
CERN IT Technical Forum

Evaluating program correctness
and performance with new

software tools from Intel
Andrzej Nowak, CERN openlab

March 18th 2011

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 2

Agenda

> An introduction to the new generation of
software tools from Intel

> Intel VTune Amplifier XE 2011 - overview
 Description
 Features

> Intel Inspector XE 2011 - overview
 Description
 Features

> API
 Organizing data

This presentation contains some material from the Intel tools documentation

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 3

The case for optimization

> Limited scaling in hardware
 Some important CPU features that we used to rely on do

not scale or even regress: frequency, cache, bus,
internal buffers, ILP
 Other features (that we typically don’t exploit, but we

should) still scale to an extent: the number of cores,
hardware threads, vectors

> Software complexity is growing rapidly

> Hence our interest in performance tuning
 As Intel puts it: “What in the world is happening to my

computer?”
 What should be true, but rarely is:

•Optimization is an integral part of the software development
process

•Performance is a feature

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 4

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 5

Intel software tools

> Designed to aid with developing software on Intel
x86 processors

> Previous generation:
 Linux undermaintained: a lot of functionality missing from the

Linux versions
 Tools:

• VTune and Thread Profiler – performance tuning
• Thread Checker – threading correctness
• PTU 3.x (“Performance tuning utility”)

> Current (new) generation:
 Redesigned interfaces, new functionality

• Unified functionality across Windows and Linux
 Much better software support (that means CERN software too)
 CERN openlab participates intensively in Alpha and Beta

programs
 Tools:

• VTune Amplifier – performance and profiling
• Inspector – threading and memory correctness
• PTU 4.x (experimental/expert – not our focus today)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 6

CERN openlab participation

> CERN openlab participated intensively in the Alpha
and Beta phases of the XE tools
 Evaluations with CERN software – several “showstopping”

bugs discovered and fixed, enabling work and avoiding long
delays

 Enhancement proposals and feature requests (dozens made)
 Bugreports (dozens filed)

> Cross-departmental collaborations based on Intel
PTU driven by David Levinthal (Intel)

> Special workshops held for advanced programmers
 Featured lectures by engineers from Intel working on the tools

> Regular openlab workshops now promote these new
tools as well (4 in a year)
 Featuring demos and exercises with both open-source and

Intel tools

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 7

Package components (both tools)

> Graphical interface
 Based on wxWidgets
 Works in Linux as well as Windows

> Command line interface
 Full collection capabilities
 Limited reporting capabilities

> Tool API and libraries
 Available for program instrumentation

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

VTune Amplifier
Monitoring and tweaking performance

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 9

Rationale

> Performance tuning is increasingly growing in
importance

> PC tuning was missing a comprehensive product
which supported:
 PMU based monitoring
 Instrumented monitoring
 Multi-threading and multi-core environments
 Graphical interpretation of results

> Intel VTune was a step in that direction, later with a
“Thread Profiler” addon

> Amplifier is VTune’s spiritual successor, borrowing
features from the experimental Intel Performance
Tuning Utility (PTU)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 10

Functionality

> A performance tuning tool, adapted to multi-
threaded programs

> Two main modes
 User-mode sampling and tracing – instrumented; may have a

heavy impact on runtime, a lot of data collected (including
stack data)

 Hardware event-based sampling – virtually no impact on
runtime, good for hotspots and hardware utilization
measurements
• The widely covered perfmon2 does the same thing, but this tool

has much better visualization capabilities

> Operating systems supported (same functionality):
 Linux
 Windows

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 11

Issue detection capacity
> Identify the most time-consuming (hot) functions in your

application and/or on the whole system

> Locate sections of code that do not effectively utilize available
processor time

> Determine the best sections of code to optimize for sequential
performance and for threaded performance

> Locate synchronization objects that affect the application
performance

> Find whether, where, and why your application spends time on
input/output operations

> Identify and compare the performance impact of different
synchronization methods, different numbers of threads, or
different algorithms

> Analyze thread activity and transitions

> Identify hardware-related bottlenecks in your code

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 12

Select features

> Analysis tree: Use the performance analysis tree to choose and
configure the type of analysis for your target.

> Start data collection paused: Click the Start Paused button on the
command bar to start collecting performance data after a delay.

> Viewpoints: Choose among preset configurations of windows and
panes available for the analysis result. This helps focus on particular
performance problems.

> Top-down tree: Use to understand which flow in your application is
more performance-critical.

> Timeline analysis: Analyze the thread activity and transitions between
threads.

> Grouping: Group your data in different ways in the Bottom-up window
to analyze the problem from different angles.

> Source analysis: View source with the performance data attributed to
source lines to understand a possible cause of an issue.

> Comparison analysis: Compare performance analysis results for
several application runs to estimate the performance gain you got
after optimization.

An example from the HEP world

> Based on the multi-threaded Geant 4
prototype with the FullCMS simulation
example
 A multi-threaded simulation of the passage of

particles through the CMS detector

> Light instrumentation discussed (~10 lines
inserted in total)

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 13

LAB – Part 1

1
2

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 15

Timeline view
> Blue elements are frames (events)
 as defined by instrumenting the event loop in the simulation

> Yellow elements are tasks (regions)
 As defined by instrumenting the particular regions of the code

> Green is runtime, brown is CPU usage
 Measured by the tool

Frames

Regions

Call stack

Interactive profile
display

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 17

Concurrency histogram

> Shows a histogram of elapsed time
according to thread concurrency
 The user may adjust the values as he sees fit –

other views will adjust the colors accordingly

Adjustable sliders

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 18

Locks and waits analysis (1)

> Shows time spent in locks and
synchronization objects

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 19

Locks and waits analysis (2)

> See the precise lock location and the time
spent in locks

Timeline view

Filters

Results

Different “reference” events available

Different “views” available

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 23

Workflow

> The basic steps to get
going are identical to
those in “Inspector”

> The custom workflow
for this application is
also similar to
“Inspector’s” and is
shown on the right

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

Inspector
Threading and memory correctness

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 25

Introduction

> A dynamic memory and threading error
checking tool

> Languages supported:
 C, C++, C#, Fortran

> Technologies supported:
 TBB, Cilk+, pthreads, Windows threads, OpenMP

> Operating systems supported (same
functionality):
 Linux
 Windows

> Replacement tool for Thread Checker

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 26

Features – instrumented analysis

> Memory error detection and location
 Detect leaks

• Detects memory leaks
 Detect memory problems

• In addition to the above: detects uninitialized accesses
 Locate memory problems

• In addition to the above: detects dangling pointers, enables
guard zones, deep stack analysis

> Threading error detection and location
 Detect deadlocks

• Detects lock hierarchy and deadlocks
 Detect data races

• In addition to the above: detects cross-thread stack accesses,
data races

 Locate deadlocks and data races
• In addition to the above: collects stack, finer memory access

granularity

> Static security analysis
 Visualizes output from analysis performed with Intel compilers

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 28

Basic workflow - overview

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 29

Advanced workflow with regression testing

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

API
Instrumenting your programs for a streamlined optimization process

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 31

API

> You can use “Intel Threading Tools” calls in
your software in order to specify certain
actions
 Start and stop monitoring (data collection)
 Describe regions of your code
 Rename threads
 Describe synchronization objects
 Define loop limits

> Usage:
 Include ittnotify.h
 Link with ittnotify.a

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 32

API – examples (Pause/Resume)

// code, work – collection was started paused

// so no profiling data is gathered

__itt_resume(); // switch on profiling

// code, work (profiled)

__itt_pause(); // switch off profiling

> Example usage:
 Monitoring restricted to a certain routine
 Monitoring enabled only past a certain point

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 33

API – examples (Frames)

__itt_frame frame = __itt_frame_create("G4 Events");

for (...) {

__itt_frame_begin(frame);

// ... loop code

__itt_frame_end(frame);

}

> Example usage:
 Designation of cyclic occurrences – such as events in a

physics simulation (for display/grouping purposes)
 Frame groups (“domains”) available
 Different frame groupings available

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 34

Frame grouping - example

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 35

API – examples (Regions/events)

// “10” refers to the length of the description string

__itt_event ev_loop = __itt_event_create(“Event loop”, 10);

__itt_event_start(ev_loop);

// ... Work ...

__itt_event_end(ev_loop) ;

> Example usage:
 Designation of code regions (for display/grouping purposes), e.g.

“Initialization”, “Detector construction”, “Simulation”, “Finalization”

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 36

Regions (“Task”) grouping - example

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 37

Takeaway advice

> Instrumented analysis might take quite a while
 Whenever possible, always try to choose a representative data

set for monitoring
 Reduce the detail level of the analysis; for example, in “Locks

and waits”, uncheck “Spin time data” and “Collect signals”
whenever you don’t need that data

> Hardware-level analysis is as fast as the application
itself
 No need to reduce your data set!

> The tools come with APIs which you can use to
instrument your source code

> Results on non-Intel CPUs should generally be fine,
but may be offset or incorrect

> Take a look at the documentation, it’s worth it!

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 38

Practical information

> Intel tools are available pre-installed CERN-
wide in the standard AFS folder
 /afs/cern.ch/sw/IntelSoftware
 Ideally: source all-setup.sh and you’re set up

> For more information, read the openlab TWiki
or the openlab webpages
 http://twiki.cern.ch/ -> openlab web
 http://cern.ch/openlab

> Graphical version: amplxe-gui

> Command line: amplxe-cl

http://twiki.cern.ch/�
http://cern.ch/openlab�

Q & A

Other questions? andrzej.nowak@cern.ch

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel

BACKUP
With material from the Intel tools documentation

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 41

Key terms (1)
> analysis: A process during which the tool performs collection and

finalization.

> code location: A fact the tool observes at a source code location,
such as a write code location. Sometimes called an observation.
A focus code location is a source code location with relationships
you choose to explore. A related code location is a source code
location with a relationship to a focus code location and possibly
other code locations.

> collection: A process during which the tool executes an
application, identifies issues that may need handling, and
collects those issues in a result.

> false positive: The tool detects something that is not an error.

> false negative: The tool does not detect an error because the
problem may be too complex/big or involve too much
runtime/memory cost.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 42

Key terms (2)
> finalization: A process during which the the tool uses debug

information from binary files to convert symbol information into
filenames and line numbers, perform duplicate elimination, and
form problem sets.

> problem: A small group of closely related code locations that
indicate an error in an application, such as a data race
problem.

> problem set: A larger group of more loosely related code
locations that could share a common solution, such as a
problem set resulting from deallocating an object too early
during program execution. You can view problem sets only after
analysis is complete.

> project: A compiled application, collection of configurable
attributes for the compiled application, and a container for
results and private suppression rules.

> result: A collection of issues that may need handling.
> target: An application you inspect for errors

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 43

Key terms (3)
> baseline: A performance metric used as a basis for comparison of the

application versions before and after optimization. Baseline should be
measurable and reproducible.

> CPU time: The amount of time a thread spends executing on a logical
processor. For multiple threads, the CPU time of the threads is
summed. The application CPU time is the sum of the CPU time of all
the threads that run the application.

> elapsed time: The total time your target ran, calculated as follows:
Wall clock time at end of application – Wall clock time at start of
application.

> hotspot: A section of code that took a long time to execute. Some
hotspots may indicate bottlenecks and can be removed, while other
hotspots inevitably take a long time to execute due to their nature.

> viewpoint: A preset result tab configuration that filters out the data
collected during a performance analysis and enables you to focus on
specific performance problems. When you select a viewpoint, you
select a set of performance metrics the tool shows in the
windows/panes of the result tab. To select the required viewpoint, use
the drop-down menu (“wrench”) at the top of the result tab.

> wait time: The amount of time that a given thread waited for some
event to occur, such as: synchronization waits and I/O waits.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 44

Key Concept: CPU Utilization

> For the Concurrency and the Locks and Waits
analyses, the Intel(R) VTune(TM) Amplifier XE
identifies a processor utilization scale, calculates the
target concurrency, and defines default utilization
ranges depending on the number of processor cores.
You can change the utilization ranges by dragging the
slider in the Summary window.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 45

Key Concept: Hardware-level Analysis

> The VTune Amplifier XE introduces a set of advanced hardware
analysis types based on the event-based sampling data
collection and targeted for the Intel(R) Core(TM) 2 processor
family and processors based on the Intel(R) microarchitecture
codename Nehalem. Depending on the analysis type, the VTune
Amplifier XE monitors a set of hardware events and, as a result,
provides collected data per, so-called, hardware performance
metrics defined by Intel architects (for example, Clockticks per
Instructions Retired, Contested Accesses, and so on). Each
metric is an event ratio with its own threshold values. As soon
as the performance of a program unit per metric exceeds the
threshold, the VTune Amplifier XE marks this value as a
performance issue and provides recommendations how to fix it.

> Typically, you are recommended to start with the General
Exploration analysis type that collects the maximum number of
events and provides the widest picture of the hardware issues
that affected the performance of your application.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 46

Key Concept: Hotspots Analysis

> The Hotspots analysis helps understand the application flow
and identify sections of code that took a long time to execute
(hotspots). A large number of samples collected at a specific
process, thread, or module can imply high processor utilization
and potential performance bottlenecks. Some hotspots can be
removed, while other hotspots are fundamental to the
application functionality and cannot be removed.

> The Intel(R) VTune(TM) Amplifier XE creates a list of functions
in your application ordered by the amount of time spent in a
function. It also detects the call stacks for each of these
functions so you can see how the hot functions are called.

> The VTune Amplifier XE uses a low overhead (about 5%)
statistical sampling algorithm that gets you the information you
need without a significant slowing of application execution.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 47

Key Concept: Locks and Waits Analysis

> While the Concurrency analysis helps identify where
your application is not parallel, the Locks and Waits
analysis helps identify the cause of the ineffective
processor utilization. One of the most common
problems is threads waiting too long on
synchronization objects (locks). Performance suffers
when waits occur while cores are under-utilized.

> During the Locks and Waits analysis you can
estimate the impact each synchronization object
introduces to the application and understand how
long the application was required to wait on each
synchronization object, or in blocking APIs, such as
sleep and blocking I/O.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 48

Key Concept: Choosing Small, Representative
Data Sets

> When you run a dynamic analysis, the tool executes
an application against a data set. Data set size has a
direct impact on application execution time and
analysis speed.

> You can control analysis cost without sacrificing
completeness by removing redundancies from your
data set (e.g. redundant iterations).

> Instead of choosing large, repetitive data sets,
choose small, representative data sets. Data sets
with runs in the seconds time range are ideal. You
can always create additional data sets to ensure all
your code is inspected.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 49

Key Concept: Data of Interest

> The VTune Amplifier XE maintains a special column called Data
of Interest. This column is highlighted with yellow background
and a yellow star in the column header .

> The data in the Data of Interest column is used by various
windows as follows:
 The Call Stack pane calculates the contribution, shown in the

contribution bar, using the Data of Interest column values.
 The Filter bar uses the data of interest values to calculate the

percentage indicated in the filtered option.
 The Source/Assembly window uses this column for hotspot

navigation.

> If a viewpoint has more than one column with numeric data or
bars, you can change the default Data of Interest column by
right-clicking the required column and selecting the Set
Column as Data of Interest command from the pop-up menu.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 50

Key Concept: Finalization

> Finalization is a process when the VTune
Amplifier XE converts the collected data to a
database, resolves symbol information, and
pre-computes data to make further analysis
more efficient and responsive. The VTune
Amplifier XE finalizes data automatically
when generating results.

> You may want to re-finalize a result to:
 update symbol information after changes in the

search directories settings
 resolve the number of [Unknown]-s in the results

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 51

“Amplifier”: Algorithm analysis

> Algorithm analysis branch introduces analysis types targeted for
software tuning. You run the analysis and use the collected data to
understand where you could choose a better algorithm, and improve
the application performance. Algorithm analysis includes the following
analysis types:

> Lightweight Hotspots: Event-based sampling analysis that monitors all
the software executing on your system including the operating system
modules. The collector interrupts the processor at the specified
sampling interval and collects samples of instruction addresses.

> Hotspots: Performance analysis based on the user-mode sampling and
tracing collection. It focuses on a particular target, identifies functions
that took the most CPU time to execute, restores the call tree for each
function, and shows thread activity.

> Concurrency: Performance analysis based on the user-mode sampling
and tracing collection. It focuses on a particular target, identifies
functions that took the most CPU time to execute, and shows how well
your application is threaded for the existing number of logical CPUs.

> Locks and Waits: Performance analysis based on the user-mode
sampling and tracing collection that helps identify the synchronization
objects that caused ineffective CPU usage.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 52

“Amplifier”: Hardware-level analysis

> The Advanced hardware-level analysis introduces a set of
analysis types based on the event-based sampling data
collection and targeted for the Intel(R) Core(TM) 2 processor
family and Intel(R) microarchitecture codename Nehalem.

> General Exploration: Event-based analysis that helps identify
the most significant hardware issues affect the performance of
your application. Consider this analysis type as a starting point
when you make the hardware-level analysis on Intel
microarchitecture codename Nehalem.

> Cycles and uOps: Event-based analysis that helps understand
where the cycles and uOps issues affect the performance of
your application.

> Front End Investigation: Event-based analysis that helps
understand where the front end issues affect the performance
of your application.

> Memory Access: Event-based analysis that helps understand
where the memory access issues affect the performance of
your application.

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 53

Amplifier: Timeline view

Andrzej Nowak - Evaluating program correctness and performance with new software tools from Intel 54

Amplifier: working with performance events

	�CERN IT Technical Forum
	Agenda
	Slide Number 3
	The case for optimization
	Intel software tools
	CERN openlab participation
	Package components (both tools)
	VTune Amplifier
	Rationale
	Functionality
	Issue detection capacity
	Select features
	An example from the HEP world
	LAB – Part 1
	Timeline view
	Slide Number 16
	Concurrency histogram
	Locks and waits analysis (1)
	Locks and waits analysis (2)
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Workflow
	Inspector
	Introduction
	Features – instrumented analysis
	Slide Number 27
	Basic workflow - overview
	Advanced workflow with regression testing
	API
	API
	API – examples (Pause/Resume)
	API – examples (Frames)
	Frame grouping - example
	API – examples (Regions/events)
	Regions (“Task”) grouping - example
	Takeaway advice
	Practical information
	Slide Number 39
	BACKUP
	Key terms (1)
	Key terms (2)
	Key terms (3)
	Key Concept: CPU Utilization
	Key Concept: Hardware-level Analysis
	Key Concept: Hotspots Analysis
	Key Concept: Locks and Waits Analysis
	Key Concept: Choosing Small, Representative Data Sets
	Key Concept: Data of Interest
	Key Concept: Finalization
	“Amplifier”: Algorithm analysis
	“Amplifier”: Hardware-level analysis
	Amplifier: Timeline view
	Amplifier: working with performance events

