CERN Achieves Database Scalability and Performance with Oracle and NetApp
session S319046

Eric Grancher
eric.grancher@cern.ch
CERN IT department

Steve Daniel
steve.daniel@netapp.com
NetApp

https://edms.cern.ch/document/1093461/1
Driving Storage as a Value Center

Reduce Complexity
- Unified infrastructure
 - Combines technology and process seamlessly

Maximize Asset Utilization
- Storage efficiency
 - Protect data while avoiding data duplication
 - Provide multi-use datasets without copying
 - Eliminate duplicate copies of data
 - Reduce power, cooling & space consumption

Control Hidden Costs
- Comprehensive data management
 - Complete data protection
 - Application-level end-to-end provisioning
 - Policy-based automation
Flexible Storage
A Single, Unified Platform

Single, Unified Storage Platform

- **Low-to-High Scalability**
- **Multiple Networks**
 - SAN
 - NAS
 - iSCSI
- **Multiple Protocols**
 - FC
 - SATA
 - SSD
- **Multiple Disks**

Unified Management

- Same tools and processes: learn once, run everywhere
- Integrated management
- Integrated data protection

Storage Virtualization

- Multi-vendor virtualization

Unified Flash

- FlashCache
- SSD
- FlexCache

Unified Scale Out
FlexClone Writable Copies

- Application development often requires substantial primary storage space for essential test operations such as platform and upgrade rollouts
- FlexClone® improves storage efficiency for applications that need temporary, writable copies of data volumes
- Creates a virtual “clone” copy of the primary dataset and stores only the data changes between parent volume and clone
- Multiple clones are easily created
- Resulting space savings of 80% or more
NetApp® Unified Storage Architecture

Unified storage architecture for SAN and NAS
- Data ONTAP® provides a single application interface
- One set of management tools and software
- V-Series for heterogeneous storage virtualization

High-end Data Center
- FAS/V6080
 - 2352 TB
 - 1,176 drives/LUNs

Mid-range Data Center
- FAS/V3160
 - 1680 TB
 - 840 drives/LUNs
- FAS/V3170
 - 1680 TB
 - 840 drives/LUNs

Remote Office / Mid-size Enterprise
- FAS2020
 - 68 TB
 - 68 drives
- FAS2040
 - 104 TB
 - 104 drives
- FAS2050
 - 272 TB
 - 136 drives
- FAS/V3140
 - 840 TB
 - 420 drives/LUNs
- FAS/V3170
 - 1344 TB
 - 672 drives/LUNs
- FAS/V6040
 - 1680 TB
 - 840 drives/LUNs
- FAS/V6080
 - 2352 TB
 - 1,176 drives/LUNs

© 2010 NetApp. All rights reserved.
Outline

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150,000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions
Personal introduction

• Joined CERN in 1996 to work on Oracle database parallelism features
• OakTable member since April 2005
• Team leader for the Database Services section in the CERN IT department
• Specific interest in database application and storage performance
CERN

Annual budget: ~1000 MSFr (~600 M€)
Staff members: 2650 + 270 Fellows, + 440 Associates
Member states: 20 + 8000 CERN users

Basic research
Fundamental questions
High E accelerator:
Giant microscope \(p = \frac{h}{\lambda} \)
Generate new particles \(E = mc^2 \)
Create Big Bang conditions
Large Hadron Collider - LHC

- 27 km circumference
- Cost ~ 3000 M€ (+ detectors)
- Proton-proton (or lead ion) collisions at 7+7 TeV
- Bunches of 10^{11} protons cross every 25 nsec
- 600 million collisions/sec
- Physics questions
 - Origin of mass (Higgs?)
 - Dark matter?
 - Symmetry matter-antimatter
 - Forces – supersymmetry
 - Early universe – quark-gluon plasma
 - …

J. Knobloch/CERN: European Grid Initiative – EGI
LHC Instantaneous Luminosity: August Record

<table>
<thead>
<tr>
<th>Experiment Status</th>
<th>ATLAS</th>
<th>ALICE</th>
<th>CMS</th>
<th>LHCb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instantaneous Lumi (ub.s)^{-1}</td>
<td>10.456</td>
<td>0.138</td>
<td>10.719</td>
<td>8.882</td>
</tr>
<tr>
<td>BRAN Luminosity (ub.s)^{-1}</td>
<td>9.573</td>
<td>0.137</td>
<td>7.914</td>
<td>7.327</td>
</tr>
<tr>
<td>Fill Luminosity (nb)^{-1}</td>
<td>2.0</td>
<td>0.0</td>
<td>2.0</td>
<td>1.7</td>
</tr>
<tr>
<td>BKGD 1</td>
<td>0.018</td>
<td>0.019</td>
<td>20.644</td>
<td>0.197</td>
</tr>
<tr>
<td>BKGD 2</td>
<td>16.000</td>
<td>0.290</td>
<td>0.002</td>
<td>4.773</td>
</tr>
<tr>
<td>BKGD 3</td>
<td>5.000</td>
<td>0.008</td>
<td>0.003</td>
<td>0.106</td>
</tr>
</tbody>
</table>

LHCb VELO Position: OUT Gap: 58.0 mm STABLE BEAMS TOTEM: STANDBY

FBCT History Beam Lifetime in h

Luminosity: 10^{34} cm$^{-2}$ s$^{-1}$

40 MHz – every 25 ns

20 events overlaying
LHC Computing Challenge

- Signal/Noise 10^{-9}
- Data volume
 - High rate * large number of channels * 4 experiments
 - 15 PetaBytes of new data each year
- Compute power
 - >140 sites
 - ~150k CPU cores
 - >50 PB disk
- Worldwide analysis & funding
 - Computing funding locally in major regions & countries
 - Efficient analysis everywhere
 - GRID technology

J. Knobloch/CERN: European Grid Initiative – EGI
• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
Oracle at CERN history

- 1982: Oracle at CERN
- Solaris SPARC 32 and 64
- 1996: Solaris SPARC with OPS
- 2000: Linux x86 on single node, DAS
- 2005: Linux x86_64 / RAC / EMC with ASM
- >=2006: Linux x86_64 / RAC / NFS / NetApp
 - (now, 96 databases)

Conclusion

A database management system is a tool for storing, modifying and retrieving data. ORACLE has been chosen for the LEP project because very little training or computer experience is required before a user can effectively use the database.
Accelerator databases (1/2)

• Use cases
 – ACCCON
 • Accelerator Settings and Controls Configuration **necessary to drive all accelerator installations**, unavailability may require to stop accelerator operation
 – ACCLOG
 • Accelerator long-term Logging database
 • 3.5TB growth per month
ACCLOG daily growth (GB/day)

- 10 Sep 2008, LHC first start
- 20 Nov 2009, LHC restart
Accelerator databases (2/2)

• Implementation
 – Oracle RAC 10.2.0.5 with partitioning
 – Intel x86_64
 – NetApp 3040 and 3140 with Data OnTap8-7 mode
 • Example aggregate dbdska210
 – Data 12 August 2010 to ~mid July 2011
 – RAID-DP
 – 30 SATA disks, each “2TB”
 – 2 raid groups
 – 38 743GB usable
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
PVSS Oracle scalability

- Target = 150,000 changes per second (tested with 160k)
- 3,000 changes per client
- 5 nodes RAC 10.2.0.4
- 2 NAS 3040, each with one aggregate of 13 disks (10k rpm FC)
PVSS Oracle scalability

- Load on one of the instances, stable data loading
PVSS NetApp storage load

- NVRAM plays a critical role in order to have write operations happen quickly

Load Profile

<table>
<thead>
<tr>
<th></th>
<th>Per Second</th>
<th>Per Transaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redo size:</td>
<td>12,245,111.95</td>
<td>3,701,088.03</td>
</tr>
<tr>
<td>Logical reads:</td>
<td>64,352.96</td>
<td>19,450.70</td>
</tr>
<tr>
<td>Block changes:</td>
<td>79,638.91</td>
<td>24,070.88</td>
</tr>
<tr>
<td>Physical reads:</td>
<td>2.47</td>
<td>0.75</td>
</tr>
<tr>
<td>Physical writes:</td>
<td>1,546.05</td>
<td>467.29</td>
</tr>
</tbody>
</table>

```bash
dbsrvc235>-RAC>-PVSSTEST1:~/work/pvsstest/changestorage$ ssh -2 root@dbnasc210 sysstat -x 1
```

CPU	NFS	CIFS	HTTP	Total	Net kB/s	Disk kB/s	Tape kB/s	Cache Cache	Cache	CP	CP Disk
64% | 5506 | 0 | 0 | 5506 | 136147 | 1692 | 1568 | 207148 | 0 | 0 | >60 |
58% | 5626 | 0 | 0 | 5626 | 139578 | 1697 | 1040 | 137420 | 0 | 0 | >60 |
57% | 5420 | 0 | 0 | 5420 | 127307 | 1618 | 1080 | 136384 | 0 | 0 | >60 |
61% | 5142 | 0 | 0 | 5142 | 130298 | 1562 | 1927 | 149545 | 0 | 0 | >60 |
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150,000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
Scalability on IOPS

- DataOntap 8 enables stripping over large number of disks (depends on FAS model and disk size)
- Enables very good scalability
Outline

- Few words about CERN and computing challenge
- Oracle and RAC at CERN and NetApp for accelerator databases example
- DataOntap 8 scalability
 - PVSS to 150,000 changes/s
 - IO operations per second
 - Flash Cache
 - 10GbE
- Oracle DB on NFS experience
- Oracle VM experience
- Reliability and simplicity
- Conclusions
IOPS and flash cache

- Help to increase random IOPS on disks
- Warm-up effect will be an increasingly important issue (2 level of large caches is likely of help)
- For databases
 - select volumes for which caching will benefit (not archive redo logs for example)
 - set “flexscale.lopri_blocks on”
IOPS and flash cache

Histogram of percentage of IO completion time

99% of IO operations completed in less than 0.89 ms
IOPS and flash cache

Distribution of IO operations completion time

- Serving data from memory
- Serving data from Flash
- Serving data from disk

Number of IO operation completed before the time given in X axis

Completion time (microseconds)
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
Scalability: bandwidth 10GbE

- 10GbE is becoming mainstream (cards, switches)
 TX: 289Mb (/s), RX: 6.24Gb (/s)
 TOTAL: 6.52Gb (/s) (19% CPU)

- CPU usage
- NAS: 3140 cluster
- Host: dual E5410 with Intel 82598EB 10-Gigabit card
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
D(irect)-NFS

- One of the nicest features of Oracle11g
 - Enables using multiple paths to storage
- Makes Oracle on NFS from simple to extremely simple
 - Just a symlink in $ORACLE_HOME/lib
 - List of paths to be declared

Oracle instance running with ODM: Oracle Direct NFS ODM Library Version 2.0
...
Direct NFS: channel id [0] path [dbnasg301] to filer [dbnasg301] via local [] is UP
Direct NFS: channel id [1] path [dbnasg301] to filer [dbnasg301] via local [] is UP

- Promising with NFS 4.1/pNFS
 - Scalability, “on demand”
 - Move of volumes, upgrades
Performance with DB usage

• Have reallocate enabled by default (backup!) and filesystem_options = setall (async+directIO)
• NetApp NVRAM makes writing fast (see PVSS testcase)
 – Key for OLTP commit time
• DataOntap 8 enables large aggregates (40TB on 3140, up to 100TB on 61xx)
 – Gain in management
 – Gain in performance
• NFS or TCP/IP overhead, CPU usage (large transfer): network roundtrip and disk access
• Scales much better than what many think
Oracle DB/NetApp tips

• Use NFS/DNFS (11.1 see Note 840059.1 /11.2)
 – Resilient to errors
 – TCP/IP and NFS extremely stable and mature
 – Extremely simple, good productivity per DBA
 – Use different volumes for log files, archive redo logs and data files
 • Have several copies of control files and OCR on different aggregate / filer (at least different aggregates)

• Split storage network
 – Cost for the switches is not very high
 – Use MTU = 9000 on the storage network
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
Oracle VM tips

- NFS is extremely well suited for virtualisation
- Mount database volumes from the guest
 - Separation OS/data
 - Scalability (add mount points if necessary)
 - Same as physical
 - can easily migrate from “physical” to/from “virtual”
- Disk access might more expensive than local
 - Limit swap (do you need any swap?)
 - Check for file inexistence (iAS SSL semaphores)
 - 5.4 \times 10^{-6} second per “stat” system call on local filesystem
 - 18.1 \times 10^{-6} second per “stat” system call on NFS mounted filesystem
Oracle VM live migration

Node 1

```
# xm list
ID    Mem  VCPUs State Time(s)
0     834   8   r----- 1773.7
8     4096  8   -b----- 517.4
```

```
# xm migrate virt04 node2 --live
```

```
# xm list
Name ID    Mem  VCPUs State Time(s)
Domain-0 0     834   8   r----- 1785.7
migrating-virt04 8     4096  8   r----- 538.3
```

Node 2

```
# xm list
Name ID    Mem  VCPUs State Time(s)
Domain-0 0     834   8   r----- 2410.8
```

```
# xm list
Name ID    Mem  VCPUs State Time(s)
virt04 11    4096  0   -bp--- 0.0
```

```
# xm list
Name ID    Mem  VCPUs State Time(s)
Domain-0 0     834   8   r----- 2481.1
virt04 11    4096  8   -b----- 6.4
```

From Anton Topurov
Outline

• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
Simplicity and availability

- **Simplicity**
 - Shared log files for the database (*tail alertSID*.log)
 - No need for ASM, day to day simpler operations
 - Operations under stress made easier (copy control file with RMAN)
 - Rename a file in ASM 10.2?
 - Install a 2 nodes RAC with NFS or ASM (multi-pathing, raw on 10.2, FC drivers, ASM ...)

- **Reliability**
 - Do a snapshot before upgrade
 - Simplicity is key for reliability (even experienced DBA do basic errors linked with complex storage)
 - More robust than ASM “normal” redundancy
 - RAID-DP (double parity)
Disk and redundancy (1/2)

- Disks are larger and larger
 - speed stay ~constant -> issue with speed
 - bit error rate stay constant \((10^{-14} \text{ to } 10^{-16})\), increasing issue with availability

- With \(x\) as the size and \(\alpha\) the “bit error rate”

\[
P_{\text{failure}}(\text{mirror}) = 1 - (1 - \alpha)^x
\]
\[
P_{\text{failure}}(\text{raid5}, n + 1) = 1 - (1 - \alpha)^{nx}
\]
\[
P_{\text{failure}}(\text{raid6}, n + 2) = ((1 - \alpha)^n + n\alpha(1 - \alpha)^{n-1})^x
\]
\[
P_{\text{failure}}(\text{triplemirror}) = 1 - (1 - \alpha^2)^x
\]
<table>
<thead>
<tr>
<th>Disk Type</th>
<th>5</th>
<th>14</th>
<th>28</th>
<th>Bit error rate 10^-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 TB SATA desktop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 1</td>
<td></td>
<td>7.68E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 5 (n+1)</td>
<td>3.29E-01</td>
<td>6.73E-01</td>
<td>8.93E-01</td>
<td></td>
</tr>
<tr>
<td>~RAID 6 (n+2)</td>
<td>1.60E-14</td>
<td>1.46E-13</td>
<td>6.05E-13</td>
<td></td>
</tr>
<tr>
<td>~triple mirror</td>
<td>8.00E-16</td>
<td>8.00E-16</td>
<td>8.00E-16</td>
<td></td>
</tr>
<tr>
<td>450 GB FC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 1</td>
<td></td>
<td>4.00E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 5 (n+1)</td>
<td>2.00E-03</td>
<td>5.58E-03</td>
<td>1.11E-02</td>
<td></td>
</tr>
<tr>
<td>~RAID 6 (n+2)</td>
<td>7.20E-19</td>
<td>6.55E-18</td>
<td>2.72E-17</td>
<td></td>
</tr>
<tr>
<td>~triple mirror</td>
<td>3.60E-20</td>
<td>3.60E-20</td>
<td>3.60E-20</td>
<td></td>
</tr>
<tr>
<td>10 TB SATA enterprise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 1</td>
<td></td>
<td>7.96E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAID 5 (n+1)</td>
<td>3.92E-02</td>
<td>1.06E-01</td>
<td>2.01E-01</td>
<td></td>
</tr>
<tr>
<td>~RAID 6 (n+2)</td>
<td>1.60E-16</td>
<td>1.46E-15</td>
<td>6.05E-15</td>
<td></td>
</tr>
<tr>
<td>~triple mirror</td>
<td>8.00E-18</td>
<td>8.00E-18</td>
<td>8.00E-18</td>
<td></td>
</tr>
</tbody>
</table>
• Few words about CERN and computing challenge
• Oracle and RAC at CERN and NetApp for accelerator databases example
• DataOntap 8 scalability
 – PVSS to 150 000 changes/s
 – IO operations per second
 – Flash Cache
 – 10GbE
• Oracle DB on NFS experience
• Oracle VM experience
• Reliability and simplicity
• Conclusions
NetApp platform benefits

- Well supported (recommendations at NetApp NOW and Oracle MOS)
- Well managed (AutoSupport, new DOT releases include firmware/...)
- Very good scalability in performance and size with Data OnTap 8
- Impressive stability, cluster failover “just works”, non-disruptive upgrade (all upgrades since 2006)
- Checksum, scrubbing, multipathing...
- RAID-DP double parity (always more important)
- Snapshots and associated feature
Conclusion

- CERN has standardised part of its database infrastructure (all for accelerators, mass storage and administrative applications) on NetApp/NFS
- DataOntap 8 (7 mode) provides scalability, ease of maintenance and management
- Our experience is that Oracle/NFS on NetApp is a rock-solid combination, providing performance and scalability
- Scalability with 64bits aggregate, 10Gb/s Ethernet, Direct NFS, flash caching
- Oracle VM on NFS is simple, extensible and stable
Q&A

session S319046

Steve Daniel, Steve.Daniel@netapp.com
Eric Grancher, Eric.Grancher@cern.ch
References

- Required Diagnostic for Direct NFS Issues and Recommended Patches for 11.1.0.7 Version
 https://supporthtml.oracle.com/ep/faces/secure/km/DocumentDisplay.jspx?id=840059.1&h=Y
- Oracle : The Database Management System For LEP
 http://cdsweb.cern.ch/record/443114
- Oracle 11g Release 1 Performance: Protocol Comparison on Red Hat Enterprise Linux 5 Update 1