
Summer 2005 1

S.Jarp
CERN

“Itanium Power
Programming”

Sverre Jarp
CERN openlab

Summer 2005 2

S.Jarp
CERN

Lesson 1
a) Introduction
b) Overview of Architecture and Conventions

Lesson 2
a) Standard Instruction Set
b) Our first “real” example

Lesson 3
a) Secrets of Speed
b) An improved version our example

Lesson 4
a) Multimedia Instructions
b) A top-notch version of our example

Lesson 5
a) Floating-point Instructions
b) Changing our example to handle floating-point

Lesson 6
a) Compilers and Assemblers: Peaceful coexistence?
b) Conclusions

Appendices

Agenda:

Summer 2005 3

S.Jarp
CERN

Part 1a

Introduction

Summer 2005 4

S.Jarp
CERN

Presentation Objectives
Offer programmers

Comprehension of the architecture
Instruction set and other features

Working Understanding of Itanium
machine code

Compiler-generated code
Hand-written assembler code

Inspiration for writing code
Well-targeted assembler routines

Highly optimized routines
In-line assembly code

Full control of architectural features

Summer 2005 5

S.Jarp
CERN

Part 1b

Overview of
Architecture

and Conventions

Summer 2005 6

S.Jarp
CERN

Architectural Highlights

(Some of the) Main Innovations:
Rich Instruction Set
Bundled Execution
Predicated Instructions
Large Register Files

Register Stack
Rotating Registers

Software Pipelined Loops
Control/Data Speculation
Cache Control Instructions
High-precision Floating-Point

Summer 2005 7

S.Jarp
CERN

A simple example
Lots of details

Many questions

.proc
getval:

alloc r3=ar.pfs,R_input,R_local,R_output,R_rotating
(p0) movl r2=Table // Base table address
(p0) and in0=7,in0 // Choice is 0 – 7
;;
(p0) shladd r2=in0,3,r2 // Index table
;;
(p0) ldfd f8=[r2] // Load value

(p0) br.ret.sptk.few rp // return

Application registers

Branch return

Register
allocation

Enforced
Instruction
Separation

Predicated execution

Summer 2005 8

S.Jarp
CERN

User Register Overview

128
Integer Registers

16 Kernel
Backup Registers

128
Floating Point Registers

8
Region Registers

64
Predicate Registers

128
Control Registers

8
Branch Registers Instruction Pointer

128
Application Registers

NN Debug
Breakpoint Registers

5
CPUID Registers

NN Perf. Mon.
Data Reg’s

Summer 2005 9

S.Jarp
CERN

IA64 Common Registers
Integer registers

128 in total; Width is 64 bits + 1 bit (NaT); r0 = 0
Integer, Logical and Multimedia data

Floating point registers
128 in total; 82 bits wide
17-bit exponent, 64-bit significand
f0 = 0.0; f1 = 1.0
Significand also used for two SIMD floats

Predicate registers
64 in total; 1 bit each (fire/do not fire)
p0 = 1 (default value)

Branch registers
8 in total; 64 bits wide (for address)

Summer 2005 10

S.Jarp
CERN

Rotating Registers

…….

Upper 75% rotate (when activated):
General registers (r32-r127)
Floating Point Registers (f32-f127)
Predicate Registers (p16-p63)

Formula:
Virtual Register = Physical Register – Register Rotation
Base (RRB)

f28 f29 f30 f31 f32 f33 f34 f35 f124 f125 f126 f127…….

Summer 2005 11

S.Jarp
CERN

Register Convention
Run-time:

Branch Registers:
B0: Call register [rp]
B1-B5: Must be preserved
B6-B7: Scratch

General Registers:
R1: Global Data Pointer [gp]
R2-R3: scratch
R4-R7: Must be preserved
R8-R11: Procedure Return Values [ret0, ret1, ret2, ..]
R12: Stack Pointer [sp]
R13: (Reserved as) Thread Pointer
R14-R31: Scratch
R32-Rxx: Argument Registers [in0, in1, in2, ..]

Summer 2005 12

S.Jarp
CERN

Register Convention (2)
Run-time convention

Floating-Point:
F2-F5: Preserved
F6-F7: Scratch
F8-F15: Argument/Return Registers
F16-F31: Must be preserved
F32-F127: Scratch

Predicates:
P1-P5: Must be preserved
P6-P15: Scratch
P16-P63: Must be preserved

Additionally:
Ar.lc: Must be preserved

Summer 2005 13

S.Jarp
CERN

Register Stack Rules
The rotating integer registers serve as a
stack

Each routine allocates via ”alloc” instruction:
Input + Local + Output
“R_rotate” <= “R_input + R_local” may rotate (in a
multiple of 8 registers)

Local A Output A

Input B + Local B Output B

Proc A

Further Calls

Local A Output A

Proc B

Proc C

Proc B

Proc A

Summer 2005 14

S.Jarp
CERN

Instruction Types
M

Memory/Move Operations

I
Complex Integer/Multimedia Operations

A
Simple Integer/Logic/Multimedia Operations

F
Floating Point Operations (Normal/SIMD)

B
Branch Operations

L
Special instructions with 64-bit immediate

Summer 2005 15

S.Jarp
CERN

Instruction Bundle

Bundle as “Packaging entity”:
3 * 41 bit Instruction Slots
5 bits for Template (of Inst. types)

Typical examples: MFI or MIB
Including bit for Instruction Group Separation “S”

A bundle is 16B:
Basic unit for expressing parallelism
The unit that the Instruction Pointer points to
The unit you branch to
Actually executed may be less, equal, or more

Slot 2 Slot 1 Slot 0 T

Summer 2005 16

S.Jarp
CERN

Instruction Group
Separation (Stop bit)
Necessary to avoid “Dependency Violations”

For ALL registers: Integer, FP, Predicate, Branch, App., etc.

Two out of four possibilities (Forbidden):
Read-After-Write (RAW):

add r22=1,r21 ; add r23=1,r22 ;;
Write-After-Write (WAW):

add r22=1,r21 ; add r22=1,r23 ;;

Two out of four (OK):
Read-After-Read (RAR):

add r22=1,r21 ; add r23=1,r21 ;;

Write-After-Read (WAR):
add r23=1,r22 ; add r22=1,r21 ;;

Good
assemblers
will issue
necessary
warnings!

Summer 2005 17

S.Jarp
CERN

Conventions
Instruction syntax

(qp) ops[.comp1] r1 = r2, r3
Execution is always right-to-left
Result(s) on left-hand side of equal-sign.
Almost all instructions have a qualifying
predicate
Many have further completers:

Unsigned, left, double, etc.

Numbering
Also right-to left

Immediates
Various sizes exist
Imm8 (Signed immediate – 7 bits plus sign)

01234567

63 0

At execution
time, sign bit is
extended all the

way to bit 63

Summer 2005 18

S.Jarp
CERN

Part 2a

Standard
Instruction

Set

Summer 2005 19

S.Jarp
CERN

The Total Instruction Set
Many Instruction Categories:

Logical operations (e.g. and)
Arithmetic operations (e.g. add)
Compare operations
Shift operations
Branches, including loop control
Memory and cache operations
Move operations

Multimedia operations (e.g. padd)

Floating Point operations (e.g. fma)
SIMD Floating Point operations (e.g. fpma)

See documentation for complete reference set

Summer 2005 20

S.Jarp
CERN

Arithmetic Operations
Instruction format:

(qp) ops1 r1 = r2, r3[,1]
(qp) ops2 r1 = immx, r3

(qp) ops3 r1= r2, count2, r3

Valid Operations:
ops1: add, sub
ops2: sub, adds/addl (imm14 , imm22)
ops3: shladd

NB: Integer multiply is an FLP operation

X86 Inc/Dec
replaced with

(qp) ops r1 = r2,r0,1

Z = Y – imm
becomes

(qp) Add r1 =-imm, r3

Loading
an immediate value

(qp) Add r1 =imm, r0

Summer 2005 21

S.Jarp
CERN

Compare Operations

Instruction format:
(qp) cmp.crel.ctype p1, p2= r2, r3
(qp) cmp.crel.ctype p1, p2 =imm8, r3
(qp) cmp.crel.ctype p1, p2 =r0, r3

Valid Relationships:
eq, ne, lt, le, gt, ge, ltu, leu gtu, geu,

Types:
none, unc, and, or, or.andcm, orcm, andcm, and.orcm

Parallel
inequality

form

Summer 2005 22

S.Jarp
CERN

Load Operations
Standard instructions:

(qp) ldsz.ldtype.ldhint r1=[r3], r2

(qp) ldsz. ldtype.ldhint r1=[r3], imm9

(qp) ldffsz.fldtype.ldhint f1=[r3], r2

(qp) ldffsz.fldtype.ldhint f1=[r3], imm9

Valid Sizes:
sz: 1/2/4/8 [bytes]
fsz: s(ingle)/d(double)/e(extended)/8(as integer)

Types:
s/a/sa/c.nc/c.clr/c.clr.acq/acq/bias

Advanced options (not discussed here!)

Always
post-

modify

In the case
of integer

multiply (for
instance)

Also “fill”
variants More complex usage (see Manuals)

Sign-bit is
NOT

extended for
1/2/4 bytes

Summer 2005 23

S.Jarp
CERN

Branch Operations
Several different types:

Conditional or Call branches
Relative offset (IP-relative) or Indirect (via branch
registers)
Triggered by predication

Return branches
Indirect + Qualifying Predicate (QP)

Loop controlling branches:
Simple Counted Loops (br.cloop)

IP-relative with AR.LC

Software-pipelined Counted Loop (br.ctop)
IP-relative with AR.LC and AR.EC

Software-pipelined While Loops (br.wtop)
IP-relative with QP and AR.EC

Summer 2005 24

S.Jarp
CERN

Simple Counted Loop
Works as ‘expected’

ar.lc counts down the loop (automatically)
No need to use a general register

Software-pipelined loops are more advanced
Uses Epilogue Count (as well as Loop Count)
… and Rotating Registers

We will deal with such loops later

mov ar.lc=5 ;; // NB: 6 iterations

loop: { work }

…….

{ much more work }

br.cloop.sptk.few loop ;;

Summer 2005 25

S.Jarp
CERN

One use of predication

Avoid cost of branching
Which can be high due to misprediction

Both b++ and b– are done in the same
cycle:

If (b > 0) b++;
else b--;

cmp.gt.unc p6,p7=r2,0 ;;
(p6) add r2=1,r2
(p7) add r2=-1,r2 ;;

Summer 2005 26

S.Jarp
CERN

Part 2b

Our first
“real”

example

Summer 2005 27

S.Jarp
CERN

Expressing a loop

Use array search example, “find”, to
demonstrate how to get started

Based on background information on registers
and conventions
First with a basic counted loop and later more
advanced versions

int find(int key, int n, int* vect)
{

int i;
for (i=0; i<n; ++i)
{
if (key == vect[i]) return i; // Found

}
return -1; // Not found

}

Summer 2005 28

S.Jarp
CERN

The loop itself
Simple counted loop

Only five instructions
Use input registers directly
Main latency is the load latency
NB: In the same cycle we can have
Compare + Related branch

cntloop:
ld4 r31=[in2],4
add ret0=1,ret0 // tracking of index

;;
cmp4.eq.unc p6,p0=s_temp,in0

(p6) br.cond,dpnt.few found
br.cloop.dptk.few cntloop

;;

Summer 2005 29

S.Jarp
CERN

Total “search”
program – V.1

#define s_pfssave r9
#define s_lcsave r10
#define s_temp r31
#define Name find
.text
.global Name
.type Name,@function
.proc Name
Name:

alloc s_pfssave=ar.pfs,3,0,0,0
mov s_lcsave=ar.lc
cmp.le.unc p6,p0=in1,r0

(p6) br.cond.dpnt.few notfound ;;
add in1=-1,in1 ;; // loop count - 1
mov ret0=-1 // index count
mov ar.lc=in1 ;; // loop count

cntloop:
ld4 s_temp=[in2],4
add ret0=1,ret0 ;; // track index
cmp4.eq.unc p6,p0=s_temp,in0

(p6) br.cond.dpnt.few found
br.cloop.dptk.few cntloop ;;

//
notfound: mov ret0=-1 ;; //Not found
found: mov ar.lc=s_lcsave

br.ret.sptk.many rp
.endp

Initial version:
Classical “counted loop”
Minimal:

Register usage
Assembler directives
Entry/Exit code

Main latency in loop
From “ld4”

Summer 2005 30

S.Jarp
CERN

Part 3a

Secrets of speed

Summer 2005 31

S.Jarp
CERN

Key Performance Enablers
Exploit

Architectural support
Memory optimization:

Prefetching, Load pair instructions, Branch-Predict, etc.
Modulo Scheduling support

Predication (“loop control”)
Register Rotation (Large Register Files)

Predication (“if-conversion”)
Vectorisation

Integer/FLP SIMD

Micro-architecture
Consistent, Wide execution:

Number of parallel bundles; Execution units; Latencies
Memory specifications:

Cache sizes, Bandwidth

Summer 2005 32

S.Jarp
CERN

Itanium Execution Width
A given IA-64 implementation could be N
wide

All Itanium processors are implemented as a “two-
banger”

6 parallel instructions
More parallelism than IA-32

But,
If nothing useful is put into the syllables, they get
filled as NOPs

S2 S1 S0 S2 S1 S0

This template should be even (i.e. without stop bit)

Summer 2005 33

S.Jarp
CERN

Instruction Delivery
Must match

instructions to issue ports
w/corresponding execution units attached

S2 S1 S0 S2 S1 S0

Dispersal network
(template interpretation)

M2M3 F0 F1 I0 I1 B0 B1 B2M0M1

11 available ports in total

Summer 2005 34

S.Jarp
CERN

Software-pipelined loops
Graphical representation

N loop traversals desired, but with skewed execution:
Stage 2 is offset relative to Stage 1
Stage 3 is offset relative to Stage 2

A B
B

B

C
C

C

D
D

D F
G

G

Time

Completed
Stages

A
A

EpilogueMain loop

Analogy: Think of a restaurant where each customer (Red arrow) wants to:
1) order food, 2) eat the meal, 3) pay the bill.

The waiter (Blue arrow) is working “flat out” by

1) taking the order from C, 2) serving the meal to B, 3) getting paid by A.

Customer A Waiter

Stage 1

Stage 2

Stage3

Summer 2005 35

S.Jarp
CERN

Modulo Loops
How is it programmed ?

By using:
Rotating registers (Programmable renaming)

Let register contents live longer

Predication
Each stage uses a distinct predicate register
starting from p16

Stage 1 controlled by p16
Stage 2 by p17
Etc.

Architected loop control using BR.CTOP
Clock down LC & then EC
Set p16 = 1 when LC > 0
Set P16 = 0 otherwise

Summer 2005 36

S.Jarp
CERN

Part 3b

Back to our “find” example:
We are now ready to try to produce a
software pipelined loop

int find(int key, int n, int* vect)
{

int i;
for (i=0; i<n; ++i)
{
if (key == vect[i]) return i; // Found

}
return -1; // Not found

}

Summer 2005 37

S.Jarp
CERN

Step 3: Pipelined loop
One cycle loop:

Possible when 6 (or fewer) instructions
All latencies are hidden
No dependency violations (no stops)

Due to rotating registers

mov s_key=in0
mov s_pvect=in2 // must be moved

;;
modloop:
(p16) ld4 r32=[s_pvect],4
(p17) add ret0=1,ret0 // easy tracking of index
(p17) cmp4.eq.unc p6,p0=r33,s_key
(p6) br.cond.dpnt.few found

br.ctop.sptk.few modloop
;;

Summer 2005 38

S.Jarp
CERN

Advanced
Topics:

Tight
coding:

Manual
bundling
Verification
against
available
execution
units

modloop:
{ .mii
pc[0] ld4 array[0]=[s_pvect],4
pc[LL] add ret0=1,ret0 // easy tracking
pc[LL] cmp4.eq.unc qc[0],p0=array[LL],s_key
}
{ .mbb

nop.m 0
qc[CL] br.cond.dpnt.few found

br.ctop.sptk.few modloop ;; }

br.ctop br.cond nop.m cmp4 add ld4

Dispersal network
(template interpretation)

Itanium Execution Units

Next question:
How can we
double the
speed of this
routine ?

M2M3 F0 F1 I0 I1 B0 B1 B2M0M1

	“Itanium Power Programming”
	Agenda:
	Part 1a
	Presentation Objectives
	Part 1b
	Architectural Highlights
	A simple example
	User Register Overview
	IA64 Common Registers
	Rotating Registers
	Register Convention
	Register Convention (2)
	Register Stack Rules
	Instruction Types
	Instruction Bundle
	Instruction Group Separation (Stop bit)
	Conventions
	Part 2a
	The Total Instruction Set
	Arithmetic Operations
	Compare Operations
	Load Operations
	Branch Operations
	Simple Counted Loop
	One use of predication
	Part 2b
	Expressing a loop
	The loop itself
	Total “search” program – V.1
	Part 3a
	Key Performance Enablers
	Itanium Execution Width
	Instruction Delivery
	Software-pipelined loops
	Modulo Loops
	Part 3b
	Step 3: Pipelined loop
	Advanced Topics:

