Today's World-wide Computing Grid for the Large Hadron Collider (WLCG): A Petascale Facility -Moving to Exascale?

Sverre Jarp, CERN openIab CTO

18 May 2011

- Quick overview of CERN and the Large Hadron Collider
- Computing by the LHC experiments
- CERN openlab and future R&D
- Conclusions

CERN and LHC

What is CERN?

- CERN is the world's largest particle physics centre
- Particle physics is about:
 - elementary particles, the constituents all matter in the Universe is made of
 - fundamental forces which hold matter together
- Particles physics requires:
 - special tools to create and study new particles
 - Accelerators
 - -Particle Detectors
 - -Powerful computer systems

CERN is also:

-2250 staff (physicists, engineers, technicians, ...)

- Some 10'000 visiting scientists (most of the world's particle physicists)

> They come from 500 universities representing 80 nationalities.

What is the LHC?

• The Large Hadron Collider can collide beams of protons at a design energy of 2 * 7 TeV

- Inaugurated Sept. 2008; restart Nov. 2009
- Reached 3.5 TeV (March 2010)
- 2011/12: Two years at 3.5 TeV before upgrade
- Using the latest super-conducting technologies, it operates at about – 271°C, just above the temperature of absolute zero. The coldest place in the Universe.
- With its 27 km circumference, the accelerator is the <u>largest</u> superconducting installation in the world.

Collisions at LHC

General purpose LHC detector – 7000 tons

ATLAS under construction (2005)

Compact Muon Solenoid (CMS – 12500 tons)

CMS event @ 3.5 TeV

LHC Computing

CERN openiab

HEP programming paradigm

- All events are independent
- Trivial parallelism has been exploited by High Energy Physics for decades
 - Compute one event after the other in a single process
- Advantage:
 - Large jobs can be split into N efficient processes, each responsible for processing M events
 - Built-in scalability
- Disadvantage:
 - Memory needed by each process
 - With 2 4 GB per process
 - A dual-socket server with Octa-core processors
 - Needs 32 64GB

Rationale for Grids

The LHC Computing requirements are simply too huge for a single site:

- Impractical to build such a huge facility in one place
- Modern wide-area networks have made distances shrink
 - But, latency still has to be kept in mind
- The users are not necessarily at CERN
- Political resistance to funding everything at CERN

• So, we are spreading the burden!

World-wide LHC Computing Grid

W-LCG: Largest Grid service in the world

• Built on top of EGEE and OSG

- Almost 160 sites in 34 countries
- More than
 250'000 IA
 processor cores
 (w/Linux)
- One hundred petabytes of storage

Jun-08 Jul-08 Sep 08 Sep 08 Cot-08 Jan-09 Ja

5.00E+06 0.00E+00

- High-throughput computing based on reliable "commodity" technology:
- Scientific Linux
- All inclusive: 7'800 dual-socket servers (64'000 cores)
- Disk storage: 63'000 TB (usable) on 64'000 drives
- Tape storage: 34'000 TB on 45'000 cartridges
 - 56'000 slots and 160 drives

Computer Centre Even CERN has a power problem

We are going to move from 2.9 MW to 3.5 MW. Beyond this we will establish a remote Tier-0 in 2013!

W-LCG: A distributed supercomputer

Compared to TOP10 (Nov. 10)

Name/Location	Core count
Tianhe-1 (Tianjin)	186'368
Jaguar (Oak Ridge)	224'162
Nebulae – Dawning (NSCS)	120'640
Tsubame 2.0 (GSIC, Tokyo)	73'278
Hopper (DOE/NERSC)	153'408
Tera -100 – Bull (CEA)	138'368
Roadrunner (DOE/LANL)	122'400
Kraken XT5 (Tennessee)	98'928
Jugene (Jülich)	294'912
Cielo (DOE/SNL)	107'152

W-LCG 250'000 IA cores

Insatiable appetite for computing

- During the era of the LEP accelerator (and beyond)
 - Compute power doubled every year
- We are desperately looking at all opportunities for this to continue

CERN openlab

- IT Department's main R&D focus
- Framework for collaboration with industry
- Evaluation, integration, validation
 - of cutting-edge technologies that can serve the LHC Computing Grid
- Sequence of 3-year agreements
 - 2003 2005: Phase I: the "opencluster" project
 - 2006 2011: Phase II & III: dedicated Competence Centres

CERN openlab structure

A solid set of Competence Centres

With strong support from Management and Communications

I		Automation and Controls CC (Siemens)		CERN Openlab May 2010 - May2011
	Manag	Database CC (Oracle)	Commur	
	jement	Networking CC (HP)	nications	
		Platform CC (Intel)		

EXASCALE Capacity Computing R&D

In openlab, we want to start an R&D project for Exascale

Project goals:

- Identify constraints which might inhibit growth in CERN's TierO and in the W-LCG in the future.
- Understand which software and hardware components must be moved towards the Exascale range.

Graphics: INTEL

Intel's "Many Integrated Core" Architecture

- Announced at ISC10 (June 2010)
 - S. Jarp on stage with K.Skaugen/Intel
- Current version (codename "Knights Ferry SDP")
 - Enhanced x86 instruction set with vector extensions
 - 32 cores + 4-way multithreaded + 512-bit vector units

Successful (easy) porting of our benchmark applications

- ALICE Trackfitter/Trackfinder
- Multithreaded Geant4 prototype

Maximum Likelihood data analysis prototype

26

Conclusions

The Large Hadron Collider is foreseen to operate for the next 20 years!

- A Petascale Grid is currently in place for the computing tasks of the experiments
- We want to increase considerably the capacity of our Grid
 - But, both power and cost are limiting factors
- Planned and ongoing R&D activities should ease the move towards Exascale.

BACKUP-2

High Energy Physics Computing Characteristics

- > Independent events (collisions of particles)
 - trivial (read: pleasant) parallel processing
- > Millions of lines of in-house C++ code

- Most of the frameworks/toolkits are written by the physicists
- > Compute power scales with combination of SPECint and SPECfp
 - Good <u>double-precision</u> floating-point (20% of total) is important!
 - Good math libraries needed
- > Current "HEPSPEC 2006" throughput benchmark for acquisitions (based on performance/W/CHF):
 - 3 C++ jobs (INT) and 4 C++ jobs (FP)
- > Huge, but chaotic workload
 - research environment physics extracted by iterative analysis
 - \rightarrow Unpredictable \rightarrow unlimited demand

