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Maximum Likelihood Fits 

j species (signals, backgrounds) 
nj number of events 
Pj probability density function (PDF) 
θj Free parameters in the PDFs  

  We have a sample composed by N events, belonging to s 
different specie (signals, backgrounds), and we want to 
extract the number of events for each species and other 
parameters 

  We use the Maximum Likelihood fit technique to estimate the 
values of the free parameters, minimizing the Negative Log-
Likelihood (NLL) function 
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MINUIT 
  Numerical minimization of the NLL using MINUIT (F. James, Minuit, 

Function Minimization and Error Analysis, CERN long write-up 
D506, 1970) 

  MINUIT uses the gradient of the function to find local minimum 
(MIGRAD), requiring 
  The calculation of the gradient of the function for each free parameter, 

naively 

  The calculation of the covariance matrix of the free parameters (which 
means the second order derivatives) 

  The minimization is done in several steps moving in the Newton 
direction: each step requires the calculation of the gradient 
➪ Several calls to the NLL 

2 function calls 
per each 

parameter 
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Building models: RooFit 
  RooFit is a Maximum Likelihood fitting package (W. 

Verkerke and D. Kirkby) for the NLL calculation 
  Inside ROOT (details at http://root.cern.ch/drupal/content/roofit) 
  Allows to build complex models and declare the likelihood function 
  Mathematical concepts are represented as C++ objects 

  On top of RooFit developed another package for advanced 
data analysis techniques, RooStats 

  Limits and intervals on Higgs mass and New Physics effects 
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1.  Read the values of the variables for each event 
2.  Make the calculation of PDFs for each event 

  Each PDF has a common interface declared inside the class RooAbsPdf 
with a virtual method evaluate() which define the function 
  Each PDF implements the method evaluate() 

  Automatic calculation of the normalization integrals for each PDF 
  Calculation of composite PDFs: sums, products, extendend PDFs 

3.  Loop on all events and make the calculation of the NLL 

Parallel execution over  
the events (as it is  
already implemented) 

Likelihood Function calculation in RooFit 
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Algorithms 

  Two algorithms implemented: 
1.  RooFit Event-based (CPU Implementation), described 

before 
•  Parallelization at event level, using fork 
•  Not shared resources 

2.  PDF-Event-based Algorithm  
•  GPU Implementation (CUDA)  
•  CPU Implementation (OpenMP) 

Note: everything done in double precision 

Alfio Lazzaro (alfio.lazzaro@cern.ch) 6 

NEW 
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PDF-Event-based Algorithm 
New approach to the NLL calculation: 
1. Read all events and store in arrays in memory 
2.  For each PDF make the calculation on all events 

•  Corresponding array of results is produced for each PDF 
•  Evaluation of the function inside the local PDF, i.e. not need a virtual 

function (drawback: require more memory to store temporary results: 
1 double per each event and PDF) 

•  Apply normalization 
3. Combine the arrays of results (composite PDFs) 
4. Calculation of the NLL 

Parallelization splitting calculation of each PDF over the events  
•  Particularly suitable for thread parallelism on GPU, requiring 

one thread for each PDF/event 
•  Possible benefit from vectorization on the CPU 



Test environment 

  PCs 
  CPU: Nehalem @ 3.2GHz: 4 cores – 8 hw-threads 
  OS: SLC5 64bit - GCC 4.3.4 
  ROOT trunk (October 11th, 2010) 

  GPU: ASUS nVidia GTX470 PCI-e 2.0  
  Commodity card (for gamers) 
  Architecture: GF100 (Fermi) 
  Memory: 1280MB DDR5 
  Core/Memory Clock: 607MHz/837MHz 
  Maximum # of Threads per Block: 1024 
  Number of SMs: 14  
  CUDA Toolkit 3.1 06/2010 
  Developer Driver 256.40 
  Power Consumption 200W 
  Price ~$340 
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PDFs implemented 

•  1D PDFs commonly used in HEP: 
•  Symmetric and Asymmetric Gaussian 
•  Breit-Wigner 
•  Crystal Ball Function 
•  Argus 
•  Generic Polynomial 
•  Chi Square 

•  Composition of PDFs: 
•  Sum of two or more PDFs 
•  Product of two or more PDFs 
•  Multivariate PDFs 

•  Very easy to build complex models (via composition) and 
add new PDFs 



Alfio Lazzaro (alfio.lazzaro@cern.ch) 10 

PDF in CUDA (1) 

CPU (existing code from RooFit) 

GPU 
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PDF in CUDA (2) 

GPU code (Kernel implementation) 
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GPU Implementation 

  Data are copied on the GPU once 
  Results for each PDF are resident only on the 

GPU 
  Arrays of results are allocated on the global memory 

once and they are deallocated at the end of the fitting 
procedure 
  Minimize CPU  GPU communication 

  Only the final results are copied on the CPU for the 
final sum to compute NLL 

  Device algorithm performance with a linear polynomial 
PDF and 1,000,000 events 

  45 GFLOPS and 3.5 GB/s CPU  GPU data transfer 
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1D PDF Tests 

  CPU algorithm is the event-based (RooFit) in sequential 
  GPU time includes data transfer time (data and results) 

  A significant portion of time, limiting the scalability 
  More complex PDF => Bigger portion of time spent in 

evaluation VS time for data transfers 

1,000,000 events and 1000 iterations 
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 Complex Model Test 

17 PDFs in total, 3 variables, 4 components, 35 parameters 

  G: Gaussian 

  AG: Asymmetric Gaussian 

  BW: Breit-Wigner 

  P: Polynomial 

Note: all PDFs have analytical normalization integral 

na[f1,aG1,a(x) + (1− f1,a)G2,a(x)]AG1,a(y)AG2,a(z)+

nbG1,b(x)BW1,b(y)G2,b(z)+

ncAR1,c(x)P1,c(y)P2,c(z)+

ndP1,d(x)G1,d(y)AG1,d(z)
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Event-based VS PDF-event-base performance 
  Driven by the GPU implementation, we implemented a corresponding 

CPU implementation 
➭  take benefit from the code optimizations (due to migration from C++ to C) 

  No virtual functions  
  Inlining of the evaluate function 
  Data organized in C arrays, perfect for vectorization 

➭  it can be easily parallelized using OpenMP 
  Linear increase with 

the number of events 
(as expected) 

  Speed-up of 34% 
(almost flat over the 
number of events), 
just optimizing the 
algorithm! (not 
parallelization) 
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PDF-event-base scalability with OpenMP 
  Test done on the Westmere-EP @ 2.93 GHz 

  12 cores / 24 threads 
  100,000 events 
  98.8% of the sequential execution can be parallelized (1.2% required for 

initialization of the arrays for data and results and normalization integrals 
calculation) 

  Negligible increase in 
memory (arrays are 
shared) 

  Scalability as 
expected 

  Using SMT (hw-
threading) with 24 
threads we reach 
110% in efficiency 
w.r.t 12 threads 
(+32% in case of 
ideal speed-up) 
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PDF-event-base: GPU VS OpenMP 
  Fair comparison 

  Same algorithm  
  Algorithm on CPU optimized and parallelized (4 threads) 
  CPU does the final sum of the NLL and normalization integral 

calculations 
  Check that the results are compatible: asymmetry less than 10−12 

  Speed-up increases 
with the dimension of 
the sample, taking 
benefit from the data 
streaming on GPU 
and the integral 
calculation only on 
the CPU 
  ~3x for small 

samples, up to ~7x 
for large samples 

36% GPU kernels 
60% CPU time 
4% transfers 

68% GPU kernels 
21% CPU time 
11% transfers 
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Conclusion 
  Implementation of the algorithm in CUDA to calculate the NLL on GPU, as 

part of the RooFit package 
  Require not so drastic changes in the existing RooFit code 
  New design of the algorithm for PDF-event parallelism 

  The CUDA implementation “forces” us to develop an OpenMP 
implementation on the CPU of the same PDF-event algorithm 
  With 1 thread +34% better performance with respect to RooFit implementation 

  In our test GPU implementation gives >3x speed-up (~7x for large 
samples) with respect to OpenMP with 4 threads 
  Note that our target is running fits at the user-level on the GPU of small 

systems (laptops), i.e. with small number of CPU cores 

  This is a preliminary work (mainly by the summer student, Felice: 2.5 
months work). Still a lot to do. Some examples: 
  Simultaneous fits with index variables 
  More complex tests 
  Parallelization of PDFs with numerical integrals  
  Further optimization on the GPU (better treatment of the memory) 

  Last but not least: insert the code in the official RooFit/ROOT release 



Future work 

  Try to use OpenCL  
  The great benefit is the possibility to have hardware-independent 

code, i.e. GPUs (NVidia, AMD, Intel) and CPUs  
  There are issue related to the implementation that are to be 

investigated.  
  In contact with a guru, Tim Mattson (Intel) 

  It turns out that the new implementation of the algorithm (which is 
required to run on the GPU) gives better performance on the CPU 
and it is easy to parallelize (using OpenMP) 
  We will continue to improve this version. This is our first priority 

  We are working on the evaluation of the Knights Ferry (32 cores) and 
soon of the Single-Chip Cloud Computer (48 cores, no cache coherency), 
as part of the collaboration with Intel 
  Very promising architectures for massive parallelization with intensive 

calculations 
  It can be put in the general context of accelerators  
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Physical structure: discrete behavior 

 GTX 470 Fermi Card is a 
discrete device, made up 
of 14 stream 
multiprocessors 

  As the device is being 
filled, the processing time 
does not follow a O(N) 
growth 

  As soon as the device is 
completely filled and the 
# of events is increased, 
the performance drops 
and we begin to watch a 
O(N) behavior 
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