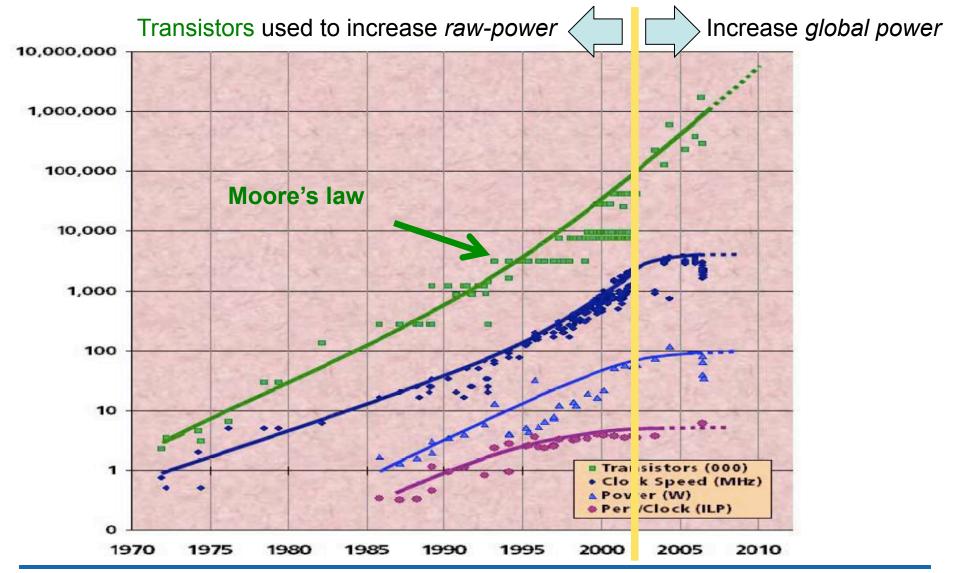


Evaluating the Scalability of HEP Software and Multi-core Hardware

S. Jarp, Alfio Lazzaro, J. Leduc, A. Nowak CERN openlab

International Conference on Computing in High Energy and Nuclear Physics 2010 (CHEP2010)


> October 18th, 2010 Academia Sinica, Taipei

Presentation on behalf of A. Nowak

Moore's law

Alfio Lazzaro (alfio.lazzaro@cern.ch)

- Hardware continues to follow Moore's law
 - More and more transistors available for computation
 - More (and more complex) execution units: hundreds of new instructions
 - Longer SIMD (Single Instruction Multiple Data) vectors
 - More hardware threading
 - More and more cores

Current Status in HEP

- Currently available nodes with up to 8 cores (4-cores dualsocket)
 - Soon this number will increase up to 48 cores
- Poor usage of multi-threading software
 - A machine with N cores is considered as N independent slots for N independent applications
 - No shared memory among the applications on the node
 - Memory usage increases linearly with *N*!
- Poor usage of hardware multi-threading (SMT), usually switched off by default
 - Current CPU can handle 2 hw-threads per core
 - For sequential applications the benefit of the SMT (10% 30%) is small if compared to memory requirement (100% more memory required), but it is compute power for free in case of parallel applications!

- It is vital for HEP programmers to understand the scalability of their software on modern hardware and the opportunities for potential improvements
 - Move to multi-threaded version of the code
 - Reduce memory footprint using shared memory concepts
- This work aims to quantify the benefit of new mainstream architectures to the HEP community through practical benchmarking on recent hardware solutions, including the usage of parallelized HEP applications

Hardware (1)

- Westmere-EP
 - New "workhorse" of most of our computing centers
 - 2 sockets
 - 12 cores / 24 threads
 - Shrinking of the 45 nm Nehalem core
 - 32 nm process technology
 - Added 2 cores per CPU, with same L3 cache memory per each core (2 MB)
 - Same power consumption
 - X5670 specimen tested (2.93 GHz, 95W)
 - Reference: Nehalem-EP X5570 (2.93 GHz, 95W, 4 cores / 8 hw-threads)

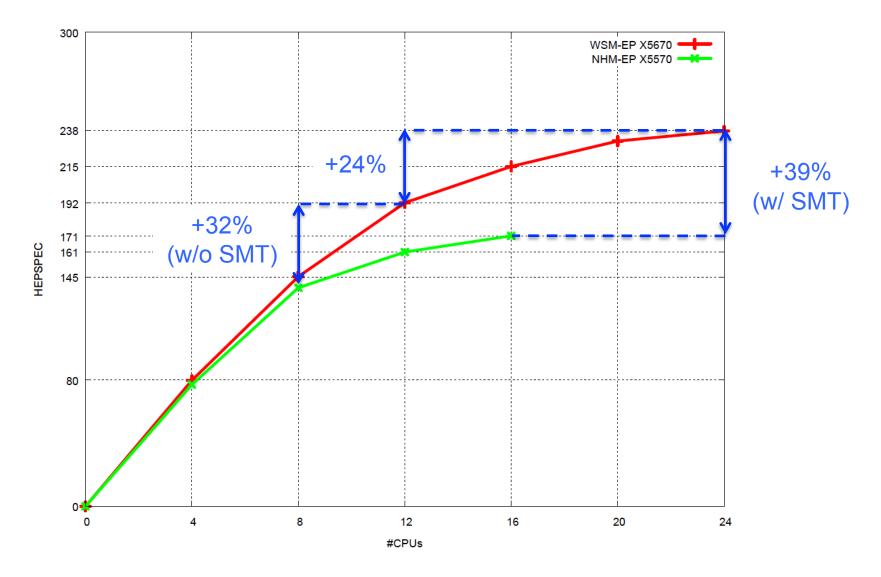
Hardware (2)

- Nehalem-EX
 - Designed for specialized multi-socket applications -- for a price of 1 Nehalem-EX chip you can get ~4 Westmere-EP chips
 - 4 sockets * 8 cores * 2 hw-thread = 32 cores / 64 hwthreads
 - Representative of the previous Nehalem generation
 - Older 45nm process technology
 - X7560 specimen tested (2.26 GHz, 130W)
 - Reference: Dunnington X7460 (2.66 GHz, 130W, 6 cores / no hw-threads)

- 1. HEPSPEC06 performance
 - a standard HEP benchmark
- 2. Multi-threaded Geant4 prototype scalability (J. Apostolakis et al, Multithreaded Geant4: Semi-automatic transformation into scalable thread-parallel software, Europar 2010)
 - parallel implementation of the test40 example from Geant4
 - 200 random events per thread
 - ParFullCMSmt, a full CMS simulation ported to a parallel model
 - 100 pi- events per thread @ 300 GeV
- 3. MPI Parallel Maximum Likelihood (ML) fit with ROOT/RooFit (A. Lazzaro and L. Moneta, *MINUIT package parallelization and applications using the RooFit package*, *J. Phys.: Conf. Ser.* **219** 042044)
- 4. Power consumption vs performance
- 5. NUMA aspects (Nehalem-EX)

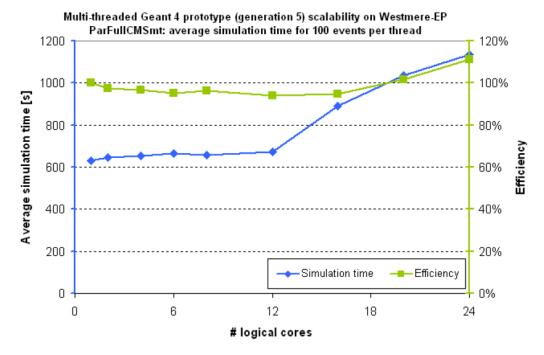
Westmere-EP – standard energy measurements

Two PSUs


	Active Power		ldle	Load	Standard measurement			
	12 GB	SMT-off SMT-on	215 W 227 W	449 W 455 W	402 W 409 W			
One PSU								
	Active Power		Idle	Load	Standard measurement			
	12 GB	SMT-off SMT-on	157 W 165 W	405 W 415 W	355 W 365W			

Remarks:

- 1 power supply vs. 2 makes a difference in power consumption
- Turning SMT on introduces a minor penalty in power consumption: <5%



Westmere-EP – HEPSPEC06

Westmere EP – ParFullCMSmt

- Test looking at throughput (TP), i.e. weak scaling
- Efficiency (% of max theoretical TP)
 - 97% @ 4 cores
 - 96% @ 8 cores
 - 94% @ 12 cores
- SMT benefit @ 24 threads:18% more real TP than 12 threads

Respectable power consumption:

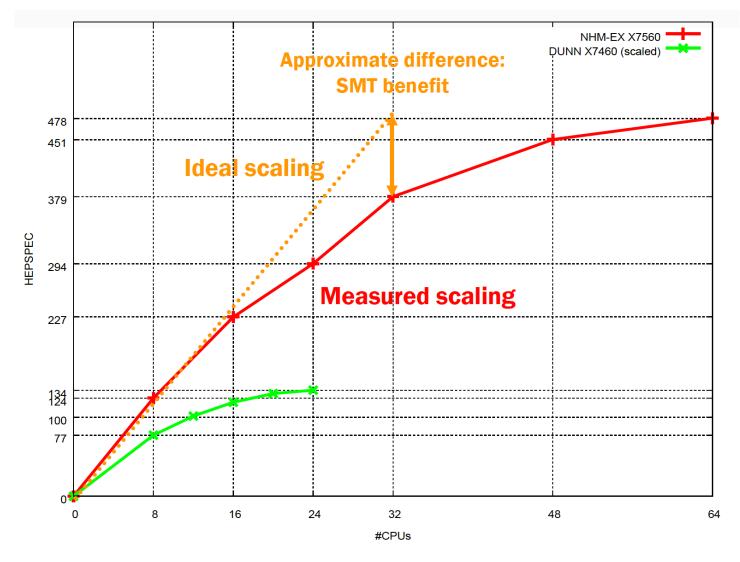
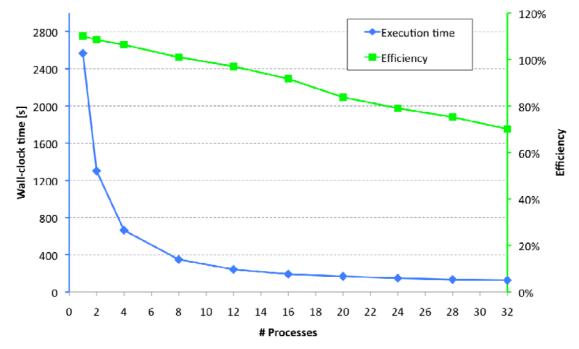

Active Powe	r	Idle	Load	Standard
				measurement
128 GB	SMT-off	715 W	1209 W	1110 W
	SMT-on	715 W	1243 W	1137 W
			untion using three DCI le	

 Table 1: Total power consumption using three PSUs

- 450W (40%) is spent just on memory...
- No comparison to Dunnington in this case



Nehalem-EX – HEPSPEC06

ML Fit

Strong scaling:

- fraction of execution time spend in code we can parallelize is 98.7%
- Scaling as predicted by Amdahl's law
- Test done with Turbo Mode on
 - Efficiency calculated wit respect to 1 process with Turbo Mode off

Conclusion

- Westemere-EP VS Nehalem-EP
 - 50% core increase, but HEPSPEC06 numbers only 32% better
 - Overall improvements between 39% and 61% (mostly due to core increase)
 - SMT benefit: 15% 24% (unchanged)
 - 10% 23% performance per Watt improvement
 - The previous transition (Core 2 -> Nehalem) was ~35%
- Nehalem-EX VS Dunnington (frequency scaled)
 - 33% core increase reflected in performance
 - Total TP increase: 3.5x on HEPSPEC06!
 - Credited to weak Dunnington performance
 - 47% 87% more TP on in-house applications
 - SMT benefit: 19% 28% (no SMT on Dunnington)
 - Significant power consumption

References

- Thanks to Intel collaborators
- All tests with more details are reported at openlab website (technical documents section 2010)
 - http://www.cern.ch/openlab

