linux-environment
−issues: memory allocation, interrupt, file descriptor intf.,

memory remapping

January 20, 2005 27

Porting perfmon2 to XenoLinux

• Ring 1 vs. ring 0 issues:
−mov to/from pmd[]/pmc[]
−toggling of psr.pp and psr.up
−toggling of dcr.pp

• PMU interrupt:
−managed as asynchronous external device interrupt
−reuse Xen I/O descriptor ring (Xen -> XenoLinux only)

• PMU state must be saved & restored on domain switch

January 20, 2005 28

Linux/ia64 monitoring tools

• Caliper(HP):
−Per-thread monitoring, binary product, free download
−Source level profiles

• VTUNE(Intel) for Linux/ia64
−PMU-based, system-wide flat profile, Windows-side GUI

• OProfile for Linux/ia64
−PMU-based, system-wide flat profile

• PAPI toolkit (U. of Tenessee) for Linux/ia64
−PMU-based, counting, sampling, uses libpfm

• pfmon/libpfm (HPLabs) for Linux/ia64
• q-tools, qprof (HPLabs) for Linux/ia64

January 20, 2005 29

Monitoring complicated workloads
• Implemented with pfmon-3.0 for perfmon-2:

−Can follow across fork/vfork and pthread_create
−Works for counting and sampling
−Supports regular expression to filter binaries of interest

• Example: elasped cycles of a compilation
$ pfmon --us-c -u -k --follow-all -ecpu_cycles,ia64_inst_retired \
 -- cc e.c -o e

 1,164,772 CPU_CYCLES /usr/lib/gcc-lib/ia64-linux/2.96/cpp0
 1,295,480 IA64_INST_RETIRED /usr/lib/gcc-lib/ia64-linux/2.96/cpp0
13,758,346 CPU_CYCLES /usr/lib/gcc-lib/ia64-linux/2.96/cc1
21,863,635 IA64_INST_RETIRED /usr/lib/gcc-lib/ia64-linux/2.96/cc1
 5,708,731 CPU_CYCLES as
 7,165,599 IA64_INST_RETIRED as
27,046,535 CPU_CYCLES /usr/bin/ld
35,247,760 IA64_INST_RETIRED /usr/bin/ld
 1,381,134 CPU_CYCLES /usr/lib/gcc-lib/ia64-linux/2.96/collect2
 1,508,977 IA64_INST_RETIRED /usr/lib/gcc-lib/ia64-linux/2.96/collect2
 1,913,253 CPU_CYCLES cc
 1,976,590 IA64_INST_RETIRED cc

January 20, 2005 30

Detailed cycle breakdown

• Can use current pfmon with wrapper script
−i2prof.pl written by Per Ekman

• Using the experimental version of pfmon:

$ pfmon -m itanium2-stalls -ku –system-wide –print-interval – mcf inp.in

%itlb %icache %bra %unstall %BE %score %RSE --------------- D-access ------
exec flush board %d1tlb %d2tlb %cache -loaduse-
res %gr %fr

 0.00 0.02 2.81 32.08 10.06 1.19 0.00 0.57 5.28 4.19 43.80 0.00
 0.00 0.02 2.81 32.12 10.06 1.19 0.00 0.57 5.28 4.19 43.77 0.00
 0.00 0.02 2.81 32.09 10.06 1.19 0.00 0.57 5.28 4.19 43.78 0.00
 0.00 0.00 0.08 59.29 0.22 0.05 0.00 0.03 0.01 1.75 38.57 0.01
 0.00 0.00 0.06 54.49 0.16 1.16 0.00 0.46 3.16 3.74 36.76 0.00
 0.00 0.05 2.83 42.14 10.08 1.06 0.02 0.68 4.77 5.69 32.69 0.00
 0.00 0.05 2.79 42.27 9.97 1.07 0.02 0.69 4.88 5.67 32.59 0.00
 0.00 0.03 2.44 41.42 8.74 1.11 0.00 0.55 4.30 4.32 37.09 0.00
 0.00 0.02 2.82 32.07 10.07 1.16 0.00 0.62 5.69 4.46 43.08 0.00

January 20, 2005 31

Opcode matching with pfmon
• Constrains monitoring to instructions or patterns

−Based on opcode, e.g., st8.*
−Based on functional unit, e.g., M,F,I,B
−Pattern uses a match+mask fields
−Not all instructions can be uniquely identified
−Two opcode matching registers on Itanium® 1 & 2

• Ex.: counting the number of br.cloop instructions:

$ pfmon –us-c --opc-match8=0x1400028003fff1fa \
 -e IA64_TAGGED_INST_RETIRED_IBRP0_PMC8 -- foo
 4,999,950,164 IA64_TAGGED_INST_RETIRED_IBRP0_PMC8

January 20, 2005 32

Range restrictions
• Constrains monitoring to range of data or code

−Implemented via debug registers (not used as breakpoints)
−Can specify a range inside the kernel (Linux/ia64)
−Works for both per-process and system-wide
−Not all events support range restrictions

• Range must be aligned on size for exact measurements
−gcc -falign-functions= option can be useful

• Ex.: how many L2 misses while executing init_tab()
$ pfmon –us-c -el2_misses -- foo
 1,245,516 L2_MISSES (misses for the entire execution)

$ pfmon –us-c –irange=init_tab -el2_misses -- foo
 14,456 L2_MISSES (misses for init_tab() only)

January 20, 2005 33

Sampling cache and TLB misses
(EARS)

• Very useful to find where cache/TLB load misses occur
−Cannot be done with naïve IP-based sampling

• Pinpoint the source of a miss, not the consequence
−Careful because not all misses lead to stalls

• Ex.: sample every 1000 cache misses with latency > 4
cycles

$ pfmon –-long-smpl-periods=1000 -edata_ear_cache_lat4 – foo

entry 2000 PID:608 CPU:0 STAMP:0xfe3e1212e5 IIP:0x4000000000000990
 accessed data: 0x2000000000357000
 miss latency : 16 cycles
 inst address : 0x4000000000000981

4000000000000980: [MMI] ld8 r15=[r16]
4000000000000981: ld8 r14=[r17] miss source
4000000000000982: nop.i 0x0;;
4000000000000990: [MMI] cmp.ltu p7,p6=r14,r15;; stall

January 20, 2005 34

Data load cache misses profiles
• Obtained using the Data EARS
• Provides two views:

−Instruction view: which loads trigger misses?
−Data view: on which data do misses occur?

• Example: mcf instruction and data views
#count %self %cum %L2 %L3 %RAM instruction addr
 6358 11.11% 11.11% 3.05% 5.17% 91.77% price_out_impl+0x820<mcf>
 6238 10.90% 22.01% 26.74% 69.93% 3.33% price_out_impl+0x850<mcf>
 5404 9.44% 31.45% 74.43% 24.94% 0.63% bea_compute_red_cost+0x50<mcf>
 5016 8.77% 40.22% 46.69% 33.77% 19.54% bea_compute_red_cost+0xa1<mcf>
 4968 8.68% 48.90% 42.43% 9.98% 47.58% primal_bea_mpp+0x7b1<mcf>
 4878 8.52% 57.42% 36.67% 51.87% 11.46% bea_compute_red_cost+0x90<mcf>

#count %self %cum %L2 %L3 %RAM data addr
 37 0.06% 0.06% 62.16% 32.43% 5.41% 0x200000000017ebd0
 32 0.06% 0.12% 75.00% 18.75% 6.25% 0x20000000000d07b0
 29 0.05% 0.17% 68.97% 24.14% 6.90% 0x20000000000e2438
 28 0.05% 0.22% 96.43% 3.57% 0.00% 0x20000000000d3708
 26 0.05% 0.27% 88.46% 11.54% 0.00% 0x20000000000d8c58

January 20, 2005 35

Sampling branches (BTB)
• Capture up to the last 4 branches:

−Each entry contains source/target addr., prediction outcome
−Possible to filter branches: taken/not taken, mispredicted
−Can be combined with EAR to build a path to a cache/tlb

miss

• Ex.: sample every 1000 taken branch, record last 4
$ pfmon --smpl-periods-random=5:0xff --btb-tm-tk \
 --long-smpl-periods=1000 –ebranch_event -- foo

entry 231 PID:673 CPU:0 STAMP:0x12957325ac49 IIP:0x40000000000004d0
 last reset : 1004
 branch source address: 0x40000000000004f2
 branch target address: 0x40000000000004c0
 branch taken : yes, prediction: success, pipe flush: no
 ...
40000000000004f0:[MFB] nop.m 0x0
40000000000004f1: nop.f 0x0
40000000000004f2: br.cloop.sptk.few 40000000000004c0

January 20, 2005 36

Current and future work
• Full interface specification document

−To be released as HPLabs tech report in February 2005

• Engage in discussion with Linux community to
standardize performance monitoring interface

• Ensure SLES9/RHEL4 have decent perfmon2 support
−Important for HP and Intel and entire user community

• Open-source event set multiplexing support
• Update pfmon/libpfm for Montecito support
• Develop new kinds of perf. tools exploiting the

interface

January 20, 2005 37

Kernel level call stack sampling
• Combines kernel stack unwinder with perfmon2:

−On counter overflow, record the call stack
−Uses a custom sampling buffer format

• Example using the modified version of pfmon:
$ pfmon -el3_misses --long-smpl-periods=2000 --smpl-periods-random=0xff:10 -k \
 --smpl-module=kcall-stack-ia64 --resolve-addr --system-wide

__copy_user,file_read_actor,do_generic_mapping_read,__generic_file_aio_read,generic_file_aio_read,
do_sync_read,vfs_read,sys_read,ia64_ret_from_syscall

do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel

clear_page,do_anonymous_page,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel

bh_lru_install,__find_get_block,__getblk,ext3_get_inode_loc,ext3_reserve_inode_write,
ext3_mark_inode_dirty,ext3_dirty_inode,__mark_inode_dirty,update_atime,link_path_walk,open_namei,
filp_open,sys_open,ia64_ret_from_syscall

end_bio_bh_io_sync,bio_endio,__end_that_request_first,scsi_end_request,scsi_io_completion,
sd_rw_intr,scsi_finish_command,scsi_softirq,do_softirq,ia64_handle_irq,ia64_leave_kernel

filemap_nopage,do_no_page,handle_mm_fault,ia64_do_page_fault,ia64_leave_kernel

scsi_finish_command,scsi_softirq,do_softirq,ia64_handle_irq,ia64_leave_kernel

end_page_writeback,end_buffer_async_write,end_bio_bh_io_sync,bio_endio,__end_that_request_first,
scsi_end_request,scsi_io_completion,sd_rw_intr,scsi_finish_command,scsi_softirq,do_softirq,
ia64_handle_irq,ia64_leave_kernel

January 20, 2005 38

Conclusions
• Monitoring is key to achieving world-class

performance
• Having a standardized perfmon interface is important
• Perfmon2 is the most advanced monitoring interface of

all Linux implementations
• The Itanium® 2 PMU is very powerful
• Linux/ia64 already has a variety of performance tools
• Need to develop better, smarter tools for non-experts

PMU resources

January 20, 2005 40

PMU resources
• pfmon/libpfm, q-tools, q-prof (HPLABS)

– http://www.hpl.hp.com/research/linux

• Caliper(HP):
– http://www.hp.com/go/caliper

• VTUNE(Intel):
– http://ww.intel.com/software/products/vtune

• PAPI
– http://icl.cs.utk.edu/projects/papi

• OProfile
– http://oprofile.sf.net

• Prospect:
– http://prospect.sf.net

January 20, 2005 41

Linux/ia64 perfmon resources
• i2prof.pl:

– http://www.pdc.kth.se/~pek/i2prof.pl

• IPF PMU architecture:
– http://developer.intel.com/design/itanium/

• Itanium® 2 PMU specification:
– http://developer.intel.com/design/itanium/manuals.htm

• N-way sampling buffer format:
 ftp://ftp.hpl.hp.com/pub/linux-ia64/nway_smpl-0.1.tar.gz
–

Backup slides

