
Maximum
Likelihood Fits

on GPUs
S. Jarp, A. Lazzaro, J. Leduc,

A. Nowak, F. Pantaleo
CERN openlab

Openlab Minor review meeting
November 2nd, 2010

Extracted from my presentation at CHEP2010 (Taipei):
http://117.103.105.177/MaKaC/contributionDisplay.py?contribId=297&sessionId=79&confId=3

Maximum Likelihood Fits

j species (signals, backgrounds)
nj number of events
Pj probability density function (PDF)
θj Free parameters in the PDFs

  We have a sample composed by N events, belonging to s
different specie (signals, backgrounds), and we want to
extract the number of events for each species and other
parameters

  We use the Maximum Likelihood fit technique to estimate the
values of the free parameters, minimizing the Negative Log-
Likelihood (NLL) function

Alfio Lazzaro (alfio.lazzaro@cern.ch) 2

MINUIT
  Numerical minimization of the NLL using MINUIT (F. James, Minuit,

Function Minimization and Error Analysis, CERN long write-up
D506, 1970)

  MINUIT uses the gradient of the function to find local minimum
(MIGRAD), requiring
  The calculation of the gradient of the function for each free parameter,

naively

  The calculation of the covariance matrix of the free parameters (which
means the second order derivatives)

  The minimization is done in several steps moving in the Newton
direction: each step requires the calculation of the gradient
➪ Several calls to the NLL

2 function calls
per each

parameter

Alfio Lazzaro (alfio.lazzaro@cern.ch) 3

Building models: RooFit
  RooFit is a Maximum Likelihood fitting package (W.

Verkerke and D. Kirkby) for the NLL calculation
  Inside ROOT (details at http://root.cern.ch/drupal/content/roofit)
  Allows to build complex models and declare the likelihood function
  Mathematical concepts are represented as C++ objects

  On top of RooFit developed another package for advanced
data analysis techniques, RooStats

  Limits and intervals on Higgs mass and New Physics effects

Alfio Lazzaro (alfio.lazzaro@cern.ch) 4

1.  Read the values of the variables for each event
2.  Make the calculation of PDFs for each event

  Each PDF has a common interface declared inside the class RooAbsPdf
with a virtual method evaluate() which define the function
  Each PDF implements the method evaluate()

  Automatic calculation of the normalization integrals for each PDF
  Calculation of composite PDFs: sums, products, extendend PDFs

3.  Loop on all events and make the calculation of the NLL

Parallel execution over
the events (as it is
already implemented)

Likelihood Function calculation in RooFit

Alfio Lazzaro (alfio.lazzaro@cern.ch) 5

var1 var2 … varn

0
1
…

N - 1

Variables
E

ve
nt

s

Algorithms

  Two algorithms implemented:
1.  RooFit Event-based (CPU Implementation), described

before
•  Parallelization at event level, using fork
•  Not shared resources

2.  PDF-Event-based Algorithm
•  GPU Implementation (CUDA)
•  CPU Implementation (OpenMP)

Note: everything done in double precision

Alfio Lazzaro (alfio.lazzaro@cern.ch) 6

NEW

Alfio Lazzaro (alfio.lazzaro@cern.ch) 7

PDF-Event-based Algorithm
New approach to the NLL calculation:
1. Read all events and store in arrays in memory
2.  For each PDF make the calculation on all events

•  Corresponding array of results is produced for each PDF
•  Evaluation of the function inside the local PDF, i.e. not need a virtual

function (drawback: require more memory to store temporary results:
1 double per each event and PDF)

•  Apply normalization
3. Combine the arrays of results (composite PDFs)
4. Calculation of the NLL

Parallelization splitting calculation of each PDF over the events
•  Particularly suitable for thread parallelism on GPU, requiring

one thread for each PDF/event
•  Possible benefit from vectorization on the CPU

Test environment

  PCs
  CPU: Nehalem @ 3.2GHz: 4 cores – 8 hw-threads
  OS: SLC5 64bit - GCC 4.3.4
  ROOT trunk (October 11th, 2010)

  GPU: ASUS nVidia GTX470 PCI-e 2.0
  Commodity card (for gamers)
  Architecture: GF100 (Fermi)
  Memory: 1280MB DDR5
  Core/Memory Clock: 607MHz/837MHz
  Maximum # of Threads per Block: 1024
  Number of SMs: 14
  CUDA Toolkit 3.1 06/2010
  Developer Driver 256.40
  Power Consumption 200W
  Price ~$340

Alfio Lazzaro (alfio.lazzaro@cern.ch) 8

Alfio Lazzaro (alfio.lazzaro@cern.ch) 9

PDFs implemented

•  1D PDFs commonly used in HEP:
•  Symmetric and Asymmetric Gaussian
•  Breit-Wigner
•  Crystal Ball Function
•  Argus
•  Generic Polynomial
•  Chi Square

•  Composition of PDFs:
•  Sum of two or more PDFs
•  Product of two or more PDFs
•  Multivariate PDFs

•  Very easy to build complex models (via composition) and
add new PDFs

Alfio Lazzaro (alfio.lazzaro@cern.ch) 10

PDF in CUDA (1)

CPU (existing code from RooFit)

GPU

Alfio Lazzaro (alfio.lazzaro@cern.ch) 11

PDF in CUDA (2)

GPU code (Kernel implementation)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 12

GPU Implementation

  Data are copied on the GPU once
  Results for each PDF are resident only on the

GPU
  Arrays of results are allocated on the global memory

once and they are deallocated at the end of the fitting
procedure
  Minimize CPU GPU communication

  Only the final results are copied on the CPU for the
final sum to compute NLL

  Device algorithm performance with a linear polynomial
PDF and 1,000,000 events

  45 GFLOPS and 3.5 GB/s CPU GPU data transfer

Alfio Lazzaro (alfio.lazzaro@cern.ch) 13

1D PDF Tests

  CPU algorithm is the event-based (RooFit) in sequential
  GPU time includes data transfer time (data and results)

  A significant portion of time, limiting the scalability
  More complex PDF => Bigger portion of time spent in

evaluation VS time for data transfers

1,000,000 events and 1000 iterations

Alfio Lazzaro (alfio.lazzaro@cern.ch) 14

 Complex Model Test

17 PDFs in total, 3 variables, 4 components, 35 parameters

  G: Gaussian

  AG: Asymmetric Gaussian

  BW: Breit-Wigner

  P: Polynomial

Note: all PDFs have analytical normalization integral

na[f1,aG1,a(x) + (1− f1,a)G2,a(x)]AG1,a(y)AG2,a(z)+

nbG1,b(x)BW1,b(y)G2,b(z)+

ncAR1,c(x)P1,c(y)P2,c(z)+

ndP1,d(x)G1,d(y)AG1,d(z)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 15

Event-based VS PDF-event-base performance
  Driven by the GPU implementation, we implemented a corresponding

CPU implementation
➭  take benefit from the code optimizations (due to migration from C++ to C)

  No virtual functions
  Inlining of the evaluate function
  Data organized in C arrays, perfect for vectorization

➭  it can be easily parallelized using OpenMP
  Linear increase with

the number of events
(as expected)

  Speed-up of 34%
(almost flat over the
number of events),
just optimizing the
algorithm! (not
parallelization)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 16

PDF-event-base scalability with OpenMP
  Test done on the Westmere-EP @ 2.93 GHz

  12 cores / 24 threads
  100,000 events
  98.8% of the sequential execution can be parallelized (1.2% required for

initialization of the arrays for data and results and normalization integrals
calculation)

  Negligible increase in
memory (arrays are
shared)

  Scalability as
expected

  Using SMT (hw-
threading) with 24
threads we reach
110% in efficiency
w.r.t 12 threads
(+32% in case of
ideal speed-up)

Alfio Lazzaro (alfio.lazzaro@cern.ch) 17

PDF-event-base: GPU VS OpenMP
  Fair comparison

  Same algorithm
  Algorithm on CPU optimized and parallelized (4 threads)
  CPU does the final sum of the NLL and normalization integral

calculations
  Check that the results are compatible: asymmetry less than 10−12

  Speed-up increases
with the dimension of
the sample, taking
benefit from the data
streaming on GPU
and the integral
calculation only on
the CPU
  ~3x for small

samples, up to ~7x
for large samples

36% GPU kernels
60% CPU time
4% transfers

68% GPU kernels
21% CPU time
11% transfers

Alfio Lazzaro (alfio.lazzaro@cern.ch) 18

Conclusion
  Implementation of the algorithm in CUDA to calculate the NLL on GPU, as

part of the RooFit package
  Require not so drastic changes in the existing RooFit code
  New design of the algorithm for PDF-event parallelism

  The CUDA implementation “forces” us to develop an OpenMP
implementation on the CPU of the same PDF-event algorithm
  With 1 thread +34% better performance with respect to RooFit implementation

  In our test GPU implementation gives >3x speed-up (~7x for large
samples) with respect to OpenMP with 4 threads
  Note that our target is running fits at the user-level on the GPU of small

systems (laptops), i.e. with small number of CPU cores

  This is a preliminary work (mainly by the summer student, Felice: 2.5
months work). Still a lot to do. Some examples:
  Simultaneous fits with index variables
  More complex tests
  Parallelization of PDFs with numerical integrals
  Further optimization on the GPU (better treatment of the memory)

  Last but not least: insert the code in the official RooFit/ROOT release

Future work

  Try to use OpenCL
  The great benefit is the possibility to have hardware-independent

code, i.e. GPUs (NVidia, AMD, Intel) and CPUs
  There are issue related to the implementation that are to be

investigated.
  In contact with a guru, Tim Mattson (Intel)

  It turns out that the new implementation of the algorithm (which is
required to run on the GPU) gives better performance on the CPU
and it is easy to parallelize (using OpenMP)
  We will continue to improve this version. This is our first priority

  We are working on the evaluation of the Knights Ferry (32 cores) and
soon of the Single-Chip Cloud Computer (48 cores, no cache coherency),
as part of the collaboration with Intel
  Very promising architectures for massive parallelization with intensive

calculations
  It can be put in the general context of accelerators

Alfio Lazzaro (alfio.lazzaro@cern.ch) 19

Backup Slides

20 Alfio Lazzaro (alfio.lazzaro@cern.ch)

Physical structure: discrete behavior

 GTX 470 Fermi Card is a
discrete device, made up
of 14 stream
multiprocessors

  As the device is being
filled, the processing time
does not follow a O(N)
growth

  As soon as the device is
completely filled and the
of events is increased,
the performance drops
and we begin to watch a
O(N) behavior

21 Alfio Lazzaro (alfio.lazzaro@cern.ch)

